

V. K. Jaiswal

Problems in

Inorganic Chemistry

9_{th}

Contents

1. Periodic Properties	1-50
2. Chemical Bonding (Basic)	51-103
3. Chemical Bonding (Advanced)	104-178
4. Co-ordination Compounds	179-246
5. Metallurgy	247-277
6. s-Block Elements	278-304
7. p-Block Elements	305-379
8. d-Block Elements	380-407
7 Types of Reactions	408-461
10. Qualitative Inorganic Analysis	462-525
11. Environmental Chemistry	526-536

-	The second country of	and the second second second	varelar beed tal
H	AVA	nd points points	
- Isl	The state of the operation of the state of t		
	e the state of the	base narrot men	mor. 13 dyn-16
rer	eriodic Table		as an areal (a.
1.	 Which is not similar characteristic(s) about the el 	ectronic configurat	ion of Be, Mg, Ca?
	(a) All the atoms have a pair of s-electrons in the		
	(b) All the atoms contain a pair of p-electrons in		
	(6) 121 110 111111111		
	(d) All are of second group of the periodic table		om zatro rob. (si ²
2.	2. The elements with atomic number 117 and 120		
	would you place these elements when discovered		
	(a) 17, 2 (b) (b) 16, 4 (c)		
3.	3. The most electropositive element possesses the el		
	(a) [He] $2s^1$ (b) [Ne] $3s^2$ (c)		
4.	4. Which one of the following elements shows both		
	(a) Cesium (b) Fluorine (c)		(d) Xenon
5.	5. The number of elements present in fifth period is	3: 0x1 (d)	Carrier was
	(a) 18 (b) 32 (c)		
6.	6. Which of the following arrangements shows the co		0.
	(a) $N > Al > O > Ca$ (b)		
	(c) $O > N > Al > Ca$ (d)		
7.	7. The outer electronic structure of lawrencium (ato	•	
	(a) Rn $5f^{13}7s^27p^2$ (b)		
	(c) Rn $5f^{14}7s^17p^2$ (d)	Rn $5f^{14}6d^17s^2$	mole and remind to the
8.	8. The elements with the lowest atomic number that	has a ground state	e electronic configuration
	of $(n-1) d^6 ns^2$ is located in the :	and an entitle of	at the one call the te
	(a) fifth period (b) sixth period (c)	fourth period	(d) third period
		× **	

9		numbers corresponds to elements of group 16?
	(a) 8, 16, 32, 54	(b) 16, 34, 54, 86
	(c) 8, 16, 34, 52	(d) 10, 16, 32, 50
10.	. The atomic numbers of the metallic ar	and non-metallic elements which are liquid at room
	temperature respectively are:	
	(a) 55, 87 (b) 33, 87	(c) 35, 80 (d) 80, 35
11.	In the periodic table, metallic character	r of the elements shows one of the following trend:
	(a) Decreases down the group and incre	
	(b) Increases down the group and decre	reases across the period
	(c) Increases across the period and also	o down the group
	(d) Decreases across the period and also	
12.	Nucleus of an element contains 9 proton	
	(a) 1 (b) 2	(c) 3 (d) 5
13.	Transition metals are not characterized	
	(a) fixed valency	(b) coloured compound
	(c) high melting and boiling points	(d) tendency to form complexes
14.	Sodium generally does not shown oxida	ation state of +2, because of its:
	(a) High first ionisation potential	(b) High second ionization potential
	(c) Large ionic radius	(d) High electronegativity
15.	Which of the following pairs of molecules	s have the almost identical bond dissociation energy?
	(a) F ₂ and H ₂ (b) N ₂ and CO	(c) F_2 and I_2 (d) HF and O_2
16.	According to modern periodic law the pro-	roperties of elements repeat at regular intervals when
	the elements are arranged in order of :	The state of the s
	(a) decreasing atomic number	(b) increasing atomic weight
	(c) increasing atomic number	(d) decreasing atomic weights
17.	Give the symbol of the elements of lowe	est atomic number that has three 2p electrons:
	(a) Mg (b) P	(c) N (d) Si
18.	In the fourth period of the periodic table, l	how many elements have one or more 4d electrons?
	(a) 2 (b) 18	(c) 0 (d) 6
19.	Assuming that elements are formed to con	implete the seventh period, what would be the atomic
	number of the alkaline earth metal of the	he eighth period?
	(a) 113 (b) 120	(c) 119 (d) 106
20.	Which of the following represents an exc	
	(a) [Ne] $3s^2 3p^6 4s^2 3d^8$	(b) [Ne] $3s^23p^64s^13d^5$
	(c) [Ne] $3s^23p^64s^23d^1$	(d) $1s^2 2s^2 2p^5 3s^1$
21.	Choose the correct statement regarding t	transition elements?
	(a) Transition elements has low melting	
	(b) Transition elements do not have cata	
	(c) Transition elements exhibit variable of	oxidation states
	(d) Transition elements exhibit inert pair	
	Which one of the following is a different	
	(a) Li, Na (b) Be, Ba	(c) N, As (d) O, At
	1 07 17	(u) 0, At

PER	OD.	CD	DO	DEDT	नारत
$\sim \kappa$	ww	ur	ĸυ	L E V	шэ

23.	The element having electronic configuration [I	$[4d^{10} 4f^{14},5s^25p^6]$,6s² belongs to :
		(c) d-block	
24.	Which element is named after the name of a p		
		(c) Pu	(d) Ra
25.	Zn and Cd metals do not show variable valence		
	(a) They have only two electrons in the outer		and he steed of the
	(b) Their d-subshells are completely filled	c (, 0, 9 (d)	59.1
	(c) Their d-subshells are partially filled	ose sum materiali	37 Winely electronic co
	(d) They are relatively soft metals	(b) 1: 2s to	
26.	An element whose IUPAC name is ununtrium	(Uut) belongs to:	
		(b) p-block element	
	(c) d-block element	(d) Transition eleme	nt man min a min .88
27.	Which of the following is not representative e		. 17
	(a) Tellurium	(b) Tantalum	39. The nead and 1 of th
	(c) Thallium	(d) Astatine	1 - 3 " -3 (a)
28.	The period number and group number of "Tan	ntalum" ($Z = 73$) are	respectively:
		(c) 6, 5	(d) None of these
29.	Which of the following pair of elements belor		19 Transport of 19 19 19 19 19 19 19 19 19 19 19 19 19
			3V 31
		(d) Ca and Cl	
30.	Consider the following electronic configuration	on of an element(P):	
	[Xe] $4f^{14}5d^16s^2$	of us of P is 0.11 nm	\$2. The vage counters
	Then correct statement about element P' is:	b) greatifinaci	ing a sub-ir than P
	(a) It belongs to 6th period and 1st group	(b) It belongs to 6th	period and 2nd group
	(c) It belongs to 6th period and 3rd group	(d) None of these	O < " (A > pM (s)
31.	Which of the following metal is highest electrons		
	(a) Be (b) Rb	(c) Mn a margaran	(d) Tl
32.	Which of the following species must have ma		
	(a) Cr (b) Fe ³⁺	(c) Cu ⁺	(d) Both (a) and (b)
33.	Which of the following graph is correct rep	presentation between	atomic number (Z) and
	magnetic moment of d-block elements? [Oute	er electronic configur	A
	g ±₁	岩岩岩	Magnetic moment
	Magnetic moment	(c) Magnetic moment	(d) g g []
	Ž Ė Ž Ė	Z E	the State Nation
	$z \longrightarrow z \in \mathbb{R} \times \mathbb{R} \times$	Z	THE REPORT OF STATES
34	. If IUPAC name of an element is "unununium"		
	(a) It is a inner transition element		n period in periodic table
	(c) It is transition element	(d) It is a non-trans	
35	. Which property decreases from left to right ac	ross the periodic tabl	e and increases from top to
	bottom?	(iii) Ionication ener	gy (iv) Metallic character
	(i) Atomic radius (ii) Electronegativity (a) (i) only	(b) (i), (ii) and (iii)	
	(a) (i) only	(b) (i), (ii) and (iii	•

	(c) (i), (iii) and (iv)		(d) (i) and (iv)	
36.		g information about el	ement P and Q :	
			roup number	
	P	2	15	
	•	3	2	
		compound formed by P		(I) no
	(a) PQ	(b) P_3Q_2	(c) P_2Q_3	(d) PQ_2
37.			nt an atom in an excite	ed state?
	(a) $1s^2, 2s^2 2p^1$	(b) $1s^2, 2s^2 2p^2$	(c) $1s^2, 2s^2 2p^2, 3s^1$	(d) 1s ⁻ ,2s ⁻ 2p
Ato	omic/Ionic Radius		K * 36.1 (6) (7)	
		g anion has the smalle	st radius?	
	(a) H ⁻	(b) F	(c) Cl ⁻	(d) Br -
39.		, Be 2+ and B 3+ follow		
	(a) Be ²⁺ > B ³⁺ > Li ⁺	11 / 17 82	(b) $\text{Li}^+ > \text{B}^{3+} > \text{Be}^{2+}$	
	(c) $B^{3+} > Be^{2+} > Li^+$		(d) $\text{Li}^+ > \text{Be}^{2+} > \text{B}^{3+}$	
40	(3) = 1 = 2 = 2	N-+ N177-1	(d) Li > Be > B	
40.	Largest in size out of		() T-	(I) II
4.1	(a) Na ⁺	(b) Ne (d)	(c) F	(d) all are equal
41.	(a) F	ng atom or ions has the		(J) N
42			(c) O The single covalent radi	(d) N
42.	(a) smaller than P	(b) greater than P	(c) same as P	(d) twice of P
43.		ng is arranged in decrea		8 854 98
	(a) $Mg^{2+} > Al^{3+} > O^2$		(b) $O^{2-} > Mg^{2+} > Al^3$	
			(d) $Al^{3+} > O^{2-} > Mg^2$	
44.			s of the following elem-	ents is :
	(a) S < O < Se < C		(b) O < C < S < Se	
	(c) O < S < Se < C		(d) C < O < S < Se	•
45.	(a) Si $<$ Al $<$ P $<$ Na		elements Si, Al, Na an (b) P < Si < Al < Na	
	(c) Al $<$ Si $<$ P $<$ No.		(d) Al < P < Si < Ni	
46.	(A.) [A.)	es, Pb, Pb ²⁺ , Pb ⁴⁺ decre		•
	(a) $Pb^{4+} > Pb^{2+} > Pb$		(b) $Pb > Pb^{2+} > Pb^{4+}$	
	(c) $Pb > Pb^{4+} > Pb^{2+}$		(d) $Pb^{4+} > Pb > Pb^{2+}$	
47	Incorrect order of rad		(4) 10 - 10 - 10	5.00
7/.	(a) $Sr^{2+} < Rb^{+} < Br^{-}$	< Se ²⁻	(b) $Nb^{5+} < Zr^{4+} < Y^3$	+
	(c) $Co > Co^{2+} > Co^{3+}$		(d) $Ba^{2+} < Cs^+ < Se^{2-}$	
48.	The correct order of a		(=) 24 (0) (36	~ A3
	(a) $Sc > Ti > V > Cr$		(b) Co > Ni > Cu > Zn	
	(c) $S^{2-} > Cl^{-} > O^{2-} >$	N 3-	(d) None of these	

49.	The radius of which ion is closest to that of L	i ⁺ ion?	1.11.100
	(a) Na ⁺ (b) Be ²⁺	(c) Mg ²⁺	(d) Al ³⁺
	CE SE SI COS		
		armound a conduction	
50.	The first, second and third ionisation energies eV and 42.5 eV respectively. The most stab	le oxidation state of th	e element will be:
	(a) +1 (b) +4 (b) +4 (b)	(c) +3	(d) +2
51.	(a) Ne (b) He (b) He (c)	(c) Be on a same	
52.	The order of ionisation potential between	He ⁺ ion and H-atom	(both species are in
	gaseous state) is:	5 100	
	(a) I.P. $(He^+) = I.P. (H)$	(b) I.P. $(He^+) < I.P. (He^+)$	f) / / / / / / / / / / / / / / / / / / /
	(c) I.P. $(He^+) > I.P. (H)$	(d) cannot be compar	
53.	Which of the following metal is expected to 1 (a) Cr $(Z=24)$ (b) V $(Z=23)$	(c) Mn $(Z=25)$	(d) $Fe(Z=26)$
54.		in the order:	67. From the mound a
	(a) Li > Be > B	(b) $Li > B > Be$	
	(-)	(d) B > Be > Li	45 E 47 17 15 1 15
55.	The ionization energy of boron is less than the	nat of beryllium because	se: "graded to
	(a) beryllium has a higher nuclear charge th	an boron	68. In eleme i has sur
	(b) beryllium has a lower nuclear charge that	in boron	16000 nnd 1 500 j
	(c) the outermost electron in boron occupies		
	(d) the 2s and 2p-orbitals of boron are dege	nerate	kI mol ⁻¹ The number of
56.	The first four I.E. values of an element are 28		as the same of the
	(1)	(c) three	
	(a) one (b) two mounts. The first I.E. of Na, Mg, Al and Si are in the	order:	e at fool stately as
57.	(a) Na $<$ Mg $<$ Al $<$ Si	(b) Na < Al < Mg <	Si de lo mass (b)
	(c) Na < Al < Si < Mg		
-0		ne electron is removed	from:
58.	(a) s-orbital (b) p-orbital	(c) d-orbital	(d) f-orbital
50	Which of the following isoelectronic ion has	the lowest ionization	energy?
37.	(a) K ⁺ (b) Cl ⁻	(c) Ca ²⁺	(d) S^{2-}
60	Amongst the following elements, the highest	ionization energy is:	
00.	(a) [Ne] $3s^23p^1$	(b) $ Ne 3s^23p^2$	
	(c) [Ne] $3s^2 3p^2$	(d) $[Ar] 3d^{10} 4s^2 4p^3$	72. Server rayers and
61.	The ionization potentials of Li and K are 5.4 of Na will be:	and 4.3 eV respectively	z. The ionization potential
	(a) 9.7 eV	(b) 1.1 eV	A second war
	(c) 4.9 eV	(d) cannot be calcul	ated
62.	Which of the following electronic configuration	ion is associated with t	the biggest jump between
10	the second and third ionization energies?		

	(a) $1s^2 2s^2 2p^2$		(b)	$1s^2 2s^2 2p^6 3s^1$	LIC SELECTOR WHICH	-101
	(c) $1s^2 2s^2 2p^6 3s^2$		(d)	$1s^2 2s^2 2p^1$		
63	. The second ionization energy is	maximum for	r:		Verend heller	
7.5	(a) boron (c) magnesium		(b)		o, boose, sein ed V - Card & C - V	
64.	A large difference between the for					
	(a) 5 valence electrons in an ato	om			ns in an atom	
	(c) 4 valence electrons in an ato			8 valence electro		
65.	For which of the following reaction					
	(a) $Ca^+(g) \longrightarrow Ca^{2+}(g) + e$				$(g) + e^{-1/3}$	
66.	(c) $Ca(s) \longrightarrow Ca^+(g) + e$ Ionization enthalpy of an atom is	s equal to :	(d)	$Ca(g) \longrightarrow Ca^{2+}$	(g) + 2e H) (h) (h)	
	(a) Electron gain enthalpy of the(c) Ionization enthalpy of the ca	e cation	(d)	Electronegativity None of these	(#) (# (Z=34)	
67.	From the ground state electronic	configuration	ı of	the elements give	n below, pick up th	e one
	with highest value of second ion (a) $1s^22s^22p^63s^2$	ization energy	y:	1-20-20-60-1	2 · 1 < 98 ()	
	(c) $1s^2 2s^2 2p^6$ seemed availy	ed to rest on	(d)	$1s^{2}2s^{2}2p^{2}3s^{2}$	C) BC > C + D	22
68.	An element has successive ionized	inted necessor	(α)	15 25 2p	201 moillymal (s)	.66
00.	An element has successive ionizat 16000 and 19500 kJ mol ⁻¹ . To wh	ion enthalple	s as he n	940 (first), 2080,	3090, 4140, 7030,	7870
	(a) 14 (b) 15	10 Q. d. r	(c)	16	(d) 17	g?
69.	The second ionization potential o	f elements is i	nva	riable higher than	first ionization not	ential
16	because:	TIN HOT BI	4411	With the to sollie	/ di jornati saT	.00
	(a) The size of cation is smaller					
	(b) It is easier to remove electro(c) Ionization is an endothermic	n from cation	li Li ess	0 (d) (d)		
	(d) None of above	process and		is a standard and	The BEST LLE OF INS	57.
70.			Œ.	F. & F) for an	The state of the	_
	and 42.5eV respectively. The mos	t stable oxida	ition	state of the elem	element are /eV, 1	2.5eV
	(a) $+1$ (b) $+4$	0-0 (5	c) -	-3	(4) 12	
71.	Which of the following electronic values of second and third ionism	configuration	is re	presents a sudder	n large gap betwee	n the
	varies of second and time follisa	non energies	or a	n element?		ii dic
	(a) $1s^2, 2s^2 2p^3$	nesi ionizati	b) 1	$s^2,2s^22p^6,3s^23p$	Smongst the follow	.00
	(c) $1s^2,2s^22p^6,3s^23p^1$	(d) (d)	(d) 1	$s^2, 2s^2 2p^6, 3s^2$	(a) [Nel 15" 3p"	
72.	Element having highest I.P. value					
100	(a) Ne (b) He	S.4 mid 4.3	c) B	e e	(1) >>	7.3
73.	which of the following atomic spe	ecies has max	amu	m ionisation ener	rgy?	19
	(0) 5	1 1 2 2 3	c) S	e ⁻	(d) Te ⁻	
/4.	The correct order of I.E. ₂ . is: (a) Na $> F > O > N$.5 (b)	• • •			
	(a) Na > F > O > N (c) Ne > O > F > N	e si nodani	p) () > F > Ne > N	want of the follow	
	(6) 1.6 - 0 - 1 - 11	¿(a) () > Ne > F > N	d for bridge, sale	,

75. Which of the following transformation least energy is required?

(a)
$$F_{(g)}^- \longrightarrow F_{(g)} + e^-$$

energy is required?
(b)
$$P_{(g)}^- \longrightarrow P_{(g)} + e^-$$

(c)
$$S_{(g)}^- \longrightarrow S_{(g)} + e^-$$

(d)
$$Cl_{(g)}^- \longrightarrow Cl_{(g)} + e^-$$

Electronaffinity

76. The amount of energy released on the addition of an electron in outermost shell of an atom is called:

(a) Ionization enthalpy

(b) Hydration enthalpy

(c) Electronegativity

(d) Electron gain enthalpy

77. To which of the following atom, the attachment of electron is most difficult?

(a) Radon

(b) Nitrogen

(c) Oxygen

(d) Radium? 38.0 = 11/3 g diches 1

78. Which of the following processes involves absorption of energy?

(a) $S(g) + e^- \longrightarrow S^-(g)$

(b) $S^- + e^- \longrightarrow S^{2-}(g)$

(c) $Cl(g) + e^- \longrightarrow Cl^-(g)$

(d) None of these

79. Arrange N, O and S in order of decreasing electron affinity:

(a) S > O > N

39. The evolution energy of N < S < O (d) see that the of :

(c) N > O > S

(d) S > N > O

80. Among the following configurations, the element which has the highest electron affinity is:

(c) [Ne] $3s^2 3p^4$

(d) $[Ne] 3s^2 3p^6 3d^5 4s^1$

81. The increasing order of electron affinity of the electronic configurations of element is:

(II) $1s^2 2s^2 2p^3$

(III) $1s^22s^22p^5$

(IV) $1s^22s^22p^63s^1$ (a) 11 (pa) X (b)

Which of the following VI>III>II>I (d), negative entiralpy of solar I>III>VI>II (a)

(c) I < III < II < IV

(d) IV < III < II < I

82. Second electron gain enthalpy:

(a) is always negative

(b) is always positive

(c) can be positive or negative

(d) is always zero

83. The element having very high ionization enthalpy but zero electron affinity is :

(a) H

(b) F

(c) He (d) Be

84. Which of the following represents correct order of electron affinity?

(a) Cl > F > S > O

(b) F > O > S > Cl

(c) F > Cl > S > O

(d) Cl > S > O > F

85. The process requiring absorption of energy is:

(a) N \longrightarrow N $^-$ spectros to explicit a symmetry (b) F_{cool} F_{cool}

(c) $Cl \longrightarrow Cl^-$

(d) $H \longrightarrow H^-$

Electronegativity

86. The electronegativity of the following elements increases in the order :

(5)

(a) C < N < Si < P

(b) Si < P < C < N

(c) N < C < P < Si

(d) C < Si < N < P

87. Which of the following order is incorrect	87.	Which	of the	following	order	is	incorrect	?
--	-----	-------	--------	-----------	-------	----	-----------	---

- (a) Electronegativity of central atom : CF₄ > CH₄ > SiH₄
- (b) Hydration energy : $Al^{3+} > Be^{2+} > Mg^{2+} > Na^{+}$
- (c) Electrical conductance : $F_{(aq.)}^- > Cl_{(aq.)}^- > S_{(aq.)}^{2-}$
- (d) Magnetic moment : Ni⁴⁺ > V³⁺ > Sr²⁺

88. Correct expression of "Allred and Rochow's" scale is :

- (a) Electronegativity = $0.744 \frac{Z_{\text{eff.}}}{r^2} + 0.359$
- (b) Electronegativity = $0.359 \frac{r^2}{Z_{\text{eff}}} + 0.744$
- (d) Electronegativity = $0.359 \frac{Z_{\text{eff.}}}{r^2} + 0.744$

Hydration Energy

89. The hydration energy of Mg^{2+} ions is lesser than that of : (d) S = N = 0

(a) Al³⁺

(b) Ba²⁺

N. O and a in a day of decreating electron alligity at

- (c) Nathbas the highest electron tank (c)
- (d) None of these

90. Among the following, which has the maximum hydration energy?

- (a) OH-
- (b) NH₄
- (c) F
- (d) H⁺

91. Which of the following is arranged in order of increasing radius?

- (a) $K^+(aq) < Na^+(aq) < Li^+(aq)$
- (b) $Na^+(aq) < K^+(aq) < Li^+(aq)$
- (c) $K^+(aq) < Li^+(aq) < Na^+(aq)$
- (d) $Li^+(aq) < Na^+(aq) < K^+(aq)$

92. Which of the following compounds has a negative enthalpy of solution?

- (a) KCl
- (b) KBr
- (c) KF
- (d) KI

Lattice Energy

93. Amongst sodium halides (NaF, NaCl, NaBr and NaI), NaF has the highest melting point because of:

- (a) High oxidising power
- (b) Lowest polarity
- (c) Maximum lattice energy
- (d) Minimum ionic character

94. Among the following oxides, which has the maximum lattice energy?

(a) MgO

(b) CaO

(c) SrO

(d) BaO

95. Which of the following compounds has a positive enthalpy of solution?

(a) LiF

(b) LiCl

(c) LiBr

(d) LiI

96. Born-Haber cycle can be used to estimate:

- (a) Lattice energy of ionic crystals
- (b) Electron gain enthalpy

(c) Electronegativity

(d) Both (a) and (b)

Nature of Oxide

97. Which of the following is different from other three oxides?

(a) MgO

(b) SnO

(c) ZnO

(d) PbO

98. Select the amphoteric substance in the following:

(a) SO₃

(b) NaOH

(c) CO₂

(d) $Al(OH)_3$

99. Which of the following compound is most acidic?

(a) Cl₂O₇

(b) P₄O₁₀

(c) SO_3

(d) B₂O₃

Level 2

Periodic Table

1. A compound contains three elements A, B and C, if the oxidation number of A = +2, B = +5 and C = -2, the possible formula of the compound is :

(a) $A_3(B_4C)_2$

(b) $A_3(BC_A)_2$

(c) $A_2(BC_3)_2$

(d) ABC_2

2. Consider the following four elements, which are represented according to long form of periodic table.

Y W X Z

Here W,Y and Z are left, up and right elements with respect to the element 'X' and 'X' belongs to 16th group and 3rd period. Then according to given information the incorrect statement regarding given elements is:

(a) Maximum electronegativity: Y

(b) Maximum catenation property: X

(2) Maximum electron affinity: Z

(d) Y exhibits variable covalency

3. Which of the following sequence represents atomic number of only representative elements?

(a) 55, 12, 48, 53

(b) 13, 33, 54, 83

(c) 3, 33, 53, 87

(d) 22, 33, 55, 66

4. The ground state electronic configurations of the elements, U, V, W, X, and Y (these symbols do not have any chemical significance) are as follows:

 $U^{1}s^{2}2s^{2}2p^{3}$

 $V 1s^2 2s^2 2p^6 3s^1$

 $W 1s^2 2s^2 2p^6 3s^2 3p^2$

 $X 1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$

 $Y 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^6$

Determine which sequence of elements satisfy the following statements:

- (i) Element forms a carbonate which is not decomposed by heating
- (ii) Element is most likely to form coloured ionic compounds
- (iii) Element has largest atomic radius
- (iv) Element forms only acidic oxide

(a) VWYU

(b) V X Y W

(c) VWYX

(d) V X W U

5. When magnesium burns in air, compounds of magnesium formed are magnesium oxide and:

(a) Mg_3N_2

(b) MgCO₃

(c) $Mg(NO_3)_2$

(d) MgSO₄

6. Which of the following ions is most unlikely to exist?

(a) Li

(b) Be⁻

(c) B

(d) F

7. A, B and C are hydroxy-compounds of the elements X, Y and Z respectively. X, Y and Z are in the same period of the periodic table. A gives an aqueous solution of pH less than seven. B

PERIODIC PROPERTIES

reacts with both strong acids and strong alkalis. C gives an aqueous solution which is strongly alkaline.

Which of the following statements is/are true?

- I: The three elements are metals.
- II: The electronegativities decrease from X to Y to Z.
- III: The atomic radius decreases in the order X, Y and Z.
- IV: X, Y and Z could be phosphorus, aluminium and sodium respectively.
- (a) I, II, III only correct

(b) I, Ill only correct

(c) II, IV only correct

- (d) II, III, IV only correct
- 8. La (lanthanum) having atomic number 57 is a member of :
 - (a) s-block elements

(b) p-block elements

(c) *d*-block elements

- (d) f-block elements
- 9. If the aufbau principle had not been followed, Ca (Z = 20) would have been placed in the :
 - (a) s-block

(b) p-block

(c) d-block

- (d) f-block
- 10. What is the atomic number of the element with the maximum number of unpaired 4p electrons?
 - (a) 33

(b) 26

(c) 23

- (d) 15
- 11. The electronic configuration of four elements are :
 - (I) [Kr]5s¹

(II) $[Rn]5f^{14}6d^17s^2$

(III) [Ar] $3d^{10}4s^24p^5$

(IV) [Ar]3d⁶4s²

Consider the following statements:

- (i) I shows variable oxidation state
- (ii) II is a d-block element
- (iii) The compound formed between I and III is covalent
- (iv) IV shows single oxidation state

Which statement is True (T) or False (F)?

(a) FTFF

(b) FTFT

(c) FFTF

- (d) FFFF
- 12. If period number and group number of any representative element(s) are same then which of the following statement is incorrect regarding such type element(s) in their ground state? (Period number and group number are according to modern form of periodic table)
 - (a) The possible value of principal quantum number is 2
 - (b) The possible value of azimuthal quantum number is zero
 - (c) The possible value of magnetic quantum number is 1
 - (d) The species could be paramagnetic
- 13. How does the energy gap between successive energy levels in an atom vary from low to high n values?
 - (a) All energy gaps are the same
 - (b) The energy gap decreases as n increases
 - (c) The energy gap increases as n increases
 - (d) The energy gap changes unpredictably as n increases

14.	Which of the	following	properties of	of the	alkaline earth	metals	increase	from	Be	to	Ba'
-----	--------------	-----------	---------------	--------	----------------	--------	----------	------	----	----	-----

(i) Atomic radius

(ii) Ionisation energy (iii) Nuclear charge

(a) (i) and (ii)

(b) (i) and (iii)

(c) (ii) and (iii)

(d) (i), (ii) and (iii)

15. Which of the following is the incorrect match for atom of element?

(a) $[Ar]3d^54s^1 \rightarrow 4^{th}$ period, 6^{th} group

(b) [Kr]4d¹⁰

→ 5th period, 12th group

(c) $[Rn]6d^27s^2$ \rightarrow 5th period, 3th group

(d) [Xe] $4f^{14}5d^26s^2 \rightarrow 6^{th}$ period, 4^{th} group

Atomic/Ionic Radius

16. The set representing the correct order of ionic radius is:

(a)
$$Na^+ > Mg^{2+} > Al^{3+} > Li^+ > Be^{2+}$$

(b)
$$Na^+ > Li^+ > Mg^{2+} > Al^{3+} > Be^{2+}$$

(c)
$$Na^+ > Mg^{2+} > Li^+ > Al^{3+} > Be^{2+}$$

(d)
$$Na^+ > Mg^{2+} > Li^+ > Be^{2+}$$

17. In which of the following pair, both the species are isoelectronic but the first one is large in size than the second?

(a)
$$S^{2-}$$
, O^{2-}

(d)
$$N^{3-}, P^{3-}$$

18. The correct order of ionic size of N³⁻, Na⁺, F⁻, Mg²⁺ and O²⁻ is:

(a)
$$Mg^{2+} > Na^+ > F^- > O^{2-} < N^{3-}$$

(b)
$$N^{3-} < F^{-} > O^{2-} > Na^{+} > Mg^{2+}$$

(c)
$$Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$$

(d)
$$N^{3-} > O^{2-} > F^{-} > Na^{+} < Mg^{2+}$$

19. The order of increasing ionic radius of the following is:

(a)
$$K^+ < Li^+ < Mg^{2+} < Al^{3+}$$

(b)
$$K^+ < Mg^{2+} < Li^+ < Al^{3+}$$

(c)
$$Li^+ < K^+ < Mg^{2+} < Al^{3+}$$

(d)
$$Al^{3+} < Mg^{2+} < Li^{+} < K^{+}$$

20. If the ionic radii of K⁺ and F⁻ are nearly the same (i.e., 1.34 Å), then the atomic radii of K and F respectively are:

21. Incorrect order of ionic size is:

(a)
$$La^{3+} > Gd^{3+} > Eu^{3+} > Lu^{3+}$$

(b)
$$V^{2+} > V^{3+} > V^{4+} > V^{5+}$$

(c)
$$Tl^+ > In^+ > Sn^{2+} > Sb^{3+}$$

(d)
$$K^+ > Sc^{3+} > V^{5+} > Mn^{7+}$$

Ionisation Energy

22.
$$X_{(g)} \longrightarrow X^{+}_{(g)} + e^{-}$$
,

$$\Delta H = +720 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

Calculate the amount of energy required to convert 110 mg of 'X' atom in gaseous state into X^+ ion. (Atomic wt. for X = 7 g/mol)

...(1)

23. Consider the following changes:

$$M(s) \longrightarrow M(g)$$

$$M(s) \longrightarrow M^{2+}(g) + 2e^{-}$$
 ...(2)

$$M(g) \longrightarrow M^+(g) + e^-$$
 ...(3)

$$M^+(g) \longrightarrow M^{2+}(g) + e^- \qquad ...(4)$$

$$M(g) \longrightarrow M^{2+}(g) + 2e^{-}$$
 ...(5)

The second ionization energy of M could be calculated from the energy values associated with:

- (a) 1 + 3 + 4
- (b) 2-1+3
- (c) 1+5
- (d) 5-3
- 24. The correct order of second I.E. of C, N, O and F are in the order:
 - (a) F > O > N > C

(b) C > N > O > F

(c) O > N > F > C

- (d) O > F > N > C
- 25. Which is the correct order of ionization energies?
 - (a) $F^- > F > Cl^- > Cl$

(b) $F > Cl > Cl^- > F^-$

(c) $F^- > Cl^- > Cl > F$

- (d) $F^- > Cl^- > F > Cl$
- 26. Which of the following statements is incorrect?
 - (a) The second ionization energy of sulphur is greater than that of chlorine
 - (b) The third ionization energy of phosphorus is greater than that of aluminium
 - (c) The first ionization energy of aluminium is approximately the same as that of gallium
 - (d) The second ionization energy of boron is greater than that of carbon
- 27. First ionization energy is the lowest with:
 - (a) Lead
- (b) Carbon
- (c) Silicon
- (d) Tin
- 28. The incorrect statement among the following is:
 - (a) The first ionization potential of Al is less than the first ionization potential of Mg
 - (b) The second ionization potential of Mg is greater than the second ionization potential of Na
 - (c) The first ionization potential of Na is less than the first ionization potential of Mg
 - (d) The third ionization potential of Mg is greater than the third ionization potential of Al
- 29. The correct values of ionization enthalpies (in kJ mol⁻¹) of Si, P, Cl and S respectively are:
 - (a) 786, 1012, 999, 1256
- (b) 1012, 786, 999, 1256
- (c) 786, 1012, 1256, 999
- (d) 786, 999, 1012, 1256
- 30. The third ionization energy is maximum for :
 - (a) Nitrogen
- (b) Phosphorus
- (c) Aluminium (d) Boron

31. Consider the following ionisation reactions:

I.E.
$$(kJ \text{ mol}^{-1})$$

 $A_{(g)} \longrightarrow A_{(g)}^+ + e^-, \quad A_1$
 $B_{(g)}^+ \longrightarrow B_{(g)}^{2+} + e^-, \quad B_2$

I.E.
$$(kJ \text{ mol}^{-1})$$

 $B_{(g)} \longrightarrow B_{(g)}^+ + e^-, B_1$

$$B_{(g)}^+ \longrightarrow B_{(g)}^{2+} + e^-, \quad B_2$$

$$C_{(g)} \longrightarrow C_{(g)}^+ + e^-, \quad C_1$$

$$C_{(g)}^+ \longrightarrow C_{(g)}^{2+} + e^-, \quad C_2$$

$$C_{(g)}^{2+} \longrightarrow C_{(g)}^{3+} + e^-, \quad C_3$$

If monovalent positive ion of A, divalent positive ion of B and trivalent positive ion of C have zero electron. Then incorrect order of corresponding I.E. is:

(a)
$$C_3 > B_2 > A_1$$

(b)
$$B_1 > A_1 > C_1$$

(c)
$$C_3 > C_2 > B_2$$

(d)
$$B_2 > C_3 > A_1$$

- 32. The incorrect statement is:
 - (a) The second ionisation energy of Se is greater than that of second ionisation energy of As
 - (b) The first ionisation energy of C2+ ion is greater than that of first ionisation energy of N2+

INORGANIC CHEMISTRY 14

(c) The third ionisation energy of F is greater than that of third ionisation energy of O

(d) Helogens have highest I.E. in respective period

33. First three ionisation energies (in kJ/mol) of three representative elements are given below:

Element	valuating a most	IE 2	IE ₃	THE FIRST LIKE	in sexual in
P	495.8	4562	6910		111774
Q	737.7	1451	//33		[- 1 - 1 (B)
R	577.5	1817	2745	concess is tot	ne mero, ofT

Then incorrect option is:

(a) Q: Alkaline earth metal

(b) P: Alkali metals

(c) R: s-block element

(d) They belong to same period

Electronaffinity

34. Which of the following statement is correct regarding following process?

(i)
$$Cl \xrightarrow{E.A.} Cl^-$$
 (ii) $Cl \xrightarrow{I.E.} Cl$ (iii) $Cl \xrightarrow{I.E.} Cl^+$ (iv) $Cl^+ \xrightarrow{I.E.} Cl^{2+}$

D = D 4 < 4 (8

(a) | I.E. of process (ii) | = | E. A. of process (i) |

(b) |I.E. of process (iii) |=|I.E. of process (ii) |

(c) |I.E. of process (iv) |= | E.A. of process (i) |

(d) | I.E. of process (iv) | = | I.E. of process (iii) |

35. The correct order of increasing electron affinity of the following elements is:

(a)
$$0 < S < F < Cl$$

(b)
$$O < S < Cl < F$$

(c)
$$S < O < F < Cl$$

(d)
$$S < O < Cl < F$$

36. The second electron gain enthalpies (in kJ mol⁻¹) of oxygen and sulphur respectively are :

(a)
$$-780$$
, $+590$

(b) -590, +780

(c) +590, +780 (d) +780, +590

37. Which of the following statements is correct?

(a) The magnitude of the second electron affinity of sulphur is greater than that of oxygen

(b) The magnitude of the second electron affinity of sulphur is less than that of oxygen

(c) The first electron affinities of bromine and iodine are approximately the same

(d) The first electron affinity of fluorine is greater than that of chlorine

38. Which one of the following statements is incorrect?

(a) Greater is the nuclear charge, greater is the electron gain enthalpy

(b) Nitrogen has almost zero electron gain enthalpy

(c) Electron gain enthalpy decreases from fluorine to iodine in the group

(d) Chlorine has highest electron gain enthalpy

39. The formation of the oxide ion $O^{2-}(g)$ requires first an exothermic and then an endothermic step as shown below:

$$O(g) + e^{-} \longrightarrow O^{-}(g); \quad \Delta H = -142 \text{ kJ mol}^{-1}$$

 $O^{-}(g) + e \longrightarrow O^{2-}(g); \quad \Delta H = 844 \text{ kJ mol}^{-1}$

This is because:

(a) O ion has comparatively larger size than oxygen atom

(b) Oxygen has high electron affinity

(c) O ion will tend to resist the addition of another electron

(d) Oxygen is more electronegative

- 40. In which of the following processes energy is absorbed?
 - (a) $Cl + e^- \longrightarrow Cl^-$
- (b) $O^- + e^- \longrightarrow O^{2-}$

(c) $Q^{2-} - e^{-} \longrightarrow Q^{-}$

- (d) $Na^+ + e^- \longrightarrow Na$
- 41. The electron affinity of the following elements can be arranged:
 - (a) Cl > O > N > C (b) Cl > O > C > N (c) Cl > N > C > O (d) Cl > C > O > N
- **42.** In which of the following arrangements, the order is not correct according to the property indicated against it?
 - (a) Increasing size : $Al^{3+} < Mg^{2+} < Na^+ < F^-$
 - (b) Increasing I.E.₁: B < C < N < O
 - (c) Increasing E.A.₁: I < Br < F < Cl
 - (d) Increasing metallic radius: Li < Na < K < Rb
- 43. Which of the following statements is/are wrong?
 - (a) van der Waals' radius of iodine is more than its covalent radius
 - (b) All isoelectronic ions belong to same period of the periodic table
 - (c) I.E., of N is higher than that of O while I.E., of O is higher than that of N
 - (d) The electron affinity N is almost zero while that of P is 74.3 kJ mol⁻¹
- 44. Consider the following conversions:

(i)
$$O_{(g)} + e^{-} \rightarrow O_{(g)}^{-}, \Delta H_{1}$$

(ii)
$$F_{(g)} + e^- \rightarrow F_{(g)}^-, \Delta H_2$$

(iii)
$$Cl_{(g)} + e^- \rightarrow Cl_{(g)}^-$$
, ΔH_3

(iv)
$$O_{(g)}^- + e^- \rightarrow O_{(g)}^{2-}, \Delta H_4$$

That according to given information the incorrect statement is:

- (a) ΔH_3 is more negative than ΔH_1 and ΔH_2
- (b) ΔH_1 is less negative than ΔH_2
- (c) ΔH_1 , ΔH_2 and ΔH_3 are negative whereas ΔH_4 is positive
- (d) ΔH_1 and ΔH_3 are negative whereas ΔH_2 and ΔH_4 are positive

Electronegativity

- 45. Element Electronegative value W 2.7 X 2.1
 - X 2.1 Y 0.8 Z 3.4

The incorrect statement regarding given information is:

- (a) WZ does not conduct electricity in solid and fused state
- (b) YZ conducts electricity in fused as well as solution state
- (c) XZ conducts electricity only in solution state
- (d) WX conducts electricity only in fused state
- **46.** In the compound M O H, the M O bond will be broken if:
 - (a) Δ (E.N.) of M and O < Δ (E.N.) of O and H
 - (b) Δ (E.N.) of M and O = Δ (E.N.) of O and H
 - (c) Δ (E.N.) of M and O > Δ (E.N.) of O and H
 - (d) Cannot be predicated according Δ (E.N.) data

47.	Aqueous solutions of two compounds M_1	$-0 - H$ and $M_2 - O$	-H are prepared in two			
	different beakers. If, the electronegativity of I		-5.5 and 11 - 2.1, then the			
	nature of two solutions will be respectively:		(d) basic, basic			
	(a) acidic, basic (b) acidic, acidic					
48.	If the ionization enthalpy and electron gain er	thalpy of an element	are 275 and 86 kcal mol			
	respectively, then the electronegativity of the	element on the Paul	ing scale is:			
	(a) 2.8 (b) 0.0	(c) 4.0	(d) 2.6			
49.	Consider the following statements:					
	(I) The radius of an anion is larger than th	at of the parent atom	1.			
	(II) The ionization energy generally increas	es with increasing ato	omic number in a period.			
	(III) The electronegativity of an element is the tendency of an isolated atom to attract a electron.					
	Which of the above statements is/are correct	1?				
	(a) I alone	(b) II alone				
	(c) I and II	(d) II and III				
50.	Which of the following order is correct for the	ne property mentione	d in brackets?			
	(a) $S^{2-} > Cl^{-} > K^{+} > Ca^{2+}$	(Ionisation energy)				
	(b) $C < N < F < O$	(2nd Ionisation ener	rgy)			
	(c) B > Al > Ga > In > Tl	(Electronegativity)	2 67			
	(d) $Na^+ > Li^+ > Mg^{2+} > Be^{2+} > Al^{3+}$	(Ionic radius)				
	- Accepted 12 of the control of the					

Hydration Energy

51. Which among the following factors is the most important in making fluorine, the strongest oxidising halogen?

(a) Bond dissociation energy

(b) Ionisation enthalpy

(c) Hydration enthalpy

(d) Electron affinity

Level 3

PASSAGE 1

The energy required to pull the most loosely bound electron form an atom is known as ionization potential. It is expressed in electron volts. The value of ionization potential depends on three factors: (i) the charge on the nucleus (ii) the atomic radius and (iii) the screening effect of inner electron shells.

- 1. Ionization potential of Na would be numerically the same as:
 - (a) electron affinity of Na+
- (b) electronegativity of Na⁺
- (c) electron affinity of Na
- (d) ionization potential of Mg
- 2. Which of the following elements has the least ionization potential?
 - (a) Lithium
- (b) Cesium
- (c) Magnesium
- (d) Calcium

- 3. Incorrect order of ionisation energy is:
 - (a) Pb (I.E.) > Sn (I.E.)

(b) $Na^+(I.E.) > Mg^+(I.E.)$

(c) $Li^+(I.E.) < O^+(I.E.)$

(d) $Be^+(I.E.) < C^+(I.E.)$

PASSAGE 2

All the elements, on the basis of long form of periodic table, can be divided into four blocks, s, p, d and f. The ionization energies, electron affinities, electronegativities, atomic and ionic radii and other physical properties usually shown a regular pattern of change within a group or along period with some irregularities.

- 1. On moving from Li to F in the second period, there would be a decrease in:
 - (a) non-metallic property
- (b) atomic radius

(c) ionization potential

- (d) electronegativity
- 2. Which of the following element has the maximum value of electronegativity?
 - (a) Aluminium
- (b) Silicon
- (c) Phosphorus
- (d) Sulphur
- 3. Which of the following element has the maximum electron affinity?
 - (a) Nitrogen
- (b) Oxygen
- (c) Fluorine
- (d) Chlorine

PASSAGE

The second ionisation energies are higher than the first ionisation energies. This is mainly due to the fact that after the removal of the first electron, the atom changes into monovalent positive ion. In the ion, the number of electrons decreases but the nuclear charge remains the same. As a result of this, the remaining electrons are held more tightly by the nucleus and it becomes difficult to remove the second electron. Therefore , the value of second ionisation energy. (IE $_2$), is greater than that of the first ionisation energy (IE $_1$). Similarly third ionisation energy (IE $_3$) is greater than that of second IE $_2$.

1. Successive ionisation energy of an atom is greater than previous one, because:

(a) $\frac{p}{q}$ ratio increases

(b) $\frac{p}{e}$ ratio decreases

(c) $\frac{p}{e}$ ratio remains constant

(d) none of these

2. Correct order of ionisation potential of coinage metals is:

(a) Au > Ag > Cu

(b) Cu > Ag > Au

(c) Au > Cu > Ag

(d) Ag > Cu > Au

3. IE₁ and IE₂ of Mg metal are 178 and 348 kcal/mol respectively. The energy required for the given reaction is:

$$Mg(g) \longrightarrow Mg^{+2}(g) + 2e^{-}$$

(a) +170 kcal/mol

(b) +526 kcal/mol

(c) -170 kcal/mol

(d) -526 kcal/mol

PASSAGE

Nuclear charge actually experienced by an electron is termed as effective nuclear charge. The effective nuclear charge Z^* actually depends on type of shell and orbital in which electron is actually present. The relative extent to which the various orbitals penetrate the electron clouds of other orbitals is.

$$s > p > d > f$$
 (for the same value of n)

The phenomenon in which penultimate shell electrons act as screen or shield in between nucleus and valence shell electrons and thereby reducing nuclear charge is known as shielding effect. The penultimate shell electrons repel the valence shell electron to keep them loosely held with nucleus. It is thus evident that more is the shielding effect, lesser is the effective nuclear charge and lesser is the ionization energy.

1. Which of the following valence electron experience maximum effective nuclear charge?

(a) $4s^1$

(b) $4p^{1}$

(c) $3d^{1}$

(d) $2p^3$

2. Which of the following is not concerned to effective nuclear charge?

(a) Higher ionization potential of carbon than boron

- (b) Higher ionization potential of magnesium than aluminium
- (c) Higher values of successive ionization energy
- (d) Higher electronegativity of higher oxidation state

3. Ionization energy is not influenced by:

(a) Size of atom

(b) Effective nuclear charge

(c) Electrons present in inner shell

(d) Change in entropy

PERIODIC PROPERTIES 19

PASSAGE 5

Ionization energies of five elements in kcal/mol are given below:

Atom	1	11	III
p	300	549	920
Q	99	734	1100
R	118	1091	1652
S	176	347	1848
T	497	947	1500

1	Which	element	ie o	nabla	me 2

- (a) P
- (b) T
- (c) R
- (d) S

- 2. Which element form stable unipositive ion?
 - (a) F
- (b) Q
- (c) R
- (d) T
- 3. The element having most stable oxidation state +2 is?
 - (a) Q
- (b) R
- (c) S
- (d) T

- 4. Which is a non-metal (excluding noble gas)?
 - (a) P
- (b) Q
- (c) R
- (d) S
- 5. If Q reacts with fluorine and oxygen, the molecular formula of fluoride and oxide will be respectively:
 - (a) QF_3, Q_2O_3
- (b) QF, Q_2O
- (c) QF2, QO
- (d) None of these
- 6. Which of the following pair represents elements of same group?
 - (a) Q, R
- (b) P, Q
- (c) P, S
- (d) Q, S

PASSAGE 6

The I.E., and the I.E. in kJ mol⁻¹ of a few elements designated by P, Q, R, S are shown below:

Atom	I.E. ₁	I.E. ₂
P	2372	5251
Q	520	7300
R	900	1760
c	1680	3380

Based on the above information, answer the following questions:

- 1. Which of the element is likely to be reactive metal?
 - (a) J
- (b) Q
- (c) R
- (d) S
- 2. Which of the elements is likely to be reactive non-metal?
 - (a) P
- (b) Q
- (c) R
- (d) S

		MARIE SANTON SOCIETY STATE STATE OF THE SANTON SANT	
3. Which represe	ents a noble gas?		(d) C
(a) P	(b) Q	(c) R	(d) S
. Which of the	above elements forms a	stable binary halide of	f the formula MX_2 ?
(a) P	(b) O	(c) R	(d) S
		Manager of the control of the contro	The state of the s
	-		
ASSAGE			
Manager Robert - A Cartical States	extending the second of the second of the second	SALES OF STREET	
Elements with	n their electronic config	urations are given belo	w:
Answer the fo	ollowing questions :		

 $I: 1s^2 2s^2 \quad II: 1s^2 2s^2 2p^6 \quad III: 1s^2 2s^2 2p^6 3s^2 \quad IV: 1s^2 2s^2 2p^3 \quad V: 1s^2 2s^2 2p^5$

1. The element with highest I.E. is:

(a) I

(b) III

(c) II

(d) V

2. The element with lowest electron gain enthalpy is:

(a) I

(b) II

(c) III

(d) IV

3. The most ionic compound will be formed between:

(a) I and IV

(b) I and V

(c) III and IV

(d) III and V

4. Which of the following is the correct order of increasing size?

(a) I < III < IV < V

(b) V < IV < III < I

(c) I < IV < V < III

(d) V < IV < I < III

PASSAGE 8

J.C. Slater proposed an empirical constant that represents the cumulative extent to which the other electrons of an atom shield (or screen) any particular electron from the nuclear charge. Thus, Slater's screening constant σ is used as: $Z^* = Z - \sigma$

Here, Z is the atomic number of the atom, and hence is equal to the actual number of protons in the atom. The parameter Z^* is the effective nuclear charge, which according to is smaller than Z, since the electron in question is screened (shielded) from Z by an amount σ . We found that in cases for which screening is small, the effective nuclear charge Z^* is large. Conversely, an electron that is well shielded from the nuclear charge Z experiences a small effective nuclear charge Z^* .

The value of σ for any one electron in a given electron configuration (i.e., in the presence of the other electrons of the atom in question) is calculated using a set of empirical rules developed by Slater. According to these rules, the value of σ for the electron in question is the cumulative total provided by the various other electrons of the atom.

1. The effective nuclear charge at the periphery of chromium atom [Z = 24]:

(a) 4.25

(b) 2.60

(c) 3.60

(d) 1.21

2. Which of the following statement is correct?

- (a) A 4s-orbital is filled earlier than a 3d-orbital because, Z^* for $3d > Z^*$ for 4s.
- (b) A 4s-orbital is filled earlier than a 3d-orbital because, Z^* for $4s > Z^*$ for 3d
- (c) The effective nuclear charge for 3d-and 4s-orbitals are same, but energy of 3d-orbital becomes higher.
- (d) The effective nuclear charge for 3d and 4s-orbitals are same, but energy of 4s-orbital becomes higher.

3. According to Slater's rule, order of effective nuclear charge (Z^*) for last electron in case of Li, Na and K.

(a) Li > Na > K

(b) K > Na > Li

(c) Na > Li > K

(d) K = Na > Li

The postiole value of all four quantum a simport for Port ele-

PASSAGE, 9

Metals have few electrons in their valence shell while non-metals generally have more electrons in their valence shell. Metallic character is closely related to atomic radius and ionisation enthalpy. Metallic character increases from top to bottom in a group and decreases from left to right in a period of periodic table. Metallic character is inversely related to electronegativity of element.

1. The electronegativity of the following elements increase in the order:

(a) C, N, Si, P

(b) N, Si, C, P

(c) Si, P, C, N

(d) P, Si, N, C

2. Considering the elements B, Al, Mg and K, the correct order of their metallic character is :

(a) B > Al > Mg > K

(b) Al > K > B > Mg

(c) Mg > Al > K > B

(d) K > Mg > Al > B

3. 3 $N_0/2$ atoms of $X_{(g)}$ are converted in to $X_{(g)}^+$ by energy E_1 , 2 $N_0/3$ atoms of $X_{(g)}$ are converted in to $X_{(g)}^-$ by energy E_2 . Hence, ionisation potential and electron affinity of $X_{(g)}$ are:

- (N_0 = Avogadro's number) (a) $\frac{2E_1}{3N_0}$, $\frac{2E_2}{3N_0}$
- (b) $\frac{2E_1}{3N_0}$, $\frac{3E_2}{2N_0}$

(c) $\frac{3E_1}{2N_0}$, $\frac{3E_2}{2N_0}$

(d) $\frac{3E_1}{2N_0}$, $\frac{2E_2}{3N_0}$

PASSAGE 10

The value of four quantum number for the last electron of atom of element 'X' are n=7, l=1, m=+1 and s=+1/2 or -1/2 and value of spin magnetic momentum for element 'X' is zero. Element 'X' has two isotopes (I) $_{Z}^{A}X$ and, (II) $_{Z}^{B}X$.

ar che de la late pompione de conveniente

(Given: "B - A = B - 2Z = 18", where A and B are atomic masses and Z is atomic number.)

- 1. The incorrect statement regarding element 'X' is :
 - (a) Element 'X' belongs to 18th group.
 - (b) Number of unpaired electrons in element 'X' is zero
 - (c) Atomic number of element 'X' is 118
 - (d) 'X' is representative element
- 2. The value of A and B respectively are:
 - (a) 118 and 136

(b) 218 and 236

(c) 236 and 254

- (d) 226 and 244
- 3. The possible value of all four quantum numbers for 90th electron of atom of element 'X' is:

	n	L	m	S
(a)	6	2	0	-1/2
(b)	5	2	-1	+1/2
(c)	6	0	0	+1/2
(d)	5	3	-2	-1/2

PASSAGE (11)

There are nine elements A to I. These are belongs to p-block element other than halogen. If atomic number of B is average of atomic number of A and C and atomic number of E is average of atomic number of D and E and atomic number of E is average of atomic numbers of E and E and E are E and E are E and E are greater than E are greater than E and E are greater than E are greater than E and E are greater than E and E are greater than E are greater than E and E are greater than E and E are greater than E are greater than E and E are greater than E are greater than E and E are greater than E are greater than E and E are greater than E are greater than E and E are greater than E are greater than E and E are greater than E and E are greater than E are greater than E and E are greater than E are greater than E and E are greater than E and E are greater than E are greater than E and E are greater than E and E are greater than E are greater than E and E are

- 1. The incorrect order is:
 - (a) F > E: Second ionisation energy
- (b) B > C: Z_{eff} on valence shell
- (c) I > H: First ionisation energy
- (d) C > F > E: Electronegativity

- 2. The correct statement is:
 - (a) +5 oxidation state of H is more stable than its +3 oxidation state.

- (b) G^{2+} is better oxidising agent than G^{4+}
- (c) +3 oxidation state of E is more stable than its +5 oxidation state
- (d) Ionisation energy of G is greater than that of "Tin",
- 3. Which of the following statement is incorrect?
 - (a) B_2C_5 is acidic in nature
- (b) AC2 is acidic in nature
- (c) FC3 is basic in nature

(d) GC2 is amphoteric in nature

PASSAGE 12

If P, Q, R and S are elements of 3rd period of p-block in Modern Periodic Table, among these one element is metal and rest are non-metals and their order of electronegativity is given as:

- 1. In which of the following linkage release of H⁺ is relatively more easier?
 - (a) P O H

(b) S - O - H

(c) Q - O - H

- (d) R O H
- 2. Which element is expected to form amphoteric oxide?
 - (a) P
- (b) Q
- (c) R
- (d) S
- 3. Chloride compound of which element is hypovalent?
 - (a) S
- (b) Q
- (c) R
- (d) P

PASSAGE 13

Consider the following representation based on long form of periodic table.

Value of all four quantum number for last electron of element 'X' in their ground state is n=4, l=1, m=1 and $s=-\frac{1}{2}$ and spin multiplicity of element 'X' in their ground state is 4.

- 1. Which of the following order is incorrect?
 - (a) Magnetic moment : U > V > A
- (b) Atomic radius : E > X > T
- (c) Ionisation energy : R > X > B
- (d) Stability : $F^{3+} < E^{3+} < X^{3+}$

- 2. The correct order is:
 - (a) Ionisation energy of V > ionisation energy of U
 - (b) Electron affinity of X > electron affinity of S
 - (c) Electron affinity of X > ionisation energy of D
 - (d) $|\Delta H_{EG}|$ of $T > |\Delta H_{EG}|$ of U

- 3. Which of the following statement is incorrect?
 - (a) Element P is radioactive
 - (b) Elements B and C have their almost similar size
 - (c) Element G is more stable in +4 oxidation state
 - (d) Element G has electron with n = 4, l = 3, m = 0 and $s = +\frac{1}{2}$ quantum numbers

PASSAGE 14

Consider the following elements with their electronegativity value.

Elements

Δ

В

Electronegativity (Pauling scale) 3.77

1.12

2.25

C

D 3.10

1. Incorrect statements is:

- (a) AOH is more acidic than DOH
- (b) BOH is more basic than COH
- (c) 'AB' molecule is predominantly ionic
- (d) 'D OH' bond is more weaker than 'B OH' bond in polar solvent
- 2. Select correct statement :
 - (a) Oxide of element D is more acidic than that of A
 - (b) Oxides of elements C and D are basic in nature
 - (c) Oxide of element B is acidic in nature
 - (d) BOH is more basic than H2O

PASSAGE 15

In the modern periodic table, elements are arranged in order of increasing atomic numbers which is related to the electronic configuration. Depending upon the type of orbitals receiving the last electron, the elements in the periodic table have been divided into four blocks, viz., s, p, d, and f. The modern periodic table consists of 7 periods and 18 groups. Each period begins with the filling of a new energy shell. In accordance with the Aufbau principle, the seven periods (1 to 7) have 2, 8, 8, 18, 18, 32 and 32 elements respectively. The seventh period is still incomplete. To avoid the periodic table being too long, the two series of f-block elements, called lanthanoids and actinoids are placed at the bottom of the main body of the periodic table.

- 1. Which of the elements whose atomic numbers are given below, cannot be accommodated in the present set up of the long form of the periodic table?
 - (a) 107
- (b) 118
- (c) 126
- (d) 102
- 2. The element with atomic number 57 belongs to:
 - (a) s-block
- (b) p-block
- (c) d-block
- (d) f-block

ONE OR MORE ANSWERS IS/ARE CORRECT

Periodic Table

1.	Assign t	he position	of the el	ement havi	ng outer	electronic	configuration
----	----------	-------------	-----------	------------	----------	------------	---------------

(A) ns^2np^2

(B) $(n-1) d^2ns^2$

(n=4)

(C) (n-2) f^7 (n-1) $d^{-1}ns^2$

(n = 6)

Which of the following statement(s) is/are correct?

- (a) The element 'A' belong to 3rd period and 16th group.
 (b) The element 'B' belong to 4th period and 4th group.
 (c) The element 'C' belong to 6th period and 3rd group and is lanthanide element.
- (d) All A, B, C elements are metals
- 2. Which of the following statement(s) regarding periodic properties is/ are incorrect?
 - (a) Alkali metals have highest I.E. in respective period
 - (b) Noble gas have highest I.E. in respective period
 - (c) First electron affinity of nitrogen is less than oxygen
 - (d) F atom has smallest radius in periodic table
- 3. Which of the following properties among halogens decrease(s) from fluorine to iodine?

(a) Electronegativity

(b) Bond energy

(c) Ionisation energy

- (d) Electron affinity
- 4. In halogens, which of the following decreases from fluorine to iodine?

(a) Bond length

(b) Electronegativity

(c) The ionization energy of the element

- (d) Oxidizing power
- 5. Mark the correct statements out of the following:
 - (a) He has the highest I.E.1 in the periodic table
 - (b) Cl has the highest E.A. out of all the elements in the periodic table
 - (c) Hg and Br are liquid at room temperature
 - (d) In any period, the atomic radius of the noble gas is lowest
- **6.** S,T and U are the aqueous chlorides of the elements X,Y and Z respectively. X,Y and Z are in the same period of the periodic table. U gives a white precipitate with NaOH but this white precipitate dissolves as more NaOH is added. When NaOH is added to T, a white precipitate forms which does not dissolve when more base is added. S does not give precipitate with NaOH.

Which of the following statements are correct?

- (a) The three elements are metals
- (b) The electronegativity decreases from X to Y to Z.
- (c) X,Y and Z could be sodium, magnesium and aluminium respectively.
- (d) The first ionization increases from X to Y to Z.
- 7. The diagram below shows part of the skeleton of the periodic table in which elements are indicated by letters which are not their usual symbols.

Answer the following on the basis of modern periodic table :

- (I) Alkali metal(s)
- (II) An elements with the outer configuration of d^8s^2
- III) Lanthanoids
- (IV) Representative element(s)
- (V) Elements with incomplete f-subshell
- (VI) Halogen(s)
 (VII) s-block element(s)
- (VIII) Transition element(s)
- (IX) Noble gase(s)
- (X) Non-transition element(s)
- 8. The diagram below shows part of the skeleton of the periodic table in which elements are indicated by letters which are not their usual symbols.

Answer the following on the basis of periodic table:

- (I) Element having greatest ionic character in its compound
- (II) Metal cation which is coloured in its aqueous solution
- (III) Element(s) of which carbonate salt is/are water soluble
- (IV) Which element is monoatomic gas at room temperature
- 9. Answer the following on the basis of modern periodic table.

- (I) Group no. of the elements with the valence shell ground state electron configuration ns^2np^5
- (II) Group no. of the elements with the valence shell ground state electron configuration ns 2np 3
- (III) Group no. of the elements that have only three unpaired p electron in ground state
- (IV) Alkaline earth metals
- (V) Group 3A elements
- 10. Which of the following statements concerning elements with atomic number 10 is true?
 - (a) It forms a covalent network solid
 - (b) Element is monoatomic
 - (c) It has a almost zero value of electron affinity
 - (d) It has extremely high value of ionization energy
- 11. Which of the following pairs of elements have same number of electrons in their outermost shell?
 - (a) Mn, Fe
- (b) Na, Sr
- (c) As, Bi
- (d) Se, Te
- 12. A change of Zn to Zn²⁺ is a accompanied by a decrease in:
 - (a) number of valence electrons (b) atomic mass

(c) atomic number

- (d) number of shells
- 13. The elements which are radioactive and have been named after the names of planets are :
 - (a) Hg
- (b) Np
- (c) Pu
- (d) Ra
- 14. The properties which are common to both groups 1 and 17 elements in the periodic table are :
 - (a) Electropositive character increases down the groups
 - (b) Reactivity decreases from top to bottom in these groups
 - (c) Atomic radii increases as the atomic number increases
 - (d) Electronegativity decreases on moving down a group
- 15. There are three elements A, B and C. Their atomic number are Z_1, Z_2 and Z_3 respectively. If $Z_1 - Z_2 = 2$ and $\frac{Z_1 + Z_2}{2} = Z_3 - 2$ and the electronic configuration of element A is [Ar] $3d^6 4s^2$,

then correct order of magnetic momentum is/are:
(a) $R^+ > A^{2+} > C^{2+}$ (b) $A^{3+} > B^{2+} > C$

(a)
$$B^+ > A^{2+} > C^{2+}$$

(b)
$$A^{3+} > B^{2+} > C$$

(c)
$$B > A > C^{2+}$$

(d)
$$B = A^{3+} > C^{3+}$$

16. Consider the following representation based on long form of periodic table.

	P	
S	X	Q
	R	

Here P, Q, R and S are up, right, down and left elements with respect to the central element X respectively. According to above representation the correct match is/are:

	X	P	Q	R	S
(a)	Ge	Si	As	Sn	Ga
(b)	Te	Se	I	Po	Sb
(c)	Sb	As	Te	Bi	Sn
(d)	In	Ga	Sn	T1	Cd

- 17. Which of the following match is/are correct regarding B, Al, C and S elements?
 - (a) The highest first ionisation enthalpy: C
 - (b) The largest atomic size : Al
 - (c) The most negative electron gain enthalpy: C
 - (d) The most metallic character: Al
- **18.** Consider the value of all four quantum number for last electron and spin multiplicity (2s + 1) for given two element 'X' and 'Y' in their ground state :

	n	1	m	S	2s + 1
X :	2	0	0	+1/2	1
Y :	2	1	-1	-1/2	4

The according to given information the correct statement is:

- (a) The bond angle (H Y H) of possible hydride of element Y is less than $109^{\circ}28'$
- (b) The possible halide of 'X' has two vacant p-orbitals on its central atom.
- (c) Magnetic moment of Y is greater than X
- (d) X and Y element exhibits only single oxidation state
- 19. An element 'X' present in its ground state, the value of principal and azimuthal quantum number for last electron of element 'X' is n = 3 and l = 1 and spin multiplicity for given element is 4. Then according to given information correct statement(s) regarding given element 'X' is/are:
 - (a) Element 'X' is 3rd period and 15th group element
 - (b) In valence shell of element 'X' electron density is symmetrically distributed.
 - (c) Element 'X' has full filled valence shell.
 - (d) None of the above

Atomic/Ionic Radius

- 20. Which of the following pairs have approximately the same atomic radii?
 - (a) Zr and Hf
- (b) Al and Mg
- (c) Al and Ga
- (d) Na and Ne

- 21. The correct order of radii is/are:
 - (a) $Pb > Pb^{2+} > Pb^{4+}$

(b) $In^+ > Sn^{2+} > Sb^{3+} > Te^{4+}$

(c) Co > Ni > Cu > Zn

(d) $K^+ > Li^+ > Mg^{2+} > Al^{3+}$

Ionisation Energy

22.	The first ionisation energy of first atom is greater than that of second atom, whereas reverse order is true for their second ionisation energy. Which set of elements is in accordance
	29. Cor statement? The state of the four granters might be stated as the state of t
	(a) $C > B$ (b) $P > S$ (c) $Be > B$ (d) $Mg > Na$
23.	alonization energy of an element is : transport a firm it is the sould
	(a) Equal in magnitude but opposite in sign to the electron gain enthalpy of the cation of the element
	(b) Same as electron affinity of the element
	(c) Energy required to remove one valence electron from an isolated gaseous atom in its ground state
	(d) Equal in magnitude but opposite in sign to the electron gain enthalpy of the anion of the

and the given information the correct statement of

24. Consider the following ionization steps:

$$M(g) \longrightarrow M^+(g) + e^-; \quad \Delta H = +100 \text{ eV}$$

 $M(g) \longrightarrow M^{2+}(g) + 2e^-; \quad \Delta H = +250 \text{ eV}$

Select correct statement(s):

(a) I.E., of M(g) is 100 eV

element

(b) I.E.₁ of $M^+(g)$ is 150 eV

a of element it is one renthment R. of

(c) I.E.₂ of M(g) is 250 eV

(d) I.E.₂ of M(g) is 150 eV

25. Select the correct order of periodic properties of species :

(a) $Fe^{2+} < Fe^{3+}$: ionic radii

(b) N < O : second ionisation energy

(c) Cu < Zn : atomic radius

(d) In < Tl: first ionisation energy

26. Select the incorrect statement(s)/order(s): an analysis of years A mentals is

(a) d-orbital can accommodate 10 electrons

(b)
$$Na_{2s^22p^63s^1} \xrightarrow{I.E._1} Na^+_{2s^22p^6} \xrightarrow{I.E._2} Na^{2+}_{2s^22p^5} \xrightarrow{I.E._3} Na^{3+}_{2s^22p^4}$$
, order of successive I.E. is I.E.₁ < I.E.₂ > I.E.₃

- (c) Number of unpaired electrons in Co²⁺ cation > Number of unpaired electrons in Co³⁺ cation
- (d) First ionisation energy of Pt is greater than that of Pd
- 27. Consider the following values of I.E.(eV) for elements W and X:

Other two element Y and Z have outer electronic configuration ns^2np^4 and ns^2np^5 respectively. Then according to given information which of the following compound(s) is/are not possible?

(a) W_2Y_3

(b) X₂Y₃

(c) WZ₂

(d) XZ_2

28. The sum of IE₁ and IE₂, IE₃ and IE₄ for element P and Q are given below:

Then according to the given information the correct statement(s) is/are:

- (a) P^{2+} is more stable than Q^{2+}
- (b) P^{2+} is less stable than Q^{2+}
- (c) P^{4+} is more stable than Q^{4+}
- (d) P^{4+} is less stable than Q^{4+}
- 29. Consider value of all four quantum number of last electrons and magnetic moment and valence electrons of elements W, X, Y and Z in their ground state :

Element	n	ı	m	8	Magnetic moment (μ)	Valence electrons
W	3	0	0	$+\frac{1}{2}$	0	2
X	3	1	+1	$-\frac{1}{2}$	$\sqrt{3}$	3
Y	3	1	-1	$+\frac{1}{2}$	$\sqrt{15}$	5
Z	3	1	0	$-\frac{1}{2}$	√8	6

Then according to given information the correct statement(s) is/are:

- (a) I.E., of element W is greater than I.E., of element X
- (b) I.E.₁ of element Y is greater than I.E.₁ of element Z
- (c) I.E.2 of element X is greater than I.E.2 of element W
- (d) I.E.₂ of element Z is greater than I.E.₂ of element Y
- 30. Consider the successive ionisation energy for an element 'A'.

 IE_1 , IE_2 , IE_3 , IE_4 , IE_5 are 100 eV, 150 eV, 181 eV, 2000 eV, 2200 eV.

Select correct statement(s) for element 'A':

- (a) Element 'A' may be metal
- (b) Element 'A' may form trivalent cation
- (c) Oxide of element 'A' may be amphoteric
- (d) Element 'A' may be non-metal
- 31. According to Slater's rule, correct order of $Z_{\rm eff.}$ on valence shell electron is :
 - (a) Fe > Fe $^{2+}$ > Fe $^{3+}$

(c) $Na^+ < Mg^{2+} < Al^{3+}$

(b) $N^{3-} < O^{2-} < F^{-}$ (d) $Tl^{2+} < V^{3+} < Mn^{5+}$

Electronaffinity

- 32. Which of the following order is/are correct?
 - (a) $Mg^{2+}(size) > Li^{+}(size)$
- (b) S(E.A.) > O(E.A.)

(c) Hg (I.E.)>Cd(I.E.)

- (d) P(I.E.)>S(I.E.)
- 33. Correct order of electron affinity is/are:
 - (a) S > O
- (b) Al > B
- (c) Mg > Na
- (d) P > N
- 34. Which of the following statement(s) is/are correct?
 - (a) van der Waals' radius of iodine is more than its covalent radius.
 - (b) All isoelectronic ions of corresponding elements belong to the same period of the periodic table.
 - (c) IE of N-atom is higher than that of O-atom, while IE 2 of O-atom is higher than that of N-atom.
 - (d) The electron affinity of fluorine is greater than that of chlorine.

PERIODIC PROPERTIES

35. Electron affinity of the elements or ions shown correctly?

(a) $S > O^-$

(b) $P > N^-$

(c) $O^- > S^-$

(d) $N^- > P$

- 36. Which of the following statement regarding halogens is/are correct?
 - (a) Ionization energy decreases with increase in atomic number
 - (b) Electronegativity decreases with increase in atomic number
 - (c) Electron affinity decreases with increase in atomic number
 - (d) Enthalpy of fusion increases with increase in atomic number
- 37. Which of the following statements are correct?
 - (a) F is the most electronegative and Cs is the most electropositive element
 - (b) The ionization energy of halogens decreases from F to I
 - (c) The electron affinity of Cl is higher than that of F through their electronegativities are in the reverse order
 - (d) The electron affinity of noble gases is almost zero
- **38.** Consider the order $O^{2-} < F^+ < Na^+ < Mg^{2+}$. Then correct statement(s) is/are:

(a) Increasing order of Z_{eff}

(b) Increasing order of size

(c) Increasing order of I.E.

(d) Increasing order of E.A.

39. Consider the following reactions:

(i)
$$O_{(g)} + e^- \rightarrow O_{(g)}^-, \Delta H_1$$

(ii)
$$F_{(g)} + e^- \longrightarrow F_{(g)}^-$$
, ΔH_2

(iii)
$$Cl_{(g)} + e^- \longrightarrow Cl_{(g)}^-, \Delta H_3$$

(iv)
$$O_{(g)}^- + e^- \longrightarrow O_{(g)}^{2-}$$
, ΔH_4

Then according to given information the correct statement is/are:

- (a) ΔH_3 is more negative than ΔH_1 and ΔH_2
- (b) ΔH_1 is less negative than ΔH_2
- (c) ΔH_1 , ΔH_2 and ΔH_3 are negative whereas ΔH_4 is positive.
- (d) ΔH_1 and ΔH_3 are negative whereas ΔH_2 and ΔH_4 are positive.
- **40.** Which of the following is incorrect order of property as indicated?

(a) $Na^+ < F^- < O^{2-} < Ne < Ar$

: Atomic size

(b) Br < Se < As < Ge

: Metallic character

(c) Na < Al < Si < Mg

: Ionisation energy

(d) I < Br < Cl < F

: Electron affinity

- 41. Which of the following is/are correct order?
 - (a) Atomic radius: $F < O < F^- < O^{2-1000000}$
 - (b) 2nd ionisation energy : C < N < F < O
 - (c) Electron affinity : I < Br < F < Cl
 - (d) Z_{eff} (effective nuclear change) : $Al < Al^{+} < Al^{3+} < Al^{2+}$
- **42.** Consider the following sequence of reaction:

$$X \xrightarrow{\Delta H_1} X \xrightarrow{\Delta H_1} X^+ \xrightarrow{\Delta H_2} X^{2+} \xrightarrow{\Delta H_3} X^{3+}$$

If electronic configuration of element X is [Ne]3 s^1 , then which of the following order is correct regarding given enthalpies?

(a)
$$|\Delta H_4| = |\Delta H_5|$$

(b)
$$|\Delta H_2| > |\Delta H_1|$$

(c)
$$|\Delta H_2| > |\Delta H_3|$$

(d)
$$|\Delta H_1| = |\Delta H_6|$$

Electronegativity

- **43.** The correct statement is/are:
 - (a) Zirconium (Zr) and hafnium (Hf) have almost same size
 - (b) Correct order of ionisation energy of coinage metals is: Cu > Ag < Au
 - (c) Carbon atom in CCl4 is more electronegative than carbon atom in CF4
 - (d) Pb 2+ is more stable than Pb 4+
- 44. Which of the following statements is true about electronegativity?
 - (a) Electronegativity of an element depends upon its effective nuclear charge
 - (b) Electronegativity of a cation is proportional to charge on the cation
 - (c) Electronegativity increases as the s-character in hybrid orbital increases
 - (d) Electronegativity of a anion is proportional to charge on the anion
- **45.** Which of the following elements have the similar value of electronegativity?
 - (a) H

(b) S

(c) Te

- (d) P
- 46. Which of the following parameters cannot be estimated by using Born-Haber cycle?
 - (a) Hydration energy of ion

(b) Electron gain enthalpy

(c) Lattice energy

- (d) Electronegativity
- **47.** Select correct order(s) of electronegativity of element is/are:
 - (a) Paulling scale (E.N. of F-atom) > Mulliken scale (E.N. of F-atom)
 - (b) Cl_2O_7 (E.N. of Cl-atom) > Cl_2O_5 (E.N. of Cl-atom)
 - (c) CH_4 (E.N. of C-atom) > CO_2 (E.N. of C-atom)
 - (d) Cu^{2+} (E.N.) > Cu^{+} (E.N.)

Hydration Energy

- **48.** Choose the correct statement(s):
 - (a) H⁺ is the smallest size cation in the periodic table.
 - (b) van der Waals' radius of chlorine is more than covalent radius.
 - (c) lonic mobility of hydrated Li+ is greater than that of hydrated Na+.
 - (d) He atom is having highest I.E. in the periodic table.

Lattice Energy

- 49. Select equations having endothermic step:
 - (a) $S^{-}(g) \longrightarrow S^{2-}(g)$
 - (b) $Na^+(g) + Cl^-(g) \longrightarrow NaCl(s)$
 - (c) $N(g) \longrightarrow N^{-}(g)$
 - (d) $Al^{2+}(g) \longrightarrow Al^{3+}(g)$

50. Consider the following Born-Haber's cycle:

$$\begin{array}{c|c} 2B_{(s)} + \frac{3}{2}X_{2(g)} & \Delta H_1 \\ \Delta H_2 & \Delta H_3 \\ 2B_{(g)} & 3X_{(g)} \\ \Delta H_4 & \Delta H_5 \\ 2B_{(g)}^{3+} & 3X_{(g)}^{2-} \\ \end{array}$$

(Where ΔH_1 , ΔH_2 , ΔH_3 , ΔH_4 , ΔH_5 and ΔH_6 are in kJ/mol)

Then according to given information the correct statement is/are:

- (a) ΔH_2 and ΔH_3 are always positive (b) $\Delta H_1 = 2\Delta H_2 + \frac{3}{2}\Delta H_3 + 2\Delta H_4 + 3\Delta H_5 + \Delta H_6$
- (c) Second electron gain enthalpy of X is negative
- (d) ΔH_1 must be negative for formation of $B_2X_3(s)$

Nature of Oxide

- 51. Which of the following oxides is/are amphoteric?
 - (a) Na₂O
- (b) CaO
- (c) Al_2O_3
- (d) SnO_2
- 52. Which of the following show amphoteric behaviour?
 - (a) Zn(OH)₂

(b) Be(OH)₂

(c) $Al(OH)_3$

(d) $Pb(OH)_2$

MATCH THE COLUMN

Entries of Column-I are to be matched with entries of Column-II. Each entry of Column-I may have the matching with one or more than one entries of Column-II.

1.	Column-I
	(elements with at no.)

- (A) X (at. no. = 52)
- (B) Y (at. no. = 57)
- (C) Z (at. no. = 48)

C	olumn-II
(types	of elements)

- (P) Inner-transition element
- (Q) Representative element
- (R) Non-transition element
- (S) d-block element

- (A) Increasing order of I.E.
- (B) Increasing order of electron affinity
- (C) Increasing order of atomic size

Column-II

- (P) F < O < S < Se
- (Q) O < N < F < Ne
- (R) Na < Mg < Al < Si
- (S) $0^{2-} < 0^{-} < 0 < 0^{+}$

- (A) F > Cl > Br > I
- (B) $Fe^{3+} > Fe^{2+} > Fe$
- (C) I > I > I +
- (D) 0 > C > B > N

Column-II

Column

- (P) Ionisation energy
- (Q) Size
- (R) Magnitude of ΔH_{eg}
- (S) Effective nuclear charge

	Colun	ERICLE LABORISH ALAREM ST.	FREAT THE
1000	(IE) ₁	(IE) ₂	
(A)	2372	5251	
(B)	520	7300	
(C)	900	1760	
(D)	1680	3380	

Market Chila communica

8	Mary .	Column-H
	(P)	More reactive metal
	(Q)	Reactive non-metal
	(R)	Noble gas
	(S)	Metal forms a stable binary halide of the formula AX_2
	(T)	Exhibit+2 electrovalency

PERIODIC PROPERTIES 35

5.	'Column-I (atomic number of element)	Column-II (IUPAC name)
	(A) 105	(P) Uun
	(B) 107	(Q) Uns
	(C) 109	(R) Unp
	(D) 110	(S) Une
6.	Column-I	Column-II
	(atomic number)	(position in the periodic table)
	(A) 52	(P) s-block
	(B) 56	(Q) p-block
	(C) 57	(R) d-block
	(D) 60	(S) f-block
7.	Column-I (type of elements)	Column-II (outer electronic configuration)
	(A) Inert gas elements	(P) ns^{1-2} to ns^2np^5
	(B) Representative elements	(Q) $1s^2$ and ns^2np^6
	(C) Transition elements	(R) $(n-2) f^{1-14} (n-1) d^{1 \text{ or } 0} ns^2$
	(D) Inner transition elements	(S) $(n-1) d^{1-10} ns^{1 \text{ or } 2}$
8.	Column-I (elements)	Column-II (periodic properties)
	(A) F	(P) Maximum ionization energy
	(B) Cl	(Q) Maximum electronegativity
	(C) Fe	(R) Maximum electron affinity
	(D) He	(S) Variable oxidation state
9.	Column-I	Column-II
	(A) Fullerene	(P) Actinoids
	(B) Promethium	(Q) Lewis base
	(C) Water	(R) Allotrope
	(D) Lawrencium	(S) Lanthanoids

10. Column-I

- (A) $1s^2, 2s^2 2p^6, 3s^2 3p^1$
- (B) $1s^2, 2s^2 2p^6, 3s^2 3p^5$
- (C) $1s^2, 2s^2 2p^6, 3s^2 3p^6, 4s^1$
- (D) $1s^2, 2s^2 2p^6, 3s^2 3p^6$

11. Column-I (Electronic configuration)

- (A) [Xe] $4f^{14}5d^{10}6s^2$
- (B) $[Rn]5f^{14}6d^17s^2$
- (C) [Xe] $4f^{14}5d^{10}6s^26p^67s^2$
- (D) [Xe] $4f^{14}5d^26s^2$

12. Column-I Elements (Electrons in K, L, M, N...)

- (A) W(2,8,7)
- (B) X(2,8,18,8)
- (C) Y(2,8,14,2)
- (D) Z(2,8,18,25,8,2)

13. Column-I (Outer electronic configuration of element in ground state)

- (A) $(n-1)d^5ns^1$
- (B) $(n-1)d^{1}ns^{2}$
- (C) ns²np³
- (D) $(n-2)f^1(n-1)d^1ns^2$

Column-II

- (P) Largest (I.E.)₁
- (Q) Largest (I.E.)₄
- (R) Largest (I.E.)₃
- (S) Lowest (I.E.)₁
- (T) Largest (I.E.)₂

Column-II (Corresponding elements)

- (P) s-block element
- (O) Transition element
- (R) d-block element
- (S) Representative element
- (T) Inner-transition element

Column-II Statements

- (P) Paramagnetic
- (Q) 3rd group element
- (R) Last electron does not enter to valence shell
- (S) Reactive non-metal
- (T) Diamagnetic

Column-II (Characteristics/period and group number in long from of periodic table)

- (P) Highest spin magnetic moment
- (Q) 6th period element
- (R) Period number and group number are same
- (S) Period number is double than group number
- (T) Symmetrical distribution of electron density

37

ASSERTION-REASON TYPE QUESTIONS

These questions consist of two statements each, printed as assertion and reason, while answering these questions you are required to choose any one of the following responses.

- (A) If both assertion and reason are true and the reason is the correct explanation of assertion
- (B) If both assertion and reason are true but reason is not the correct explanation of assertion
- (C) If assertion is true but the reason is false
- (D) If assertion is false but the reason is true
- **1. Assertion:** In CsF salt, size of Cs⁺ is slight higher than size of F⁻.
- **Reason:** Cs⁺ is largest monoatomic cation and F⁻ is smallest anion.
- 2. Assertion: First electron affinity of all elements is positive.
 - **Reason**: Successive electron affinity of all elements is negative.
- 3. Assertion: Helium atom has highest ionisation energy among all the elements.
 - **Reason**: Helium is smallest atom among all the elements.
- **4. Assertion :** F⁻ ion has highest hydrated radius among the other halide ions.
 - **Reason**: Ionic radius of F⁻ is smallest in the periodic table.
- **5. Assertion :** Magnitude of electron gain enthalpy of oxygen is less than that of fluorine but greater than that of nitrogen.
 - **Reason**: Ionisation enthalpy order is as follows: N>O<E
- **6. Assertion :** Formation of Cl⁻ ion is exothermic whereas O²⁻ ion formation is endothermic.
 - **Reason**: EA₂ of oxygen is endothermic and greater than its exothermic EA₁ value of oxygen.
- **7. Assertion**: The electron gain enthalpy of N is +ve while that of P is -ve.
 - **Reason**: Smaller atomic size of N in which there is a considerable electron-electron
 - repulsion and hence the additional electron is not accepted easily.
- **8. Assertion**: The formation of $F_{(g)}^-$ from $F_{(g)}$ is exothermic, whereas that of $O_{(g)}^{2-}$ from $O_{(g)}$ is endothermic.
 - **Reason**: The addition of second electron to a monovalent anion is difficult because both have the same charge and experience more repulsion.
- 9. Assertion: Na^+ and Al^{3+} are isoelectronic but ionic radius Al^{3+} is less than that of Na^+ .
 - **Reason**: The magnitude of effective nuclear charge on the outershell electrons in Al³⁺ is greater than that in Na⁺.
- 10. Assertion: The third period contains only 8 electrons and not 18 like 4th period.
 - **Reason**: In III period filling starts from $3s^1$ and complete at $3p^6$ whereas in IV period it starts from $4s^1$ and complete after $3d^{10}$ and $4s^2$.
- 11. Assertion: Cs and F2 combines violently to form CsE.
 - **Reason**: Cs is most electropositive and F is most electronegative.
- 12. Assertion: Second E.A. for halogens is almost zero.
 - **Reason**: Fluorine has maximum value of electron affinity.

F atom has less electron affinity than Cl atom. 13. Assertion:

Additional electrons are repelled more strongly by 3p electrons in Cl atom Reason

than by 2p electrons in F atom.

Among the halogens bond energy of F2 is minimum. 14. Assertion:

Among halogens F atom is small in size. Reason

The first ionization energy of Be is greater than that of B. 15. Assertion:

2p-orbital is lower in energy than 2s-orbital. Reason

Noble gases have highest ionization enthalpies in their respective periods. 16. Assertion:

Noble gases have stable closed shell electronic configuration. Reason

Helium and beryllium have similar outer electronic configuration of the type 17. Assertion:

 ns^2 .

Reason Both are chemically inert.

18. Assertion: The first ionization enthalpy of aluminium is lower than that of magnesium.

Ionic radius of aluminium cation is smaller than that of magnesium cation. Reason

SUBJECTIVE PROBLEMS

1. The number of electrons for Zn^{2+} cation that have the value of azimuthal quantum number = 0 is:

Calculate the electronegativity of silicon atom using Allred-Rochow's method. If covalent radius of silicon is 1.0A. (rounded in nearest integer value)

3. If heat of solution for AB(s) is -0.95×10^{x} kcal/mol and lattice energy for AB(s) is 700 kcal/mol and hydration energy for $A^+(g)$ is -1000 kcal/mol and $B^-(g)$ is -650 kcal/mol then calculate value of x.

4. Consider the following Born-Haber's cycle for formation of $MX_3(s)$.

Then calculate value $\frac{q_1}{50}$, here q_1 is electron affinity of X(g) in kJ/mol.

5. Calculate the value of -U/100, for AB(s), from following data of Born-Haber's cycle. [where U

- **6.** Consider the following orders:
 - (i) HF > HCl > HBr > HI : Lewis basic character
 - (ii) CH₄ < CCl₄ < CF₄: Electronegativity of central 'C'-atom
 - (iii) $Mg^{2+} < K^+ < S^{2-} < Se^{2-}$: Ionic radius
 - (iv) Ni > Pd > Pt : Ionisation energy
 - (v) $As^{5+} > Sb^{5+} > Bi^{5+}$: Stable oxidation state
 - (vi) LiF > NaF > KF > RbF: Lattice energy
 - (vii) $F_{(aq.)}^- > Cl_{(aq.)}^- > Br_{(aq.)}^- > I_{(aq.)}^-$: Electrical conductance
 - (viii) Li⁺ < Mg²⁺ < Al³⁺: Hydration energy
 - (ix) Cl > Br > F > I: Electron affinity
 - (x) $BeCl_2 < AlCl_3 < SiCl_4$: Lewis acidic character

Then calculate value of $|x-y|^2$, where x and y are correct and incorrect orders respectively.

- 7. Find out total number of representative elements in the given elements :
 - Cd, Nb, Ta, Te, Ra, Mo, Po, Pd, Tc
- **8.** An element 'X' has its electronic configuration of 'K' shell is $(n-5)s^2$ and it has total number of electrons in its outermost, penultimate and antipenultimate shell are 2, 8 and 25 respectively, then find out total number of unpaired electrons in element 'X' in their ground state.
- 9. If value of spin quantum number(s) = -1/2, 0, +1/2 then calculate number of groups in the new form of periodic table if all other rules of electronic configurations are remain same.
- 10. How many pairs are, in which first species has lower ionisation energy than second species:
 - (i) N and O
- (ii) Br and K
- (iii) Be and B
- (iv) I and I

- (v) Li and Li⁺
- (vi) O and S
- (vii) Ba and Sr
- 11. Total number of element(s) which have only single oxidation state (other than zero) in their corresponding stable compounds: Cs, Ba, F, Zn, Be, Al, Sr, Ga, Pb

ANSWERS

Level

1.	(b)	2.	(a)	3	(c)		(c)		(a)		(b)	7	(d)	R	(c)	9.	(c)	10.	(d)
						100	(0)	29-51	(a)		(0)		(0)					100	
11.	(b)	12.	(a)	13.	(a)	14.	(b)	15.	(c)	16.	(c)	17.	(c)	18.	(c)	19.	(b)	20.	(d)
21.	(c)	22.	(d)	23.	(d)	24.	(c)	25.	(b)	26.	(b)	27.	(b)	28.	(c)	29.	(b)	30.	(c)
31.	(b)	32.	(c)	33.	(d)	34.	(c)	35.	(d)	36.	(c)	37.	(c)	38.	(b)	39.	(d)	40.	(b)
41.	(a)	42.	(a)	43.	(b)	44.	(b)	45.	(b)	46.	(b)	47.	(d)	48.	(a)	49.	(c)	50.	(d)
51.	(b)	52.	(c)	53.	(c)	54.	(b)	55.	(c)	56.	(c)	57.	(b)	58.	(a)	59.	(d)	60.	(b)
61.	(c)	62.	(c)	63.	(a)	64.	(c)	65.	(b)	66.	(a)	67.	(b)	68.	(c)	69.	(a)	70.	(d)
71.	(d)	72.	(b)	73.	(b)	74.	(c)	75.	(b)	76.	(d)	77.	(a)	78.	(b)	79.	(a)	80.	(b)
81.	(a)	82.	(b)	83.	(c)	84.	(a)	85.	(a)	86.	(b)	87.	(c)	88.	(d)	89.	(a)	90.	(d)
91.	(a)	92.	(c)	93.	(c)	94.	(a)	95.	(a)	96.	(d)	97.	(a)	98.	(d)	99.	(a)	1002	

Level 2

1.	(b)	2.	(d)	3.	(c)	4.	(b)	5.	(a)	6.	(b)	7.	(c)	8.	(c)	9.	(c)	10.	(a)
				13.															
21.	(a)	22 .	(c)	23.	(d)	24.	(d)	25.	(b)	26.	(b)	27.	(d)	28.	(b)	29.	(c)	30.	(d
31.	(d)	32.	(d)	33.	(c)	34.	(a)	35.	(a)	36.	(d)	37.	(b)	38.	(c)	39.	(c)	40.	(b
61.	(b)	42.	(b)	43.	(b)	44.	(d)	45.	(d)	46.	(c)	47.	(a)	48.	(a)	49.	(c)	50.	(b
	(c)			163									- 1		· · · · · · · · · · · · · · · · · · ·	il z	- 1	i de la constanta	

Level 3

- Passage-1 1. (a) 2. (b) 3. (c)
- Passage-2 1. (b) 2. (d) 3. (d)
- Passage-3 1. (a) 2. (c) 3. (b)
- Passage-4 1. (d) 2. (b) 3. (d)

Passage-5	1.	(b)	2.	(b)	3.	(c)	4.	(a)	5.	(b)	6.	(a)
Passage-6	1.	(b)	2.	(d)	3.	(a)	4.	(c)				
Passage-7	1,	(c)	2.	(b)	3.	(d)	4.	(d)				
Passage-8	1.	(ъ)	2,	(b)	3.	(d)						
Passage-9	1.	(c)	2.	(d)	3.	(b)	6					
Passage-10	1.	(d)	2.	(c)	3.	(d)						\$15 30
Passage-11	1.	(c)	2.	(d)	3.	(c)			147-75			
Passage-12	1.	(b)	2.	(a)	3.	(d)						e a si
Passage-13	1.	(d)	, 2.	(d)	3.	(c)		n :				1
Passage-14	1.	(d)	12.	(d)	۲, <u>.</u>	6.		7 3		4. ()		£1
Passage-15	1.	(c)	2.	(c)								- A

One or More Answers is/are correct

1.	(b, c, d)	2.	(a, d)	3.	(a, c)	4.	(b, c, d)	5.	(a, b, c)	6.	(a, c)
7.	(I) (B) (VII) B, J		(II) H (VIII) E, H,	(III)	Α	(IV) B, (IX) G	C, F, J, I	2.5) A) L	(VI) I	
8.	(I) M	(II) J ²⁺	(III) H, M	(IV) T							
9.	(I) 17	(II) 15	(III) 15		(IV) 2	(V) 13					
10.	(b, c, d)	11.	(c, d)	12.	(a, d)	13.	(b, c)	14.	(a, c, d)	15.	(a, b, c)
16.	(a, b, c, d)	17.	(a, b, d)	18.	(a, b, c)	19.	(a, b)	20.	(a, c)	21.	(a, b, d)
22.	(a, b, c, d)	23.	(a, c)	24.	(a, b, d)	25.	(b, c, d)	26.	(a, b, c)	27.	(b, c)
28.	(a, d)	29.	(a, b, c, d)	30.	(a, b, c, d)	31.	(b, c, d)	32.	(b, c, d)	33.	(a, b)
34.	(a, c)	35.	(a, b)	36.	(a, b, d)	37.	(a, b, c, d)	38.	(a, c, d	39.	(a, b, c)
40.	(b, c, d)	41.	(a, b, c)	42.	(a, b, d)	43.	(a, b, d)	44.	(a, b, c	45.	(a, c, d)
46.	(a, d)	47.	(a, d)	48.	(a, b, d)	49.	(a, c, d)	50.	(a, b, d) 51.	(c, d)
52.	(a, b, c, d)										

Match the Column

1. $A \rightarrow Q$;	$B \rightarrow S$;	$C \rightarrow R, S$	
2. $A \rightarrow Q$;	$B \rightarrow S$;	$C \rightarrow P$	
3. $A \rightarrow P$, S;	$B \rightarrow P, R, S;$	$C \rightarrow Q$;	$D \rightarrow R$
4. $A \rightarrow R$;	$B \rightarrow P$;	$C \rightarrow S, T;$	$D \rightarrow Q$
5. $A \rightarrow R$;	$B \rightarrow Q$;	$C \rightarrow S$;	$D \rightarrow P$
6. $A \rightarrow Q$;	$B \rightarrow P$;	$C \rightarrow R$;	$D \rightarrow S$
7. $A \rightarrow Q$;	$B \rightarrow P$;	$C \rightarrow S$;	$D \rightarrow R$
8. $A \rightarrow Q$;	$B \rightarrow R$;	$C \rightarrow S$;	$D \rightarrow P$
9. $A \rightarrow R$;	$B \rightarrow S$;	$C \rightarrow Q$;	$D \rightarrow P$
10. $A \rightarrow Q$;	$B \rightarrow R$;	$C \rightarrow S, T;$	$D \rightarrow P$
11. $A \rightarrow R$;	$B \rightarrow T$;	$C \rightarrow P, S;$	$D \rightarrow Q, R$
12. $A \rightarrow P$, S;	$B \rightarrow T$;	$C \rightarrow P, R;$	$D \rightarrow P, Q, R$
13. $A \rightarrow P$, Q, R, T;	$B \rightarrow O, S$:	$C \rightarrow O$. T:	$D \rightarrow O$. S

Assertion-Reason Type Questions

1. (A) 2. (D) 3. (C) 4. (A) 5. (B) 6. (A) 7. (A) 8. (A) 9. (A) 10. (A)

11. (.) 12. (C) 13. (C) 14. (D) 15. (C) 16. (A) 17. (C) 18. (B)

Subjective Problems

1. (6) 2. (2) 3. (3) 4. (4) 5. (8) 6. (16) 7. (3) 8. (7) 9. (27) 10. (2)

11. (7)

Hints and Solutions

Level 1

- **26.** (b) Ununtrium for atomic number = 113; for Z > 86 pd. no. = 7 113 [Rn] $7s^2$,5 f^{14} ,6 d^{10} ,7 p^1 p-block
- **27.** (b) Tantalum (Z = 73) is a transition element.
- 28. (c) Period number Group number Element
 5 7 Tc
 6 13 2 2 3 12 3 7 Table
 6 5 Table
- **30.** (c) [Xe] $4f^{14}5d^16s^2$

Atomic number = 71 Period number = 6th Group number = 3rd

31. (b) Rubidium is most electropositive in nature.

- **32.** (c) (a) Cr : $4s^13d^5$ (each *d*-orbital has $1e^-$) (b) Fe³⁺ : $4s^03d^5$ (each *d*-orbital has $1e^-$) (c) Cu⁺: $4s^03d^{10}$ (each *d*-orbital has $2e^-$)
- **33.** (d) Magnetic moment = $\sqrt{n(n+2)}$ BM

N: Number of unpaired e-

As atomic number increases in d-block element number of unpaired e^- first increases upto middle then decreases.

34. (c) "Unununium" : At number = 111

It is a transition element. Period number = 7th; Group number = 11

- **35.** (d) Atomic radius and metallic character decreases from left to right across the period and increases from top to bottom down the group.
- **36.** (c) P is trivalent non-metal Q is divalent metal hence formula of compound is $P_{\lambda}Q_3$.
- **37.** (c) $1s^2, 2s^2 2p^2, 3s^1$ (Excited state)
- **47.** (d) In (a) and (b) use (z/e) concept for isoelectronic specie.

In (c) size of neutral atom is greater than its cation.

In (d) Se²⁻ and As³⁻ related with 4th period, while Ba²⁺ and Cs⁺ related with 6th period. (These are not isoelectronic species.)

- **48.** (a) (a) Sc > Ti > V > Cr (size decrease initially in 3d-series)
 - (b) Correct order : Zn > Cu > CO ≈ Ni
 - (c) Correct order: $S^{2-} > Cl^- > N^{3-} > O^{2-}$
- 49. (c) Due to diagonal relationship radius of Li⁺ is close to Mg²⁺ ion.
- **74.** (c) The correct order of IE₂ is Ne > O > F > N
- 75. (b) If we consider the opposite process:

Order of energy releases is : $\Delta H_4 > \Delta H_1 > \Delta H_3 > \Delta H_2$

So, Requires least energy. $P_{(g)}^- \longrightarrow P_{(g)} + e^-;$

84. (a) Correct order of electron affinity is : Cl > F > S > O

Electron affinity of 2nd period non-metals is less than that of respective 3rd period non-metals.

- 85. (a) Nitrogen has stable $2p^3$ configuration and also due to high e^- charge density at outermost orbital it requires energy to add one extra e^- in its outer most shell i. e., its first electron gain enthalpy is positive.
- 88. (d) According to Allred and Rochow scale

(c)
$$EN_{(AR)} = 0.359 \frac{Z_{eff.}}{r} + 0.744$$
 (r: radius in Å)

- 95. (a) LiF is sparingly soluble at room temperature due to its high lattice energy.
- 99. (a) Oxidation state of non-metal increases acidic nature of oxide increase Cl₂O₇ is most acidic.

Level 2

1. (b) Sum of oxidation numbers of all atoms in a neutral molecule is zero.

$$\to A_3(B_4C)_2: +2 \times 3 + 2 \times [4 \times 5 - 2] = 42 \neq 0$$

$$\rightarrow A_3(BC_4)_2: +2 \times 3 + 2 \times [+5 - 8] = 0$$

$$\rightarrow A_2(BC_3)_2: +2 \times 2 + 2 \times [+5 - 6] = +2 \neq 0$$

$$\rightarrow ABC_2: +2+5+(-2)\times 2=+3\neq 0$$

2. (d) W: Phosphorus Y: Oxygen

X: Sulphur Catenation:

Z: Chlorine

Electronegativity: O > Cl > S > P

Electron Affinity: Cl > O > S > P

S > P > O > Cl

Oxygen exhibits covalency of two only **4.** (b) (i) Alkali metal carbonates do not decompose even at red hot $\rightarrow V$

- (ii) Transition metal ions having unpaired d-electrons are coloured in aq. sol./compounds $\rightarrow X$
- (iii) In case of Kr van der Waals' radius is considered, which is largest atomic radius $\rightarrow Y$
- (iv) Si atom has only acid SiO₂ → W
- **11.** (d) (I) $[Kr]5s^1$, shows only single oxidation state +1
 - (II) [Rn]5 $f^{14}6d^{1}7s^{2}$, it is f-block element (Z = 103)
 - (III) The compound formed between I and III is ionic.
 - (IV) [Ar] $3d^64s^2$, (Z = 26) Fe shows variable oxidation state.
- Possible elements Period number Group number Electronic configuration
 - (i) H 1 (ii) Be 2
- 13. (b) As value of n increases, energy gap decreases due to increasing $Z_{\rm eff.}$ on valence shell.
- 14. (b) Atomic radius and nuclear charge increases from top to bottom because number of shell and atomic mass increases down the group.
- 15. (d)
- (a) $[Ar]3d^54s^1 \rightarrow Cr(24) \rightarrow 4^{th}$ period, 6^{th} group
- (b) $[Kr]4d^{10} \rightarrow Pd(46) \rightarrow 5^{th}$ period, 12^{th} group
- (c) $[Rn]6d^27s^2 \rightarrow Th(90) \rightarrow 7^{th}$ period, 3^{rd} group
- (d) [Xe] $4f^{14}5d^26s^2 \to Hf(72) \to 6^{th}$ period, 4^{th} group
- **21.** (a) Correct order: $La^{3+} > Gd^{3+} > Eu^{3+} > Lu^{3+}$
- 23. (d) Second ionization energy is amount of energy required to take out an electron from the monopositive

Hence,
$$M(g) \longrightarrow M^{2+} + 2e^{-}$$

 $M(g) \longrightarrow M^{+} + e^{-}$...(5)
...(3)

31. (d)
$$A \Rightarrow H(1s^{1})$$

 $B \Rightarrow He(1s^{2})$
 $C \Rightarrow Li(1s^{2}2s^{1})$
 $A_{1} = IE_{1}(A)$
 $B_{2} = IE_{2}(B)$
 $B_{1} = IE_{1}(B)$
 $C_{2} = IE_{2}(C)$
 $C_{1} = IE_{1}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{1} = IE_{1}(C)$
 $C_{2} = IE_{3}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{1} = IE_{1}(C)$
 $C_{2} = IE_{3}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{1} = IE_{1}(C)$
 $C_{2} = IE_{3}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{1} = IE_{1}(C)$
 $C_{2} = IE_{3}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{1} = IE_{1}(C)$
 $C_{2} = IE_{2}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{1} = IE_{1}(C)$
 $C_{2} = IE_{2}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{1} = IE_{1}(C)$
 $C_{2} = IE_{2}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{1} = IE_{1}(C)$
 $C_{2} = IE_{2}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{1} = IE_{1}(C)$
 $C_{2} = IE_{2}(C)$
 $C_{3} = IE_{3}(C)$
 $C_{$

32. (d)

(a)
$$Se \xrightarrow{I.E._1} Se^+ \xrightarrow{I.E._2} Se^{2+} \xrightarrow{As} \xrightarrow{As} \xrightarrow{I.E._1} As^+ \xrightarrow{I.E._2} As^{2+} \xrightarrow{Ap^2} As^{2+} \xrightarrow{Ap^2} Occupants As \xrightarrow{Ap^2} Occ$$

- (d) In respective period, noble gases have highest I.E.
- **33.** (c) R is p-block element, because difference between IE₂ and IE₃ is not very high as compared to between IE₁ and IE₂; hence stable oxidation state of R will be higher than +2.
- **43.** (b) In the isoelectronic species, all isoelectronic anions belong to the same period and cations to the next period.
- **44.** (d) Order of electron gain enthalpy : Cl > F > O

 Second electron gain enthalpy for an element is always positive.
- 47. (a) The electronegativity difference between M₁ and O is 0.1, which indicates M₁ O bond will be covalent, since O—H bond having more ionic character thus bond will break and H⁺ ions will release and acidic solution is formed. Whereas difference between electronegativity of M₂ O bond is 2.3, thus, M₂—OH bond will break. Hence, solution will be basic in nature.
- **48.** (a) I.E. + E. A. = 275 + 86 = 361 kcal mol⁻¹ = 361 × 4.184 = 1510.42 kJ mol⁻¹ $\therefore \text{ Electronegativity} = \frac{1510.42}{540} = 2.797 = 2.8$
- **50**. (b)
- (a) Correct order \rightarrow Ca²⁺ > K⁺ > Cl⁻ > S²⁻ (Ionisation energy) For isoelectronic species (I.E. $\propto Z_{eff}$)
- (b) Correct order \rightarrow C < N < F < O (2ndI.E.) Second electron removal from oxygen requires more energy as it acquires stable $2s^22p^3$ configuration after removal of one electron.
- (c) Correct order → B > Tl > In > Ga > Al (Electronegativity)
 In general EN increases in boron family from top to bottom due to increase in Z_{eff} on valence shell while boron has highest E.N. due to its vary small size.
- (d) Correct order \rightarrow Na⁺ > Li⁺ > Mg²⁺ > Al³⁺ > Be²⁺ (Ionic radius) Ionic radius depends on Z_{eff} and number of shells.

Level 3

Passage-4

1. (d) Electrons closer to nucleus will experience higher effective nuclear charge.

 $2p^3$ is closer to $4s^1$ as principal quantum number is concerned first.

- 2. (b) Magnesium having higher ionization potential due to more stable electronic arrangement [Ne] $3s^2$ in comparison to aluminium [Ne] $3s^23p^1$.
- 3. (d) Ionization enrgy is not affected by entropy.

Passage-5

- 1. (b) T has abnormally higher I.E., value.
- 2. (b) There is sudden jump in I.E.₂ of Q. i.e., unipositive has noble gas configuration.
- (c) I.E.₃ of S is abnormally higher.
- (a) High I.E. values show its non-metallic nature.
- (b) Q is alkali metal as it shows group in I.E.₂ value.
- (a) Both Q and R shows group in I.E.₂ values and belong to alkali metals.

Passage-8

- 1. (b) $_{24}\text{Cr} \Rightarrow 1s^2.2s^22p^6.3s^23p^63d^5.4s^1$ So extra electron now coming in $4s^1$ orbital. $\sigma = (1 \times 0.35) + (13 \times 0.85) + (10 \times 1.0) = 21.40$ $Z^* = Z - \sigma = 24.0 - 21.4 = 2.6$
- 3. (d) $_3\text{Li} \Rightarrow 3 (0.85 \times 2) \Rightarrow 1.3$ $_{11}\text{Na} \Rightarrow 11 - (0.85 \times 8 + 1 \times 2) = 11 - 8.8 = 2.2$ $_{19}\text{K} \Rightarrow 19 - (0.85 \times 8 + 1 \times 10) = 19 - 16.8 = 2.2$

Passage-10

- **1.** (d) For last e^- of element $X' \to 7$ 1 +1 +1/2 or -1/2 so last e^- present in "7p" subshell and spin magnetic momentum for element X' is zero so their is no unpaird e^- in element X' so outer electronic configuration of element X' will be $7p^6$.
 - (a) According to electronic configuration element 'X' belongs to 18th group.
 - (b) Spin magnetic momentum zero so their is no unpaired e^- .
 - (c) Element 'X' belongs to 7th period and 18th group so atomic number is 118.
 - (d) 'X' is nobel gas not representative element according to Bohr's classification.
- **2.** (c) Z = 118, B 2Z = 18, so B = 254 and B A = 18 so A = 236
- **3.** (d) 90th e^- goes to 5f subshell so possible four quantum numbers are 5, 3, -2 and -1/2 or +1/2.

Passage-11

- 1. (c) The correct order of $IE_1 H_{(Bi)} > I_{(Po)}$
- 2. (d)
 - (a) +5 oxidation state of H(Bi) is more stable than its +3 oxidation state. (false)
 - (b) $G^{2+}(Pb)^{2+}$ is better oxidising agent than $G^{4+}(Pb)^{4+}$. (false)
 - (c) +3 oxidation state of E(P) is more stable than its +5 oxidation state. (false)
 - (d) $Pb > Sn(Tin): IE_1$ (true)
- 3. (c)
 - (a) B₂C₅(N₂O₅) is acidic in nature
- (b) AC2(CO2) is acidic in nature
- (c) FC3(SO3) is acidic in nature
- (d) GC₂(PbO₂) is amphoteric in nature

Passage-12

- (b) In X O H, linkage as X is more electronegative the shared electron pair between O H shifts more towards oxygen atom and O — H bond weakens which facilitates release of H⁺.
- 2. (a) According to the given information, element P is aluminium which forms amphoteric oxide: Al_2O_3
- 3. (d) According to the given information, element P, belongs to 13th group and rest elements belong to higher groups, hence chloride of 13th group will only be hypovalent.

Passage-13

$$X \text{ is "As"} \Rightarrow [Ar]3d^{10}4s^24p^3$$

$$2s+1=4$$
, $s=\frac{3}{2}$

B N O F
Al P
GaGe As Se Br
Sb I
T1 Pb Bi At

So unpaired electron in element X is 3.

Passage-14

- (b) Bond energy is inversely proportional to difference of electronegativity in polar solvent. Hence, 'B — OH' is more basic'D — OH'.
- **2.** (d) Due to more difference of electronegativity in B O bond, B OH is more basic than water.

Passage-15

- (c) In present set up of long form of periodic table element with atomic number > 118 can not be accommodated.
- 2. (c) [Xe] $^{54}6s^25d^1$ (last e^- inters to d-orbitals)

One or more Answers is/are Correct

- Elements (a), (b) and (c) are correct. Statement (d) is incorrect as in any period, the atomic radius of the noble gas is largest.
- 13. Np, Pu and Ra are radioactive but Np and Pu have been named after the names of the planets Neptune and Pluto.
- Statements (a), (c) and (d) are common to both the groups 1 and 17. Statement (b) is true only for group 17 elements.
- **15.** A is Fe $(Z_1 = 26)$, according to their electronic configuration.

$$Z_1 - Z_2 = 2$$
,

$$Z_1 = 26 \text{ (Fe = A)}$$

$$26 - Z_2 = 2$$

$$Z_2 = 24 \text{ (Cr } = B)$$

$$\frac{26+24}{2}=Z_3-2,$$

$$Z_3 = 27 \text{ (Co} = C)$$

(Here, n is unpaired electrons)

(a)
$$B^+(n=5) > A^{2+}(n=4) > C^{2+}(n=3)$$

(b)
$$A^{3+}(n=5) > B^{2+}(n=4) > C (n=3)$$

(c) B
$$(n=6)>A$$
 $(n=4)>C^{2+}(n=3)$

(d) B
$$(n=6) \neq A^{3+}(n=5) > C^{3+}(n=4)$$

- **18.** According to given information $X \Rightarrow Be$ and $Y \Rightarrow N$
 - (a) Possible hydride of N is NH₃ (H N H bond angle is less than 109°28')
 - (b) In BeX2 Be has two vacant p-orbitals
 - (c) Magnetic moment of N > Be. (Number of unpaired e^- in N > Be)

- (d) N can exhibits variable oxidation state
- The correct order of radii is: Co ≈ Ni < Cu < Zn 21.
- (a) $\frac{p}{e} = \frac{26}{24}, \frac{26}{23}$, due to high p / e ratio, (high $Z_{\rm eff.}$) in Fe³⁺, ionic radii of Fe²⁺ > Fe³⁺ 25.
 - (b) In case of second I.E. for 'O' e^- remove in stable configuration $(1s^2, 2s^2 2p^3)$ so $N(IE_2) < O(IE_2)$
 - (c) Due to high shielding effect atomic radius of Zn > Cu.
 - (d) Due to high $Z_{eff.}$ I.E. of Tl > In (due to poor shielding effect of 4f subshell)
- 26. (a) Any orbital can accommodate max. 2 electrons
 - (b) For same Z, successive I.E. increases due to increase in $\left(\frac{Z}{a}\right)$
 - (c) $_{27}$ Co [Ar] $3d^7 4s^2$ Co^{2+} [Ar]3 $d^7 4s^0$, unpaired $e^- = 3$ [Ar] $3d^64s^0$, unpaired $e^-=4$
 - (d) I.E. of Pt (6 period) > I.E. of Pd (5 period) due to poor shielding effect of 4f subshell in 6 period
- 27. W show +3 oxidation state and X show +2 oxidation state.

 $Y = ns^2 np^4$, Y show -2 oxidation state

 $Z = ns^2 np^5$, Z show -1 oxidation state Formed compounds:

(a) $W^{3+}Y^{2-} = W_2Y_3$

(d)
$$X^{2+}Z^{1-} = XZ_2$$

- (a) Sum of IE₁ and IE₂ is lower for element P 28.
 - (d) Sum of first four IE is lower for element Q
- According to the values of I.E. given it can be concluded that 30.
 - * IE₁ < IE₂ < IE₃ < < < IE₄ < IE₅
 - * This shows that it achieved stable noble gas configuration after removing three e^- .
 - * It belongs to 13th group of periodic table
 - * It could be metal or non-metal or metalloid.
 - * It form stable trivalent cation.
- (b) $N^{3-} < O^{2-} < F^-[Z_{eff.}] \propto \frac{1}{Charge on anion}$ (a) Fe < Fe²⁺ < Fe³⁺[$Z_{\text{eff.}} \propto$ charge on cation] 31.
 - (c) $Na^+ < Mg^+ < Al^{3+}$
 - Increasing order of size : Mg $^{2+}$ < Na $^+$ < F $^-$ < O $^{2-}$
- 38.
- ΔH_1 , ΔH_2 and ΔH_3 are negative whereas ΔH_4 is positive. 39.
- Correct order is: 40.
 - (b) Ge > Se > As > Br : Metallic character
 - (c) Si > Mg > Al > Na : Ionisation energy
 - (d) Cl > F > Br > I : Electron affinity
- (a) The radius of isoelectronic species $\propto \frac{1}{\frac{Z}{2} \text{ ratio}}$ 41.
 - (b) Ionisation energy $\propto \frac{1}{\text{size}} \propto \text{Effective nuclear charge}$
 - (c) Normally the electron affinity $(E_A) \propto \frac{1}{\text{Size of atom}}$
- (a) $|\Delta H_4| = |\Delta H_5| [(\Delta H_{eg.})_X = (\Delta H_{IE})_{X^-}]$ 42.
 - (b), (c) $\rightarrow \Delta H_3 > \Delta H_2 > \Delta H_1$

[Successive IE always higher than previous IE]

(d) $Tl^{2+} < V^{3+} < Mn^{5+}$

PERIODIC PROPERTIES

(c)
$$|\Delta H_1| = |\Delta H_6| [(\Delta H_{1E})_X = (\Delta H_{eg.})_{X^+}]$$

43.
$$F^{\delta-}$$
 $Cl^{\delta-}$
 $l_{4\delta+}$
 $l_{4\delta'+}$
 $l_{4\delta'+}$
 $l_{4\delta'+}$
 $l_{4\delta'-}$
 $l_{4\delta'-}$

Since $\delta > \delta'$, hence C-atom in CF₄ is more electronegative than in CCl₄.

- On Pauling's scale electronegativities of H (2.1), Te (2.1) and P (2.1) are similar but the 45. electronegativity of S (2.5) is differerent from the other three elements.
- Electronegativity and hydration energy cannot be estimated by using Born-Haber cycle. 46.
- 47. Electronegativity of central atom is directly proportional to oxidation states.

49. (a)
$$S^{-}(g) \longrightarrow S^{2-}(g)$$
; $\Delta H_{e.g.} = (+)ve$

(b)
$$Na^+(g) + Cl^-(g) \longrightarrow Na^+Cl^-(s)$$
; $\Delta H_{LE} = (-)ve$

(c)
$$N(g) \longrightarrow N^{-}(g)$$
; $\Delta H_{e.g.} = (+)ve$

(d)
$$Al^{2+}(g) \longrightarrow Al^{3+}(g);$$
 $\Delta H_{LE} = (+)ve$

 $\Rightarrow \Delta H_1 = 2\Delta H_2 + \frac{3}{2}\Delta H_3 + 2\Delta H_4 - 3\Delta H_5 \Rightarrow$ second electron gain enthalpy of X will be positive. 50.

Match the Column

6. 52
$$[Kr]^{36}4d^{10}5s^25p^4 \Rightarrow p\text{-block}$$

$$56 [Xe]^{54}6s^2 \Rightarrow s-block$$

$$57 [Xe]^{54} 5d^16s^2 \Rightarrow d\text{-block}$$

56
$$[Xe]^{54}6s^2$$
 \Rightarrow s-block
57 $[Xe]^{54}5d^16s^2$ \Rightarrow d-block
60 $[Xe]^{54}4f^46s^2$ \Rightarrow f-block

- 11. (A)[Xe] $4f^{14}5d^{10}6s^2$, last e^- goes to 5d subshell so it is a d-block element and 5d subshell is fulfilled so it is not considered as transition element $(A \rightarrow R)$
 - (B) [Rn]5 $f^{14}6d^{1}7s^{2}$, last e^{-} goes to 5f subshell so it is f-block or inner-transition element (B \rightarrow T)
 - (C)[Xe]4 $f^{14}5d^{10}6s^{2}6p^{6}7s^{2}$, last e^{-} goes to 7s subshell so it is a s-block or representative element (C \rightarrow P, S).
 - (D)[Xe] $4f^{14}5d^26s^2$, last e^- goes to 5d subshell so it is a d-block element and 5d subshell is partially field so it is also considered as transition element $(D \rightarrow Q, R)$.

12. (a)
$$W(2,8,7)$$
 Cl (S) Reactive non-metal

(b)
$$X(2,8,18,8)$$
 Kr \rightarrow (T) Diamagnetic (zero unpaired e^-)

(b)
$$X(2,8,18,8)$$
 Kr \rightarrow (T) Diamagnetic (zero unpaired e^-)

(c) $Y(2,8,14,2)$ Fe $(Z=26)$ (R) Last e^- does not enter to valence shell (last e^- enter to $(n-1)$ shell)

(d)
$$Z(2,8,18,25,8,2)$$
 Eu (P) Paramagnetic (7 unpaired e^-) (Q) 3rd group element (R) Last e^- does not enter to valence shell (last e^- enter to $(n-2)$ shell)

(T)

Assertion-Reason Type Questions

13. Due to small size of F atom added electron is replaced more strongly by 2p electrons than in case of Cl

Subjective Problems

- **1.** Electronic configuration of Zn^{2+} : $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $3d^6$, $4s^0$
- $-0.95 \times 10^{x} = 700 1000 650$ 3. $-0.95 \times 10^x = -950$

$$x = 3$$

 $-750 = 150 + \frac{3}{2} \times 200 + 350 + q - 1000$ 4.

$$q = 3 \times \Delta H_{EG} = -550;$$

$$q_1 = \frac{550}{3} = 183, \frac{q_1}{50} = 3.66 \approx 4.0$$

$$-424 = 108 + 495 + \frac{242}{2} - 348 + U$$

$$-424 = +376 + U$$

$$U = -424 - 376 = -800 \text{ kJ/mol}$$

$$-\frac{(-800)}{100} = 8$$

- 6. Correct orders
 - (i) HF > HCl > HBr > HI : Lewis basic character
 - (ii) $CH_4 < CCl_4 < CF_4$: Electronegativity of central 'C'-atom (iii) $Mg^{2+} < K^+ < S^{2-} < Se^{2-}$: Ionic radius (T) (T)
 - (iv) Ni > Pd > Pt : Ionisation energy
 - (F) (v) $As^{5+} > Sb^{5+} > Bi^{5+}$: Stable oxidation state (T)
 - (vi) LiF > NaF > KF > RbF: Lattice energy (T)
 - (vii) $F_{(aq.)}^- > Cl_{(aq.)}^- > Br_{(aq.)}^- > I_{(aq.)}^-$: Electrical conductance (F)
 - (viii) Li⁺ < Mg²⁺ < Al³⁺: Hydration energy
 - (T) (ix) Cl > Br > F > I: Electron affinity (F)
 - (x) BeCl₂ < AlCl₃ < SiCl₄: Lewis acidic character

$$x = 7$$
, $y = 3$
 $|x - y|^2 = |7 - 3|^2 = 16$

$$|x-y|^2 = |7-3|^2 = 16$$

- 7. Te, Po, Ra
- **8.** $X \Rightarrow \frac{1s^2}{K}$ so value of *n* is '6'

Electronic configurate of 'X' $\Rightarrow \frac{1s^2}{K} \frac{1}{L} \frac{M}{M} \frac{25}{M} \frac{8}{N} \frac{2}{O_s} \frac{P}{P_s}$

$$1s^2$$
..... $4s^24p^64d^{10}4f^75s^25p^65d^0$ $6s^2$

Unpaired electron is 7.

- 10. (v) Li < Li⁺ (vii) Ba < Sr

11. Cs
$$\rightarrow$$
 (+1) Zn \rightarrow (+2) Sr \rightarrow (+2)

$$Ba \to (+2)$$
 $Be \to (+2)$ $Ga \to (+1, +3)$

$$F \rightarrow (-1)$$
 Al $\rightarrow (+3)$ Pb $\rightarrow (+2, +4)$

Level

Hydrogen Bond

1. The correct order of boiling point is:

- 2. Which of the following is not true about H2O molecule?
 - (a) The molecule has $\mu = 0$
 - (b) The molecule can act as a base
 - (c) Shows abnormally high boiling point in comparison to the hydrides of other elements of oxygen group
 - (d) The molecule has a bent shape
- 3. The boiling points at atmospheric pressure of HF, H₂S, NH₃ can be arranged in the following order:
 - (a) $HF > NH_3 > H_2S$

(b) $HF > H_2S > NH_3$

(c) $HF < H_2S < NH_3$

- (d) $HF < NH_3 < H_2S$
- 4. The correct order of strength of H-bond in the following compound:
 - (a) $H_2O > H_2O_2 > HF > H_2S$
- (b) $HF > H_2O_2 > H_2O > H_2S$
- (c) $HF > H_2O > H_2S > H_2O_2$
- (d) $HF > H_2O > H_2O_2 > H_2S$
- 5. Which compound has electrovalent, covalent, co-ordinate as well as hydrogen bond?
 - (a) $[Cu(H_2O)_4]SO_4 \cdot H_2O$
- (b) $[Zn(H_2O)_6]SO_4 \cdot H_2O$
- (c) [Fe(H₂O)₆]SO₄ ·H₂O
- (d) [Fe(H2O)6]Cl3

- 6. Which statement is correct?
 - (a) m.p. of H₂O, NH₃ are maximum in their respective group due to intermolecular H-bonding
 - (b) b.p. of CH₄ out of CH₄, SiH₄, GeH₄ and SnH₄ is least due to weak intermolecular force of attraction
 - (c) formic acid forms dimer by H-bonding
 - (d) all are correct
- 7. Which of the following molecules are expected to exhibit intermolecular H-bonding?
 - (I) Acetic acid

(a) I, II, III

- (II) o-nitrophenol
- (III) m-nitrophenol
- (IV) o-boric acid

- Select correct alternate:
 - (b) I, II, IV
- (c) I, III, IV
- (d) II, III, IV
- 8. Which of the following compounds can form H-bonding with each other?
 - (a) CH₃COOH and H₂O

(b) Phenol and CH4

(c) CHF₃ and acetone

(d) PH₃ and HF

Dipole Moment

- **9.** BF₃ and NF₃ both are covalent compounds but NF₃ is polar whereas BF₃ is non-polar. This is because:
 - (a) Nitrogen atom is smaller than boron atom
 - (b) N -F bond is more polar than B -F bond
 - (c) NF3 is pyramidal whereas BF3 is planar triangular
 - (d) BF3 is electron deficient whereas NF3 is not
- 10. Dipole moment of NF_3 is smaller than :
 - (a) NH₃
- (b) CO_2
- (c) BF₃
- (d) CCl₄
- 11. Which of the following molecules will have polar bonds but zero dipole moment?
 - (a) O_2

(b) CHCl₃

(c) CF₄

- (d) none of these
- 12. Which has maximum dipole moment?

- 13. Which of the following compound is planar and non-polar?
 - (a) XeO₄

(b) SF.

(c) XeF₄

- (d) CF₄
- 14. H₂O has a net dipole moment while BeF₂ has zero dipole moment because :
 - (a) F is more electronegativity than oxygen
 - (b) Be is more electronegativity than oxygen
 - (c) H₂O molecule is linear and BeF₂ is bent
 - (d) BeF₂ molecule is linear and H₂O is bent

L5.	Correct set of species with zero dipole mome	nt is:
	(i) CO ₂ (ii) COCl ₂	(iii) CH ₂ Cl ₂ (iv) BCl ₃
	(a) (i) and (iv)	(b) (ii) and (iv)
	(c) (iii) and (iv)	(d) (i), (iii) and (iv)
16.	Which pair of molecules are polar species?	
	(a) CO ₂ and H ₂ O	(b) BF ₃ and PCl ₃
	(c) SO ₂ and SCl ₂	(d) CS ₂ and SO ₃
17.	In which molecule does the chlorine atom ha	
	(a) HCl (b) BrCl	(c) OCl ₂ (d) SCl ₂
A A .	landow Former	
	lecular Forces	
18.	Which of the following attraction is stronges	
	(a) (Cl):::::(H—Cl)	(b) CHCl ₃ :::: CHCl ₃
	(c) CCl_4 H_2O	(d) $(C1)$ (H_2O)
19.	Which is distilled first?	d. d.
	(a) Liquid H ₂	(b) Liquid CO ₂
	(c) Liquid O ₂	(d) Liquid N ₂
20.		nately same, but b.p. if ICl is about 40°C higher
	than that of Br ₂ . It is because:	
	(a) ICl bond is stronger than Br—Br bond	
	(c) ICl is polar while Br ₂ is nonpolar	(d) I has larger size than Br
21.		ce of attraction among given species is incorrect?
	(a) $HI > HBr > Cl_2$	(b) CH ₃ Cl > CCl ₄ > CH ₄
	(c) <i>n</i> -pentane > <i>iso</i> -pentane > neo-pentane	
22.	Which gas should not be collected over water	
	(a) H ₂ (b) N ₂	(c) CH ₄ (d) HCl
23.	Low melting point is expected for a solid:	(b) Marallia salid
	(a) Ionic solid	(b) Metallic solid
	(c) Molecular solid	(d) Covalent solid
24.	Which substance has the strongest London of	and the second s
	(a) SiH ₄ (b) CH ₄	(c) SnH ₄ (d) GeH ₄
25.	Which of the following compounds has the	
~~	(a) HF (b) HCl	(c) HBr (d) HI
26.		₂ H ₆ are arranged in order of increasing melting
	point, what is the correct order?	(b) CH ₃ OH, C ₂ H ₆ , Si, KCl
	(a) Si, KCl, CH ₃ OH, C ₂ H ₆	(d) C ₂ H ₆ , CH ₃ OH, KCl, Si
27	(c) KCl, Si, C ₂ H ₆ , CH ₃ OH Which substance has the highest melting po	
4/	 Which substance has the highest melting po (a) CO 	(b) CO ₂
	(c) SiO ₂	(d) P_2O_5
	(5) 510 2	(4) 1205

Hybridisation

28. How many sp^2 and sp-hybridised carbon atoms are present respectively in the following compound?

		H.	i said s	
•	(a) 4, 2	(b) 6, 0	(c) 3, 3	(d) 5, 1
29.	Which one of the folloshape?	owing is the correct se	t with respect to mol	ecule, hybridization and
	(a) BeCl ₂ , sp ² , linear		(b) BeCl ₂ , sp ² , triang	ular planar
	(c) BCl ₃ , sp ² , triangul	ar planar	(d) BCl_3 , sp^3 , tetrahe	dral
30.	The hybridization of the	he central atom in ICl	is:	
	(a) dsp^2	(b) sp	(c) sp ²	(d) sp^3
31.	The state of hybridization (a) B in BF ₃	tion of the central atom (b) O in H ₃ O ⁺	n is not the same as in (c) N in NH ₃	the others: (d) P in PCl ₃
32.	The number of sp^2 —	s sigma bonds in benze	ene are :	
	(a) 3	(b) 6	(c) 12	(d) none of these
33.	The hybridization of the combines with the combi		ange when: (b) H_3BO_3 combines	
	(c) NH ₃ forms NH ₂		(d) H ₂ O combines wi	
34.	CH ₃ -CH ₂ -CH=CH			
	(a) sp, sp, sp^2, sp^2		(b) sp^3 , sp^3 , sp^2 , sp	
	(c) sp^3 , sp^3 , sp^2 , sp^2	3	(d) sp^3 , sp^2 , sp^2 , sp	
35.	What is the state of hy	ybridisation of Xe in car	tionic part of solid XeF	
. 10	(a) sp^3d^3	(b) sp^3d^2	(c) sp^3d	(d) sp^3
36.	carbon atom undergo:			hybridisation does the
	(a) sp^3 to sp	(b) sp^3 to sp^2		(d) sp^2 to sp^3
37.	The hybridisation of co	entral iodine atom in II	F_5 , I_3^- and I_3^+ are respe	ctively :
	(a) sp^3d^2 , sp^3d , sp^3	(b) sp^3d , sp^3d , sp^3	(c) sp^3d^2 , sp^3d^2 , sp	p^{3} (d) $sp^{3}d$, $sp^{3}d^{2}$, sp^{3}
38.	In which of the follow	ing combination hybrid	lisation of central aton	(*) does not change?
	(a) $H_2O + \dot{C}O_2$		(b) $H_3 \dot{B} O_3 + OH^-$	
	(c) $BF_3 + NH_3$		(d) None of these	
39.	Which of the followin atom?	g species used both ax	ial set of d-orbitals in	hybridisation of central
	(a) PBr ₄ ⁺	(b) PCl ₄	(c) ICl ₄	(d) None of these

40.	• Which bonds are formed by a carbon atom with sp ² -hybridisation?							
	(a) 4π-bonds			(b)	2π -bonds and 2σ -	bonds		
	(c) 1π -bonds and 3σ -b	onds		(d)	4σ-bonds			
41.	What are the hybridisa	ation	of the carbon ator	ns la	beled C_1 and C_2 ,	respectively in glycine?		
	C_1	C_2						
	(a) sp^2	sp ²		H	H O	e e e		
	(b) sp^2	sp ³	н –	_ N -	-c-c-c-o-t	4		
	(c) sp ³	sp ²	2	Ō	$ \begin{array}{c c} H & O \\ & \parallel \\ -C - C \\ -C & 2 \\ H \end{array} $			
	(d) sp^3	sp ³		575.	Н	_		
49		-	:- II O ⁺	i.	ataly 107° The or	hitals used by oxygen in		
44.	these bonds are best of			OXIIII	ately 107. The or	bitals used by oxygen in		
	(a) p-orbitals	lescrit		(P)	sp-hybrid orbitals			
	(c) sp ² -hybrid orbital					Liping to the		
	(c) sp hybrid orbital			(α)	sp Hybrid Orbital	A 9 (*)(%)		
Со	ot Bond							
43.	Which pair of element	ts can	form multiple bo	nd w	vith itself and oxyg	gen?		
	(a) F, N	(b) I	N, Cl	(c)	N, P	(d) N, C		
44.	Which of the followin	1			W	9		
	(a) Al_2O_3		AlF ₃		100	(d) $Al_2(SO_4)_3$		
45.	Which of the followin	_				(1) All the there		
	(a) ClF ₃		PCl ₅	(c)	,	(d) All the three		
46.	Which of the followin		OF ₂		OF ₄	(d) O.F.		
47	(a) SF ₄					its chloride would be:		
4/.	(a) MCl		MCl ₂			(d) M ₂ Cl ₃		
40	The compound that h				-			
70.	(a) PCl ₅		BCl ₃		CCl ₄	(d) SiCl ₄		
49.	The bond having the		-		4	(-)4		
.,.	(a) $C = C$	(b)	C = S	(c)	C = O	(d) $P = N$		
50.	Which of the followin	g spe	cies is neither hyp	erva	lent nor hypovale	nt ?		
	(a) ClO ₄		BF ₃		SO 4-			
51.	In which of the follo	wing	species central a	tom	is NOT surround	ed by exactly 8 valence		
	electrons?							
	(a) BF ₄	(b)	NCl ₃	(c)	PCI ₄	(d) SF ₄		
52.	Which atom can have	more	than eight valence	elec	trons when it is for	ming covalent bonds?		
	(a) H	(b)	N	(c)	F	(d) Cl		
53.	Which bond is expect	ed to	be the least polar	?				
	(a) O—F		P—F		Si—N	(d) B—F		
54.	Which set contains or		valently bonded n					
	(a) BCl ₃ , SiCl ₄ , PCl ₃	ı		(p)	NH ₄ Br, N ₂ H ₄ , I	-IBr		

	(c) I ₂ , H ₂ S, NaI	4 6 6 40	(d)	Al, O ₃ , As ₄		
55.	Which molecule de	oes not exist?			415.00	
	(a) OF ₂	(b) OF ₄	(c)	SF ₂	(d) SF ₄	
lon	ic Bond					
56.	Solid NaCl is a bac	d conductor of electricity l	ecau	ise :		
	(a) in solid NaCl	there are no ions	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	(b) solid NaCl is o	ovalent				
		here is no mobility of ions	6			
		there are no electrons				
57.		$d A^+B^-$ is most likely to b				
		energy of A high and elec				
		energy of A is low and ele				
		zation energy of A and ele- zation energy of A and ele				
58.		ains three elements A, B				$B = \pm 5$ and
		le formula of the compour				o , o unu
		(b) $A_3(BC_4)_2$			(d) ABC ₂	
59 .	Which pair of ator	ms form strongest ionic bo	nd?	2 3 2	2	
	(a) Al and As		(b)	Al and N		
	(c) Al and Se		(d)	Al and O		
Re	sonance					
60.	The correct order	of increasing C—O bond s	trens	eth of CO. CO.	2- CO is:	
	(a) $CO_2^{2-} < CO_2 <$	CO (b) $CO_2 < CO_3^{2-} < CO_3^{2-}$	(c)	$CO < CO_{2}^{2} <$	CO (d) CO < C	0 - 002-
61.		res can be written for:				$O_2 < CO_3$
	(a) O ₃	(b) NH ₃	(c)	CH₄	(4) H O	
62 .	24. 1900 A. T.	of Cl — O bond order is:		4	(d) H ₂ O	
	(a) $ClO_3^- < ClO_4^-$	< ClO ₂ < ClO ⁻	(b)	ClO - < ClO	$<$ ClO $_3^ <$ ClO $_2^-$	
	(c) $ClO^- < ClO_2^-$	$< ClO_3^- < ClO_4^-$	(d)	Cl07 < Cl03	$3 < ClO_2^- < ClO^-$	
63		nce forms can be written	for th	ne nitrata ion	(NO = > 2	
	(a) 1	(b) 2	(c)		91 NW7	
			(0)	J	(d) 4	
	olecular Geome					
64.		ies identify the isostructur				
	(a) [NF ₃ and BF ₃]	(b) [BF ₄ and NH ₄ ⁺]	(c)	[BCl ₃ and BrC	$[l_3]$ (d) [NH ₃ and	$nd NO_3^-$
65.	0.01 mole of H_3P0 (a) $x = 3$ and give	O _x is completely neutralis	ed by	/ 0.56 gram o	f KOH hence :	
		n acid is monobasic				
		n acid is monobasic				
		n acid forms three series	of sal	t		

66.	Phosphorus pentachlor			10.00
	Parameter Description	(b) PCl ₄ Cl ⁻	(c) $PCl_4^+PCl_6^-$	(d) $PCl_5 \cdot Cl_2$
67.	The ratio of σ-bond an	·		(1) 11
		(b) 1:1	(c) 1:2	(d) None of these
68.		5 (nitrogen pentaoxide	(b) only covalent	
	(a) only ionic(c) covalent and co-or	dinate	(d) covalent and ioni	c
69.	The pair of species wit		(d) covarent and rom	
	(a) PCl ₃ , NH ₃		(c) PbCl ₂ , CO ₂	(d) PF_5 , IF_5
70.	Which of the following	AND TO THE PROPERTY OF THE PRO		
	(a) The central carbon	n is sp hybridized		
	(b) The terminal carb			
			os are mutually perpe	endicular to permit the
	formations two se	parate π-bonds	THE LABOUR STREET	
71	(d) All are correct Number of S — S bond	d is H.S.O.	- 2 3 E	
<i>,</i> 1.	(a) n	(b) $(n-1)$	(c) $(n-2)$	(d) $(n+1)$
72.		A A 171 - 1 A 171		esent in trimer of sulphur
<i>,</i>	trioxide?			
			(c) 0, 6, 12, 16	(d) 0, 4, 12, 6
73.	Number of identical C	Cr—O bonds in dichro	mate ion $Cr_2O_7^{2-}$ is:	
	(a) 4	(b) 6	(c) 7	(d) 8
74.	The nodal plane in th		located in :	
	(a) the molecular pla	ne o the molecular plane	The RELEASE FOR	
	(b) a plane parallel to	rular to the molecular	plane which bisects the	carbon-carbon σ bond at
	right angle			
	(d) a plane perpendic	cular to the molecular	plane which contains t	he carbon-carbon bond
75 .	Which of the following	ng are isoelectronic and	d isostructural?	
			$\frac{2}{3}$, ClO_3 , SO_3	
	(a) NO_3^- , CO_3^{2-}	(b) SO_3 , NO_3^-	(c) ClO_3^- , CO_3^{2-}	(d) CO_3^{2-} , ClO_3^{-}
76	In the electronic struc	cture of H ₂ SO ₄ , the to	tal number of unshare	d electrons is:
	(a) 20	(b) 16	(c) 12	(d) 8
77	. Which of the following	ng xenon compound ha	as the same number of	lone pairs as in I_3^- ?
	(a) XeO ₄	(b) XeF ₄		(d) XeO ₃
78	. The shape of XeF ₃ is	F		
	(a) Trigonal planar		(b) Pyramidal	
	(c) Bent T-shape		(d) See-saw	
79	. Which of the following	ng shape are not possi	ble for possible value o	of 'n' in XeF_n molecule?
	(a) Linear		(b) Square planar	lral
	(c) Trigonal planar		(d) Capped octahed	IIai

CHEMICAL BONDING (Basic)

80.	BeCl ₂ is not isostructural with : (a) ICl_2^- (b) C_2H_2	(c) XeF ₂	(d) GeCl ₂
81.	Which statement is true about the most stab	51 61 1 12	
	(a) There are no lone pairs in molecule	11	•
	(b) All bonds are double bonds		Z fie all a late
	(c) The central atom does not have an octet	of electrons	Hill excited the
	(d) A sulfur atom must be the central atom f		
82.	SbF ₅ reacts with XeF ₄ and XeF ₆ to form ion		$[SbF_6^-]$ and $[XeF_5^+][SbF_6^-]$
	then molecular shape of [XeF ₃ ⁺] ion and [Xe		1.70
	(a) Square pyramidal, T-shaped	(b) Bent-T-shape, so	
	(c) See-saw, square pyramidal	(d) Square pyramid	al, see-saw
VS	EPR Theory		
83.	In which of the following species maximum	atom can lie in same j	plane?
	(a) XeF_2O_2 (b) PCl_5	(c) AsH ₄ ⁺	(d) XeF ₄
84.	orrect statement regarding molecules SF4,	CF ₄ and XeF ₄ are:	2.14
	(a) 2, 0 and 1 lone pairs of central atom res		
	(b) 1, 0 and 1 lone pairs of central atom res(c) 0, 0 and 2 lone pairs of central atom res		
	(d) 1, 0 and 2 lone pairs of central atom res		
85.	The geometrical arrangement of orbitals and	•	ectively :
	(a) trigonal bipyramidal geometry, linear sha		
	(b) hexagonal geometry, T-shape	. netr - Sanoi - r	
	(c) triangular planar geometry, triangular sh	ape	
06	(d) tetrahedral geometry, pyramidal shape Which of the following statements is incorrect	for DCL 2	
80.	(a) Its three P—Cl bond lengths are equal	(b) It involves sp^3d h	whridization
	(c) It has an regular geometry	(d) Its shape is trigor	
87.	COR OR 1 V-F	() shape is trigor	iai bipyrainidai
	(a) the same with 2,0 and 1 lone pair of elec-		
	(b) the same, with 1,1 and 1 lone pair of ele		
	(c) different, with 0,1 and 2 lone pair of election (d) different with 1,0 and 2 lone pair of elections.		
22	The structure of the noble gas compound Xel		
00.	(a) square planar	(b) distorted tetrahed	Iral
	(c) tetrahedral	(d) octahedral	
89.	central atom is:		n pairs (l.p.) around the
	(a) $XeOF_4$ (b) XeO_2F_2	(c) XeF ₃	(d) XeO ₃
90.	Which is the following pairs of species have i		
	(a) NO_2^+ and NO_2^- (b) PCl_5 and BrF_5	(c) XeF ₄ and ICl ₄	(d) TeCl ₄ and XeO ₄

91. The shapes of XeF_4 , XeF_5 and $SnCl_2$ are :

	(a) octahedral, trigonal bipyramidal and ben		91			
	(b) square pyramidal, pentagonal planar and linear					
	(c) square planar, pentagonal planar and angular					
~~	(d) see-saw, T-shaped and linear		1 1 5 T			
92.	Which is not correctly matched?	۵.	oln l	T-1		
	(a) XeO ₃ —Trigonal bipyramidal		ClF ₃ —be			
	(c) XeOF ₄ —Square pyramidal		XeF ₂ —Li			
93.	Amongst NO_3^- , AsO_3^{3-} , CO_3^{2-} , ClO_3^- , SO_3^{2-} and	BO	$\frac{2}{3}$, the no	n-planar	species are:	
	(a) CO_3^{2-} , SO_3^{2-} , BO_3^{3-}	(b)	AsO_3^{3-}, C	$10\frac{1}{3}$, $50\frac{2}{3}$	-	
	(c) NO_3^- , CO_3^{2-} , BO_3^{3-}	(d)	SO_3^{2-} , NO_3^{2-}	O_3^-, BO_3^{3-}		
94.	The geometry of ammonia molecule can be b	oest (described	as:		
	(a) Nitrogen at one vertex of a regular tetrahe three hydrogens	edror	, the othe	r three ve	ertices being	occupied by
	(b) Nitrogen at the centre of the tetrahedron hydrogens	ı, th	ree of the	vertices 1	being occupi	ed by three
	(c) Nitrogen at the centre of an equilateral thydrogens	trian	gle, three	corners l	being occupi	ed by three
	(d) Nitrogen at the junction of a T, three ope	en er	nds being	occupied	by three hyd	drogens
95.	Which molecular geometry is least likely to					
	geometry?				1	
	(a) Trigonal planar (b) See-saw	(c)	Linear 2	g til i dyt.	(d) T-shape	d of
96.	Give the correct order of initials T or F for follows	owir	ig stateme	nts. Use 1	r if statement	t is true and
	F if it is false:					
	(I) The order of repulsion between different (II) In general, as the number of lone pair of	of ele	ectrons on	ons is l_p - central a	$-l_p > l_p - b_p$ atom increase	$> b_p - b_p$ es, value of
	bond angle from normal bond angle also					
	(III) The number of lone pair on O in H ₂ O is					
	(IV)The structures of xenon fluorides and xen basis of VSEPR theory	non	oxyriuorio	ies could	not be expla	ined on the
	(a) TTTF (b) TFTF	(c)	TFTT		(d) TFFF	
97.	Which species is planar?					
	(a) CO_3^{2-} (b) SO_3^{2-}	(c)	C103	1.00	(d) BF ₄	
98.	What is the geometry of the IBr ₂ ion?					
	(a) Linear					
	(b) Bent shape with bond angle of about 90°					
	(c) Bent shape with bond angle of about 109)°		,		
	(d) Bent shape with bond angle of about 120)°				
99.	What is the shape of the ClF ₃ molecule?					
	(a) Trigonal planar	(b)	Trigonal	pyramida	al	

		T-shaped					(d)	Tetrahedral				
100.	100. Which species has the same shape as NH ₃ ?											
	(a)	SO ₃ ²⁻			•	, e .,.	(b)	CO 3				
	(c)	NO_3^-				The second	(d)	SO ₃				
101.	Acc	ording to V	VSEPR th	eorv	in whic	h species		all the atoms	lie in th	ne same	plane?	
		Ü		1.	CH ⁺ ₃	ir opecies		CH ₃			promise.	
	(a)	1 only		T a								
		both 1 and	10			16		2 only	•			
102.					(1		(a)	neither 1 no	r 2			
102.	Pan	13:	onowing	spec	ies/mole	cules doe	s not	have same n	umber	of bond	pairs and	1 lone
	(a)	OCN-		(b)	H ₂ O		(c)	$C_2H_2Cl_2$	(d) O ₃		
Bor	nd	Length										
		st stable h	vdride is									
		stannane										
104.				d la	onane	L - C - 11	(c)	plumbane	((d) germ	iane	
	(a)	O ₂ F ₂	0 001	(b)	ngui in t	ne rollow		nolecule is :				
10				(b)	02		(c)	H ₂ O ₂	((O_3		
Val	end	e Bond	Theory	2								
105.	The	fluorine n	nolecules	is fo	ormed by	1 115071						
	(a)	p-p orbita	ls (sidew	ays o	overlap)		(b)	p-p orbitals (end-to-e	and over	rlan)	
	(c)	sp-sp orbit	als		-	700	(d)	s-s orbitals	ciid to-(ind ove	пару	
106.	Wh	ich of the	following	lead	ls to bon	ding?		With the Mil				
		s-orbital	p-orbital		s-orbital	p-orbital	2.8	p-orbital p-o	rhital			
	(a)	+	(-)	(b)	+		(c)	(-)	(d) (<u>-Y</u>	-
		\circ							•		(+)	-)
107.	Wh	ich of the f	following	ove	rlaps is in	correct (assu	ming Z-axis is	intern	aloon -	··· \	
	(A)	$2p_y + 2p_y$	$\longrightarrow \pi$ -I	Bond	formatio	n	(B)	$2p_x + 2p_x -$	→ σ -B	ond fam	XIS) ?	
		$3d_{xy} + 3dy$					(D)	$2s + 2p_y - 2$	T-Bon	ona ion	nation	
		$3d_{xy} + 3d$					(F)	$2p_z + 2p_z$	-> a Bo	a tormai	tion	
		A, B, C			9.10		(b)	C, F	→ 0-B0	ua torm	ation	
		B, E					(d)	BCD				
108.	Whi	ich of the f	ollowing	over	lapping	is not pre	sent	in XeO ₃ mol	ooule 1			7.0
	(a)	$sp^3 + p_x$		(b)	$sp^3 + p_y$	•	(c)	$d_{xz} + p_x$, 3		
109.	Hov	v many sig					4:1	$C_{xx} + P_x$ Tryl ether, C_2H	(a) $sp^3 +$	S	.80
	(a)	14	ma boma	(b)	12	iecule of	aletr	iyl ether, C ₂ H	SOC ₂ H	₅ ?		
				(0)	12		(c)	8	(d) 16		
		Energy										
110.	The	lattice ene	ergies of	KF, K	Cl, KBr a	nd KI fol	low	the order :				
	(a)	KF > KCl >	KBr > KI					KI > KBr > KC	l > KE			
	(c)	KF > KCl >	KI>KBr				(d)	KI > KBr > KF	> KCl			

INORGANIC CHEMISTRY

111. Which set of compounds in the following particle energy?	air of ionic compounds has the higher lattice
(i) KCl or MgO (ii) LiF or LiBr	(iii) Mg ₃ N ₂ or NaCl
(a) KCl, LiBr, Mg ₂ N ₂	(b) MgO, LiBr, Mg ₃ N ₂
(c) MgO, LiF, NaCl	(d) MgO, LiF, Mg ₃ N ₂
112. The incorrect order of lattice energy is:	
(a) $AlF_3 > MgF_2$	(b) $\text{Li}_3 \text{N} > \text{Li}_2 \text{O}$
(c) NaCl > LiF	(d) TiC > ScN
113. Which ionic compound has the largest amount	nt of lattice energy?
(a) NaF (b) AlF ₃	(c) AlN (d) MgF ₂
Bond Angle	
114. Which one of the following compounds has t	. 15
(a) OH_2 (b) SH_2	(c) NH_3 (d) SO_2
115. Maximum bond angle is present in:	(1)
(a) BBr ₃ (b) BCl ₃	
116. The correct order of $H - M - H$ bonds ang	
(a) $NH_3 < PH_3 < SbH_3 < BiH_3$	(b) AsH ₃ < SbH ₃ < PH ₃ < NH ₃
(c) $NH_3 < PH_3 < BiH_3 < SbH_3$	
117. The correct increasing order of adjacent bone	
(a) $BF_3 < PF_3 < ClF_3$	(b) PF ₃ < BF ₃ < ClF ₃ (d) BF ₃ = PF ₃ = ClF ₃
(c) ClF ₃ < PF ₃ < BF ₃ 118. Among the following species, the least angle	
(a) O_3 (b) I_3^-	(c) NO ₂ (d) PH ₃
119. The bond angles of NH_3 , NH_4^+ and NH_2^- are	
(a) $NH_2^- > NH_3 > NH_4^+$	(b) NH ₄ > NH ₃ > NH ₂
(c) $NH_3 > NH_2^- > NH_4^+$	(d) $NH_3 > NH_4^+ > NH_2^-$
120. The H—C—H bond angle in CH_4 is 109.5°, do H_2O will:	ue to lone pair repulsion, the H—O—H angle in
(a) remain the same (b) increase	(c) decrease (d) become 180°
121. The molecule having the largest bond angle	
(a) H_2O (b) H_2S	(c) H ₂ Se (d) H ₂ Te
122. The compound MX_4 is tetrahedral. The num	ther of $\angle XMX$ angles in the compound is:
(a) three	
(c) five	(d) six
123. The "O — N — O" bond angle is maximum in	
(a) N_2O (b) NO_2^+	(c) NO_2^- (d) NO_3^-
124. Which of the following is the correct order f	
(a) $NH_3 < PH_3 < AsH_3 < SbH_3$	(b) $H_2O < OF_2 < Cl_2O$
(c) $H_3Te^+ < H_3Se^+ < H_3S^+ < H_3O^+$	(d) $BF_3 < BCl_3 < BBr_3 < BI_3$

Level 2

Molecular Forces

1	Tho	incorrect	ardar	~£	hailina	maint is	
1.	1 ne	incorrect	oraer	or	Dolling	point is	

(a) $H_2O > CH_3OH$

(b) $N(CH_3)_3 > NH(CH_3)_2$

(c) $H_3PO_4 > Me_3PO_4$

(d) $CH_3N_3 > HN_3$

then and voltal had a commonwide

2. Iodine molecules are held in the solid lattice by

(a) London forces

(b) dipole-dipole interactions

(c) covalent bonds

(d) coulombic force

3. Carbon dioxide is gas, while SiO_2 is solid because :

(a) CO₂ is a linear molecule, while SiO₂ is angular

(b) van der Waals' forces are very strong in SiO₂

(c) CO₂ is covalent, while SiO₂ is ionic

(d) Si cannot form stable bonds with O, hence Si has to form a 3D lattice

Hybridisation

4. Choose the correct code of characteristics for the given order of hybrid orbitals of same atom,

$$sp < sp^2 < sp^3$$

(i) Electronegativity

(iii) Size

(a) (ii), (iii) and (iv)

(c) (ii) and (iv)

(ii) Bond angle between same hybrid orbitals

(iv) Energy level

(b) (iii), (iv)

(d) (i), (ii), (iii) and (iv)

5. Which is correct statement?

As the s-character of a hybrid orbital decreases

(I) The bond angle decreases

(III) The bond length increases

(a) (I), (III) and (IV)

(c) (I) and (II)

(II) The bond strength increases

(IV) Size of orbitals increases

(b) (II), (III) and (IV)

(d) All are correct

6. Which of the following is incorrectly match?

Hybridisation (a) sp^3d

Geometry

Trigonal bipyramidal

(b) sp^3d^3

Pentagonal bipyramidal

(c) sp^3d^2

Capped octahedral

(d) sp³

Tetrahedral

Orbitals use

$$s + p_x + p_y + p_z + d_{x^2}$$

$$s + p_x + p_y + p_z + d_{x^2 - y^2} + d_{z^2} + d_{xy}$$

$$s + p_x + p_y + p_z + d_{x^2 - y^2} + d_{z^2}$$

$$s + p_x + p_y + p_z$$

Ionic Bond

- 7. The ionic bonds X + Y are formed when:
 - (I) electron affinity of Y is high
 - (III) lattice energy of XY is high
- (II) ionization energy of X is low
- (IV) lattice energy of XY is low

CHEMICAL BONDING (Basic)

Choose the correct code:

8.			(c) I, II and III	(d) All alt (NaCl), the largest		
-	contribution comes from		. 0. 001111 101111111111111111111111111	(*		
	(a) the low ionization		(b) the high electron	affinity of Cl		
	(c) the low $\Delta H_{\rm vap}$ of N	la(s)	(d) the lattice energy			
	lecular Geometry/			The second of		
9.	Species having maximu			4 D 010 =		
	(a) ClO_3^-	(b) ClO ₃	(c) ClO ₂	(d) ClO ₂		
10.	Which of the following					
	(a) XeF ₅	(b) SF ₆	(c) IF ₇	(d) All		
11.	The molecule ML_x is ploof x is:	anar with 7 pairs of ele	ctrons around M in the	valence shell. The value		
	(a) 6	(b) 5	(c) 4	(d) 3		
12.	Choose the correct opt	, ,				
				Andread valed for the face of the response All Color		
		н /С=С	$=c=c\langle \frac{cl}{H}$			
	(a) non-planar	(b) μ≠0	(c) both (a) and (b)	(d) $\mu = 0$		
VS	EPR Theory					
13.	Which of the following	g statement is correct a	bout I ₃ and I ₃ molecu	lar ions ?		
	(a) Number of lone pairs at central atoms are same in both molecular ions					
	-	entral atoms in both io				
	(c) Both are polar spe	cies				
	(d) Both are planar sp					
14.	In which of the follow					
16	(a) Pentagonal planar The correct statement		(c) Linear	(d) Square planar		
15.	(a) two $p\pi$ - $d\pi$ bonds		IC 15.			
	(b) molecule has 2 lor	ne pair, 20 bonds and 2	2π bonds			
	(c) two $p\pi - p\pi$ bonds					
	(d) one $p\pi$ - $p\pi$ and or					
16.	A molecule XY ₂ contain	ns two σ , two π -bonds at of lone pair as well a	and one lone pair of ele as bond pairs is :	ectron in the valence shell		
	(a) square pyramidal		(c) trigonal planar	(d) unpredictable		
17.	In which of the follow		cies have the same hy	bridisation?		
	(I) SF ₄ ,XeF ₄	(II) I_3^- , XeF_2	(III) ICl ₄ ,SiCl ₄	(IV) ClO_3^- , PO_4^{3-}		
	(a) I, II	(b) II, III	(c) II, IV	(d) I, II, III		
18.	Which of the followin planar in shape?	ig possess two lone pa	ir of electrons on the	central atom and square		
	(I) SF ₄	(II) XeO ₄	(III) XeF ₄	(IV) ICI4		

W 107 100		S OF THE SECOND AS A SECOND SE		INORGANIC CHEMISTRY
O.F.		A Residence	A Marie Comment	
19.	(a) I, III Select pair of compour	(b) II, IV nds in which both ha	(c) III, IV we different hybridiz	(d) All ation but have same molecular
	geometry: (a) BF ₃ , BrF ₃	(b) ICl ₂ [⊕] , BeCl ₂	(c) BCl ₃ , PCl ₃	(d) PCl ₃ , NCl ₃
20.	The species having no (a) ClO ₃	$p\pi - p\pi$ bond but I (b) PO ₄ ³⁻	has bond order equals (c) SO_4^{2-}	(d) XeO ₃
Во	nd Length			
21.	Which of the following than sulphur'?	g fact is directly exp	plained by the staten	nent 'oxygen is a smaller atom
	(a) H ₂ O boils at a mu		The same of the sa	
	(b) H ₂ O undergoes in			
	(c) H ₂ O is liquid and 1 (d) S—H bond is long	_		
22.	Which of the following			le bond length ?
	(a) CH ₂ CHCCH		(b) HCCCCH	*B 2
	(c) CH ₃ CHCH ₂		(d) CH ₂ CHCHC	H ₂
Va	lence Bond Theor	y 12		
			'xz' nodal plane for	m $π$ -bond by overlapping each
	other, then internuclea	ar axis will be :		
	(a) x		(b) y (d) They don't f	orm a hand
24	(c) z	2n orbitals of carbo		g CH ₄ molecule, which of the
44 .	following statement is	false?		g cir4 morecule, which of the
	(a) Three C—H bonds	will be at right any	gle	
	(b) One C—H bond w (c) The shape of mole	cule will be tetrahe	dral	nds
	(d) The angle of C—H three bonds.	bond formed by s-s	overlapping will be u	uncertain with respect to other
25.	The strength of bonds	formed by 2s-2s, 2p	p-2p and $2p-2s$ over	rlap has the order :
	(a) $s-s > p-p > p-s$	- 0	(b) $s-s > p-s > p$	
	(c) $p-p > p-s > s-s$		(d) $p-p > s-s > p$	-s
26.	Which of the following carbon atoms?	statements is inco	rrect for sigma and	π -bonds formed between two
	(a) Sigma-bond is stro	nger than a π -bond		
	(b) Bond energies of s	igma and π -bonds a	are of the order of 2	64 kJ/mol and 347 kJ/mol
	(c) Free rotation of su π-bond	rrounding atoms at	oout a sigma-bond is	s allowed but not in case of a
	effect in this regard	a		is but a π -bond has no primary
27.	atom (A) and (B) will	result in bonding?	which of the overlap	oping of atomic orbitals of two
	(I) s-orbital of A and p	o_x -orbital of B	(II) s-orbital of	A and p_z orbital of B

(III) p_y -orbital of A and p_z orbital of B

(IV) s-orbital of both (A) and (B)

(a) I and IV

(b) I and II

(c) III and IV

(d) II and IV

28. Which of the following orbital can not form π as well as δ -Bond ?

(a) d_{xy}

(b) d_{a^2}

(c) $d_{x^2-v^2}$

(d) d_{yz}

Lattice Energy

29. Incorrect statement is:

 $\begin{array}{lll} \mbox{(a)} & \mbox{AlF}_3 > \mbox{MgO} > \mbox{MgF}_2 & : \mbox{ Lattice energy} \\ \mbox{(b)} & \mbox{Li} > \mbox{Na} > \mbox{Al} > \mbox{Mg} & : \mbox{ Electron affinity} \\ \mbox{(c)} & \mbox{SF}_6 > \mbox{PF}_5 > \mbox{SiF}_4 & : \mbox{ Lewis acidic character} \\ \end{array}$

(d) SiCl₄ > SiBr₄ > SiI₄ : Decreasing order of electronegativity of Si

Bond Angle

30. Which of the following set contains species having same angle around the central atom?

(a) SF₄, CH₄, NH₃

(b) NF₃, BCl₃, NH₃

(c) BF₃, NF₃, AlCl₃

(d) BF₃, BCl₃, BBr₃

31. Which of the following compound has the smallest bond angle (X - A - X) in each series respectively?

(A) OSF₂

OSCl₂

 $OSBr_2$

(B) SbCl₃

SbBr₃

 SbI_3

(C) PI₃ As (a) OSF₂, SbCl₃ and PI₃ SbI₃ (b) OSBr₂, SbI₃ and PI₃

(c) OSF2, SbI3 and PI3

(d) OSF2, SbCl3 and SbI3

According to VSEPR model, molecules adopt geometries in which their valence electron pairs position themselves as far from each other as possible. The VSEPR model considers double and triple bonds to have slightly greater repulsive effects than single bonds because of the repulsive effect of π -electrons. However the lone pair creates the maximum repulsive effect.

- 1. Which of the following statement is false?
 - (a) SbF₄ and SF₄ are isostructural
 - (b) In IOF_5 the hybridization of central atom is sp^3d^2
 - (c) Double bond(s) in SOF₄ and XeO₃F₂, is/are occupying equatorial position(s) of their respective geometry
 - (d) None of these
- 2. Which of the following does not represent the isostructural pair?
 - (a) SF₅ and IF₅
- (b) ClO₂F₃ and SOF₄ (c) SeF₃⁺ and XeO₃
- (d) None
- 3. Select the incorrect statement with respect to SO₂Cl₂ molecule:
 - (a) It gives H₂SO₄ and HCl on hydrolysis at room temperature
 - (b) It has two $d\pi$ - $p\pi$ bonds between S and O bonded atoms
 - (c) It is a polar molecule
 - (d) None

According to VBT any covalent bond will be formed by overlapping of atomic orbitals of bonded atoms provided atomic orbitals must be half-filled and electrons be in opposite spin. According to type of overlapping covalent bonds can be classified as (a) σ -bond (b) π -bond (c) δ -bond:

- 1. Which of the following set of orbitals does not produce nodal plane in xz-plane?
 - (a) $d_{yz} + d_{yz}$
- (b) $d_{xy} + d_{xy}$
- (c) $p_y + d_{xy}$
- (d) None of these
- 2. The combination of orbital that can not produce non-bonding molecular orbital is (internuclear axis is z-axis):
 - (a) $p_y + d_{x^2-y^2}$
- (b) $p_z + d_{yz}$
- (c) $s + d_{xz}$
- (d) $d_{xy} + d_{xy}$
- 3. If $F_2C_1 = C_2$ part of $F_2C_1 = C_2 = C_3 = C_4F_2$ lies in yz-plane, then incorrect statement is:
 - (a) Nodal plane of π -bond between C_1 and C_2 lies in yz-plane, formed by sideways overlapping of p, orbitals
 - (b) Nodal plane of π -bond between C_2 and C_3 lies in xz-plane, formed by sideways overlapping of py-orbitals

- (c) Nodal plane of π -bond between C_3 and C_4 lies in yz-plane, formed by sideways overlapping of p_{ν} -orbitals
- (d) Nodal plane of π -bond between C_2 and C_3 lies in xy-plane, formed by sideways overlapping of p_x-orbitals

If the central atom is of third row or below this in the periodic table, then lone pair will occupy a stereochemically inactive s-orbital and bonding will be through almost pure p-orbitals and bond angles are nearly 90°, if the substituent's electronegativity value is ≤ 2.5 .

1. In which of the following option, covalent bond is having maximum s% character?

(a) S — H bond in H₂S

(b) P — H bond in PH₃

(c) N — H bond in NH₃

(d) All have equal s% character

All the second second

- 2. Select incorrect statement regarding P₄ molecule.
 - (a) Each P atom is joined with three P-atoms
 - (b) P4 molecule contains total 12 bond angles
 - (c) Lone pair of each P atom is present in almost pure s-orbital
 - (d) Lone pair of each P atom present in hybrid orbital
- 3. The hybridisation of atomic orbitals of central atom "Xe" in XeO4, XeO2F2 and XeOF4 respectively.

(a) sp^3 , sp^3d^2 , sp^3d^2

(b) sp^3d , sp^3d , sp^3d^2

(c) sp^3 , sp^3d^2 , sp^3d

(d) sp^3, sp^3d, sp^3d^2

According to VB.T., atoms of element form bond only to pair up their unpaired electrons present in ground state or excited state. This pairing of unpaired electron will take place by overlapping of orbitals each one having one unpaired electron with opposite spin.

1. Which of the following orbital combination does not form π -bond?

(a) $p_x + p_x$ sideways overlapping

(b) $d_{x^2-y^2} + p_y$ sideways overlapping

(c) $d_{xy} + d_{xy}$ sideways overlapping

(d) $d_{yz} + p_{y}$ sideways overlapping

2. Which of the following orbital cannot form δ-bond?

(a) $d_{x^2-y^2}$ orbital (c) d_{z^2} orbital

(b) d_{xy} orbital

- (d) d_{xx} orbital
- 3. Which of the following combination of orbitals does not from any type of covalent bond (if zaxis is molecular axis)?

(a) $p_z + p_z$

(b) $p_y + p_y$

(c) $s + p_y$

(d) s + s

The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

1.	Select the correct coc	le for the following	repu	lsion orders, acco	ording to VSEPR theory:		
	(I) lone pair-lone pa						
	(II) lone pair-bond p	pair > bond pair-bo	nd p	air			
	(III) lone pair-lone p	pair > bond pair-bo	nd p	air			
	(IV) lone pair-bond pair > lone pair-lone pair						
	(a) I, II & III	(b) II & IV		(c) I, II & IV	(d) All		
2.	Which molecule has	both shape and geor	metr	y identical?			
	(I) SnCl ₂	(II) NH ₃		(III) PCl ₅	(IV) SF ₆		
	(a) I, III & IV			(b) II, III & IV			
	(c) III & IV	~		(d) All			
3.	Which is not the ele	ctron geometry of c	ovale	nt molecules?			
	(a) Pentagonal hinyr	amidal		(b) Octahedral			

(c) Hexagonal

When hybridisation involving d-orbitals are considered then all the five d-orbitals are not

	degenerate, rather $d_{x^2-y^2}$, d_{x^2} and d_{xy} , d_{yx} , d_{xx} form two different sets of orbitals and orbital of appropriate set is involved in the hybridisation.				
1.	In sp^3d^2 hybridisation, which sets of d-orbitals is involved?				

2. In sp^3d^3 hybridisation, which orbitals are involved?

(b) d_{x^2}, d_{xy}

(a) $d_{x^2-x^2}, d_{x^2}, d_{xy}$

(a) $d_{r^2-r^2}, d_{s^2}$

(b) d_{xy} , d_{yz} , d_{zx}

(c) d_{xy} , d_{yz}

(d) Tetrahedral

(c) $d_{x^2-y^2}, d_{xy}, d_{xz}$

(d) d_{x^2}, d_{yz}, d_{xx}

- 3. Molecule having trigonal bipyramidal geometry and sp^3d hybridisation, d-orbitals involved is:
- (b) d_{yz}
- (c) $d_{r^2-v^2}$

(d) d_{2}

(d) $d_{x^2-y^2}, d_{xy}$

- 4. Which of the following orbitals can not undergo hybridisation amongst themselves.
 - (I) 3d,4s

(II) 3d,4d

(III) 3d, 4s & 4p

(IV) 3s,3p&4s

(a) only II

(b) II & III

(c) I, II & IV

(d) II & IV

PASSAGE 7

Ionic bond is defined as the electrostatic force of attraction holding the oppositely charged ions. Ionic compounds are mostly crystalline solid having high melting and boiling points, electrical conductivity in molten state, solubility in water etc. Covalent bond is defined as the force which binds atoms of same or different elements by mutual sharing of electrons in a covalent bond. Covalent compounds are solids, liquids or gases. They have low melting and boiling points compounds. They are more soluble in non-polar solvents.

- 1. The valence electrons are involved in formation of covalent bonds is/are called :
 - (a) non-bonding electrons

(b) lone pairs

(c) unshared pairs

- (d) none of these
- 2. The amount of energy released when one mole of ionic solid is formed by packing of gaseous ion is called:
 - (a) Ionisation energy

(b) Solvation energy

(c) Lattice energy

- (d) Hydration energy
- 3. Which of the following is arranged order of increasing boiling point?
 - (a) $H_2O < CCl_4 < CS_2 < CO_2$

(b) $CO_2 < CS_2 < CCl_4 < H_2O$

of shore band marriague prevent here a

(c) $CS_2 < H_2O < CO_2 < CCl_4$

(d) $CCl_4 < H_2O < CO_2 < CS_2$

PASSAGE 8

When an ionic compound is dissolved in water (polar solvent), it breaks up into its constituent ions. The given ionic compound will be dissolved in water if its hydration energy is more than lattice energy. If hydration energy is less than lattice energy then ionic compound is usually either sparingly soluble or insoluble in water.

- 1. Which of the following ionic compound is having maximum lattice energy:
 - (a) NaF
- (b) MgF₂
- (c) AlF₃
- (d) KF

- 2. Most hydrated cation is:
 - (a) $Ce_{(aq.)}^{4+}$
- (b) $La_{(aq)}^{3+}$
- (c) $Ba_{(aq.)}^{2+}$
- (d) Cs⁺_(aq.)

PASSAGE 9

A covalent bond will be formed by the overlapping of atomic orbitals having single electron of opposite spin, according to the overlapping of atomic orbitals the covalent bond may be of two types:

(i) Sigma bond (σ)

(ii) Pi bond (π)

Sigma bond is stronger bond than the Pi-bond. If atomic orbitals overlap about the nuclear axis then sigma bond is formed but when atomic orbitals overlap sideway then Pi-bond is formed.

- 1. The correct order of increasing C O bond length of CO, CO_3^{2-} , CO_2 is:
 - (a) $CO_3^{2-} < CO_2 < CO$

(b) $CO_2 < CO_3^{2-} < CO$

(c) $CO < CO_3^{2-} < CO_2$

(d) $CO < CO_2 < CO_3^{2-}$

2. Compound having maximum bond angle is:

(a) BBr₃

(b) BCl₃

(c) BF₃

(d) None of these

3. The strength of bonds formed by 2s-2s, 2p-2p and 2p-2s overlap has the order:

(a) s - s > p - p > p - s

(b) s-s>p-s>p-p

(c) p - p > p - s > s - s

(d) p - p > s - s > p - s

PASSAGE 10

According to VBT the extent of overlapping depends upon types of orbitals involved in overlapping and nature of overlapping. More will be the overlapping and the bond energy will also be high.

1. The incorrect order of bond dissociation energy will be:

- (a) H H > Cl Cl > Br Br
- (b) Si Si > P P > Cl Cl
- (c) C C > N N > O O
- (d) H Cl > H Br > H I

2. Which of the following combination of orbitals does not form covalent bond (x-axis is internuclear axis):

(a) $s + p_y$

(b) $p_y + p_y$

(c) $d_{yz} + d_{yz}$

(d) $d_{xy} + d_{xy}$

3. Which of the following compound does not form $p\pi - p\pi$ bond?

(a) SO_3

(b) NO₃

(c) SO_4^{2-}

(d) CO_3^{2-}

PASSAGE 11

Consider the following elements with their period number and valence electrons. Elements

Period number

Total valence e^-

iements	remod number	iotai vaienc
P	2	4
Q	2	6
R	3	7
S	3	3
T	3	6
U	3,,	alkasonal social 4
		BORNES MARCO PROPER SALES IN THE RESIDENCE AND ADDRESS.

According to the given informations, answer the following questions:

1. Choose incorrect statement:

- (a) R exhibits maximum covalency among all elements given
- (b) Q does not exhibit variable covalency
- (c) R exhibits minimum covalency among all elements given
- (d) R and S combine each other and form SR 5 type of compound

- 2. Choose the correct statement:
 - (a) Q has maximum value of electron affinity
 - (b) R has maximum value of electronegativity
 - (c) S has maximum atomic size
 - (d) T and U are same group elements
- 3. Choose the incorrect statement:
 - (a) SR₃ is a hypovalent compound
- (b) UR₄ can act as a Lewis acid
- (c) PQ2 can not acts as Lewis acid
- (d) $UR_4 > SR_3$: Lewis acidic character

PASSAGE 12

Hybridisation involves the mixing of orbitals having comparable energies of same atom. Hybridised orbitals perform efficient overlapping than overlapping by pure s, p or d orbitals.

- 1. Which of the following is not correctly match between given species and type of overlapping?
 - (a) XeO₃: Three $(d\pi p\pi)$ bonds
- (b) H_2SO_4 : Two $(d\pi p\pi)$ bonds
- (c) SO₃: Three $(d\pi p\pi)$ bonds
- (d) HClO₄: Three $(d\pi p\pi)$ bonds
- 2. Consider the following compounds and select the incorrect statement from the following:

$$\mathrm{NH_3}$$
, $\mathrm{PH_3}$, $\mathrm{H_2S}$, $\mathrm{SO_2}$, $\mathrm{SO_3}$, $\mathrm{BF_3}$, $\mathrm{PCl_3}$, $\mathrm{IF_7}$, $\mathrm{P_4}$, $\mathrm{H_2}$

- (a) Six molecules out of given compounds involves hybridisation
- (b) Three molecules are hypervalent compounds
- (c) Six molecules out of above compounds are non-planar in structure
- (d) Two molecules out of given compounds involves $(d\pi p\pi)$ bonding as well as also involves $(p\pi p\pi)$ bonding

ONE OR MORE ANSWERS IS/ARE CORRECT

Hydrogen Bond

- 1. In which of the following there is intermolecular hydrogen bonding?
 - (a) Water
- (b) Ethanol
- (c) Acetic acid
- (d) H-F

Molecular Forces

- 2. Correct order of decreasing boiling points is:
 - (a) HF > HI > HBr > HCl

(b) $H_2O > H_2Te > H_2Se > H_2S$

(c) $Br_2 > Cl_2 > F_2$

(d) $CH_4 > GeH_4 > SiH_4$

Hybridisation

- 3. In which species the hybrid state of central atom is/are sp^3d ?
 - (a) I_{3}^{-}
- (b) SF₄
- (c) PF₅
- (d) IF₅

- 4. Select correct statement(s) is/are:
 - (a) In AsH₃ molecule lone pair at central atom is present in almost pure s-orbital
 - (b) Number of $p\pi d\pi$ bond in SO₃ and SO₂ are same
 - (c) NF₃ is better Lewis base than NCl₃
 - (d) Stable oxidation state of Lead is +2

Coot Bond

- 5. Which of the following species does/do not exist?
 - (a) OF₄
- (b) NH₂
- (c) NCl
- (d) ICl_3^{2-}
- 6. Which of the following species is/are superoctet molecule?
 - (a) AlF₃
- (b) SiCl₄
- (c) XeF₂
- (d) ICl₃

- 7. Which of the following statements is incorrect?
 - (a) A σ -bond is weaker than a π -bond
 - (b) There are four co-ordinate bonds in the NH⁺ ions
 - (c) The covalent bond is directional in nature
 - (d) HF is less polar than HCl
- 8. Which of the following species is/are capable of forming a coordinate bond with BF₃?
 - (a) PH₃
- (b) NH₄
- (c) OH
- (d) Mg 2+

Ionic Bond

- 9. Ionic compounds in general do not possess:
 - (a) high melting points and non-directional bonds
 - (b) high melting points and low-boiling points
 - (c) directional bonds and low-boiling points
 - (d) high solubilities in polar and non-polar solvents
- 10. Correct stability order of metal cation is/are :
 - (a) $Pb^{2+} < Sn^{2+}$
- (b) $Pb^{4+} < Pb^{2+}$
- (c) $Sn^{4+} < Sn^{2+}$
- (d) $Pb^{4+} < Sn^{4+}$

Molecular/Geometry/Shape

11. Consider the following molecule:

$$H_2C = C = C = C = CF_2$$

If hybridization of $C_{(1)}$ carbon atom is $sp^2(s+p_y+p_z)$ and hybridization of $C_{(4)}$ carbon atom is $sp(s+p_z)$. Then according to given information the **correct** statement(s) is/are:

- (a) Nodal plane of π -bond between $C_{(2)}$ and $C_{(3)}$ lies in xz-plane, formed by sideways overlapping of p_y -orbitals
- (b) Nodal plane of π -bond between $C_{(3)}$ and $C_{(4)}$ lies in yz-plane, formed by side ways overlapping of p_x -orbitals
- (c) The orbitals involve in hybridization of $C_{(5)}$ carbon atom are $s + p_x + p_z$
- (d) Nodal plane of π -bond between $C_{(1)}$ and $C_{(2)}$ lies in yz-plane, formed by side ways overlapping of p_y -orbitals
- 12. Consider the following two molecules and according to the given information select correct statement(s) about AX_2 and AY_2 :

where A: 16th group of 3rd period element

X: more electronegative than (A) and same group number of (A)

Y: Less atomic size than (A) and same period number of (A)

- (a) The hybridization of central atoms are different in both compounds
- (b) The shape of both molecules are same
- (c) Both compounds are planar
- (d) The X A X bond angle is less than Y A Y bond angle
- 13. Which of the following statements are correct about sulphur hexafluoride?
 - (a) all S F bonds are equivalent
 - (b) SF₆ is a planar molecule
 - (c) oxidation number of sulphur is the same as number of electrons of sulphur involved in bonding
 - (d) sulphur has acquired the electronic structure of the gas argon
- 14. If AB_4^n , types species are tetrahedral, then which of the following is/are correctly match? (Where A is central atom, B is surrounding atom and n is charge on species.)

A	В	n
(a) Xe	0	0
(b) Se	F	0
(c) P	0	-3
(d) N	Н	+1

VSEPR Theory

- 15. Which of the following statements is correct?
 - (a) ClF3 molecule is bent T-shape
 - (b) In SF₄ molecule, F—S—F equatorial bond angle is 103° due to lp lp repulsion
 - (c) In [ICl₄] molecular ion, Cl—I—Cl bond angle is 90°
 - (d) In OBr2, the bond angle is less than OCl2

16. Which of the following combination of bond pair (b.p.) and lone pair (l.p.) give same shape?

(i) 3 b.p.+1 l.p.

(a) (ii) and (iii)

- (ii) 2 b.p. + 2 l.p.
- (iii) 2 b.p.+1 l.p.
- (iv) 2 b.p.+0 l.p.

- (v) 3 b.p.+2 l.p.
- (vi) 2 b.p.+3 l.p.
- (b) (iv) and (v)
- (c) (iv) and (vi)
- (d) (iii) and (vi)

17. Select the true statement(s) among the following:

- (a) Pure overlapping of two d_{xy} orbitals along x-axis results in the formation of π -bond
- (b) $NO_2^+ > NO_3^- > NO_2^-$ is the correct order of bond angle as well as N—O bond order
- (c) NF₃ < NCl₃ < NBr₃ < NI₃ is the correct order of Lewis basic character as well as bond angle
- (d) HF > HCl > HBr > HI is the correct order of dipole moment as well as boiling point

Valence Bond Theory

18. p_y -orbital can not form π -bond by lateral overlap with :

(a) d_{xz} -orbital

(b) $d_{x^2-y^2}$ -orbital

(c) d_{xy} -orbital

(d) p_z^{x-y} -orbital

19. Which of the following orbital(s) cannot form δ -bond ?

(1) $d_{x^2-v^2}$ -orbital

(b) d_{xy} -orbital

(c) d_{2} -orbital

(d) p_x -orbital

20. Select correct statement(s) regarding σ and π -bonds:

- (a) σ -bond lies on the line joining the nuclei of bonded atoms
- (b) π -electron cloud lies on either side to the line joining the nuclei of bonded atoms
- (c) $(2p_{\pi} 3d_{\pi})$ π -bond is stronger than $(2p_{\pi} 3p_{\pi})$ π -bond.
- (d) σ -bond has primary effect to decide direction of covalent bond, while π -bond has no primary effect in direction of bond
- 21. Which of the following statements is/are correct?
 - (a) All carbon to carbon bonds contain a sigma bond and one or more π -bonds
 - (b) All carbon to carbon bonds are sigma bonds
 - (c) All oxygen to hydrogen bonds are hydrogen bonds
 - (d) All carbon to hydrogen bonds are sigma bonds
- 22. Consider the following three orbitals:

Correct statement(s) regarding given information is/are:

- (a) Orbitals (i) and (ii) can never form any type of covalent bond
- (b) If internuclear axis is 'x', then combination of (ii) and (iii) orbitals can form π -bond
- (c) Orbital (iii) can form δ-bond with other orbital having same orientation of lobes
- (d) If internuclear axis is 'x', then combination of (i) and (iii) orbitals can form π -bond
- 23. Which of the following combination of orbitals do/does not form bond (if x-axis is internuclear axis)?
 - (a) $s + p_z$
- (b) s+s
- (c) $p_z + p_x$
- (d) $d_{xy} + p_y$

24. Consider the following atomic orbitals:

Which of the following statement(s) is/are correct regarding given orbital?

- (a) It is a gerade atomic orbital
- (b) It has zero nodal plane
- (c) Circular electron density is present in 'XY' plane
- (d) Opposite lobes of orbital have same sign of wave function (ψ)

76 INORGANIC CHEMISTRY

MATCH THE COLUMN

Column-I and Column-II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

1. Column-I	Column-II
(A) $B_3N_3H_6$	(P) Planar geometry
(B) I ₃	(Q) Non-planar geometry
(C) B ₂ Cl ₄ (Solid)	(R) Compound having coordinate bond
(D) SiF ₄ nonline over 1	(S) Compound having back bond
and the property in Land	(T) Non-polar compound
2. Column-I (Shape)	Column-II (Hybridisation)
(A) Linear	(P) sp ³
(B) Angular	(Q) sp^3d^2
(C) Square planar	(R) sp^2
(D) Trigonal planar	(S) sp^3d
3. Column-l	Column-II
(A) SO ₃	(P) Largest bond angle
(B) BeCl ₂	(Q) Lowest bond angle
(C) NH ₃	(R) sp^2 -hybridisation
(D) NO ₂	(S) sp ³ -hybridisation
4. Column-I	Column-II
(A) Hypo phosphoric acid	(P) All hydrogen are ionizable in water
(B) Pyro phosphorous acid	(Q) Lewis acid in water
(C) Boric acid	(R) Monobasic
(D) Hypo phosphorous acid	(S) sp ³ -hybridised central atom
5. Column-I	Column-II
(A) NH ₂	(P) Square pyramidal
(B) XeOF ₂	(Q) V-shaped
(C) ICl ₄	(R) T-shaped
(D) [SbF ₅] ²⁻	(S) Square planar

CHEMICAL BONDING (Basic)

6.	P	Column-I	Column-II
	(A)	ICl ₂	(P) Linear
	(B)	BrF ₂ ⁺	(Q) Pyramidal
	(C)	ClF ₄	(R) Tetrahedral
	(D)	AlCl ₄	(S) Square planar
		The second secon	(T) Angular
7.		Column-I	Column-II
	(A)	Re ₂ Cl ₈ ²⁻	(P) $p\pi - p\pi$ bonding
	(B)	NO ₃	(Q) $p\pi - d\pi$ bonding
	(C)	SO ₄ ²⁻	(R) $d\pi - d\pi$ bonding
	(D)	SO ₃	(S) δ-bonding
8.		Column-I	Column-II
		(Bond order range)	(Oxyanions)
	(A)	1.0 to 1.30	(P) NO ₃
	(B)	1.31 to 1.55	(Q) ClO ₄
	(C)	1.56 to 1.70	(R) PO ₄ ³⁻
	(D)	1.71 to 2.0	(S) ClO ₃
		a de la companya de l	(T) SO ₄ ²
9.		Column-I	Column-II
	(A)	AsO 4 ³⁻	(P) All three <i>p</i> -orbitals used in hybridisation
	(B)	ICl ₂ ⁺	(Q) Tetrahedral shape
	(C)	SOF ₄	(R) Axial <i>d</i> -orbital with two nodal cones used in hybridisation
	(D)	XeOF ₄	(S) All bond lengths are identical
	Windle Commence	the state of page 10 to	(T) $p\pi - d\pi$ bond(s) present
10.	1	Column-I	Column-II
	No.	σ -bond pairs + lone pairs around central atom of AB_x type compound	Characteristics/shape of compound
	(A)		(P) Linear
	(B)	2 + 3	(Q) Angular
	(C)	4 + 2	(R) Polar
	(D)	2+2	(S) Non-polar
		Service of the servic	(T) Planar

11.

Column-I (Type of bond formed)

- π-bond
- σ-bond (B)
- (C) δ-bond
- (D) Non-bonding

Column-II

[Combining orbitals (Internuclear axis)]

- (P) $d_{yz} + p_{y}$, (z)
- (Q) $s + p_x$, (y)
- (R) $d_{yz} + d_{yz}$, (x)
- (S) s + s, (z)
- (T) $s+d_{xy}$, (y)

12. Column-I (A) XeF₅ PBr₄⁺ (B)

- (C) IOF₃
- (D) NH₂

CONTRACTOR OF THE PARTY OF THE	\$445 (MEDICAL)	A SECURITION OF
	PM083795305	TO SECOND
Co	11111	n-II

- (P) d-orbital with zero nodal plane is used in hybridisation
- (O) Non-axial d-orbital is used in hybridisation
- (R) Planar species
- (S) Non-planar species
- (T) Bond angle 109°28' or less than 109°28'

			The state of the s
13.			Golumn-I
	(A)	$IO_2F_2^-$	
	(B)	IOF ₄	
	(C)	$SeOF_2$	
	(D)	XeOF ₂	
			The state of the s

Column-II

- (P) Trigonal pyramidal shape
- (Q) Square pyramidal shape
- (R) See-saw shape
- (S) Non-planar
- (T) One of the bond angle < 90°

ASSERTION-REASON TYPE QUESTIONS

These questions consist of two statements each, printed as assertion and reason, while answering these questions you are required to choose any one of the following responses.

- (A) If assertion is true but the reason is false
- (B) If assertion is false but reason is true
- (C) If both assertion and reason are true and the reason is the correct explanation of assertion
- (D) If both assertion and reason are true but reason is not the correct explanation of assertion
- 1. Assertion: Multiple bond between two bonded atoms can have more than three bonds. Multiple bond between two bonded atoms can not have more than two π -bonds. Reason:
- Assertion : 2nd period elements do not involve in excitation of electron.
 Reason : 2nd period elements do not have vacant 2d-orbitals.
- 3. Assertion: In SO₃ molecule bond dissociation energy of all S=O bonds are not equivalent.
 - : SO₃ molecule is having two types of $2p\pi 3p\pi$ and $2p\pi 3d\pi$ pi-bonds. Reason

Reason

Assertion: PH₄⁺ ion is having tetrahedron geometry.

: P-atom is unhybridised in PH₄ ion.

5. Assertion: All diatomic molecules with polar bond have dipole moment.

: Dipole moment is a vector quantity. Reason

6. Assertion: Water is a good solvent for ionic compounds but poor for covalent compounds.

: Hydration energy of ions releases sufficient energy to overcome lattice energy and break hydrogen bonds in water while covalent compounds interact so weakly that even van der Waals' forces between molecules of covalent

compounds cannot be broken.

7. Assertion: Xe-atom in XeF₂ assumes sp-hybrid state. Reason : XeF₂ molecule does not follow octet rule.

8. Assertion: The atoms in a covalent molecule are said to share electrons, yet some covalent

molecules are polar.

: In polar covalent molecule, the shared electrons spend more time on the Reason

average near one of the atoms.

Assertion : CCl₄ is a non-polar molecule.

: CCl₄ has polar bonds. Reason

10. Assertion: Geometry of ICl₃ is tetrahedral.

: Its shape is T-shape, due to the presence of two lone pairs. Reason

11. Assertion: The covalency of carbon is four in excited state.

: The four half-filled pure orbitals of carbon form same kind of bonds with an Reason

atom as those are with hybridised orbitals.

12. Assertion: The shape of XeF4 is square-planar.

: In an octahedral geometry, a single lone pair can occupy any position but a Reason

second lone pair will occupy the opposite position to the first lone pair.

SUBJECTIVE PROBLEMS

1. Consider following compounds A to E:

(A) XeF_n

(B) $XeF_{(n+1)}^+$

(C) $XeF_{(n+1)}^{-}$ (D) $XeF_{(n+2)}^{-}$

(E) $XeF_{(n+4)}^{2-}$,

If value of n is 4, then calculate value of " $p \div q$ " here, 'p' is total number of bond pair and 'q' is total number of lone pair on central atoms of compounds (A) to (E).

2. Consider the following five groups (According to modern periodic table) of elements with their increasing order of atomic numbers:

S 57

Group $1 \rightarrow A$, B, C, D, E

Group $2 \rightarrow F$, G, H, I, J

Group $13 \rightarrow K, L, M, N, O$

Group $15 \rightarrow P, Q, R, S, T$

Group $17 \rightarrow U, V, W, X, Y$

If first and last element of each group belongs to 2nd and 6th period respectively and Z represents to carbonate ion (CO $_3^{2-}$) then consider the following orders.

- O+ > H2+ ; Polarising power (i)
- $T^{3+} > S^{3+} > R^{3+}$; Stability of cation (ii)
- (iii) $U^{-}(aq) > V^{-}(aq) > W^{-}(aq) > X^{-}(aq)$; Size

- $JV_2 < IV_2 < GV_2 < LV_3$; Covalent character (iv)
- (v) GZ > IZ > JZ; Thermal stability
- AV > BV > CV > DV > EV; Thermal stability (vi)
- (vii) $C_3P > B_3P > A_3P$; Lattice energy
- (viii) $KU_3 < KV_3 < KW_3 < KX_3$; Melting point

Then calculate value of $|p-q|^2$, here p and q are correct and incorrect orders in the given eight orders respectively.

3. Consider the following species and find out total number of species which are polar and can act as Lewis acid

CCl₄, CO₂, SO₂, AlCl₃, HCHO, SO₃, SiCl₄, BCl₃, CF₄

4. Consider the following table regarding interhalogen compounds, XY_n (where Y is more electronegative than X)

Value of n for respective interhalogen compound	Total number of <i>d</i> -orbitals used in hybridization of central atom	Polarity	Planarity
P_1	1	Polar	Planar
P_2	Q_1	Polar	Non-Planar
P_3	Q ₂	Non-Polar	Non-Planar

Then according to given information calculate value of expression $P_2 \times \frac{(P_3 - P_1)}{(Q_1 + Q_2)}$.

- 5. What is covalency of chlorine atom in second excited state?
- **6.** Sum of σ and π -bonds in NH₄⁺ cation is
- 7. Calculate the value of X Y, for XeOF₄. ($X = \text{Number of } \sigma \text{ bond pair and } Y = \text{Number of lone}$ pair on central atom)
- 8. The molecule ML_x is planar with 6 electron pairs around M in the valence shell. The value of x
- **9.** Calculate value of $\frac{X+Y+Z}{10}$, here X is O—N—O bond angle in NO $_3$ Y is O—N—O bond angle in NO_2^+ and Z is F - Xe - F adjacent bond angle in XeF_4 .
- **10.** Calculate x + y + z for H₃PO₃ acid, where x is no. of lone pairs, y is no. of σ bonds and z is no. of π bonds.
- 11. How many right angle, bond angles are present in TeF₅ molecular ion?
- **12.** How may possible ∠ FSeF bond angles are present in SeF₄ molecule?
- 13. In IF_6^- and TeF_5^- , sum of axial d-orbitals which are used in hybridisation in both species.
- 14. Among the following, total no. of planar species is:
 - (i) SF₄
- (ii) BrF₃
- (iii) XeF₂
- (iv) IF₅

- (v) SbF₄
- (vi) SF₅
- (vii) SeF2+
- (viii) CH₃

(ix) PCl₄

- 15. Calculate the value of "x + y z" here x, y and z are total number of non-bonded electron pair(s), pie(π) bond(s) and sigma(σ) bonds in hydrogen phosphite ion respectively.
- 16. Consider the following table

Total number of electron pair (l.p. +σ-bond)	rs Total number of lone pairs	Shape
5	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	linear
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	see-saw
4	r	Bent shape
S	2	Square planar
5	<u>t</u>	Bent 'T' shape

Then calculate value of "p + q + r - s - t".

- **17.** In phosphorus acid, if *X* is number of non bonding electron pairs. *Y* is number of σ-bonds and *Z* is number of π -bonds. Then, calculate value of " $Y \times Z X$ ".
- **18.** Calculate the number of $p_{\pi} d_{\pi}$ bond(s) present in SO_4^{2-} :
- **19.** Sum of $\sigma \& \pi$ -bonds in NH₄ cation is
- 20. Consider the following orbitals:

(i) 3p.

(ii) 4d₂2

(iii) $3d_{x^2-y^2}$

(iv) $3d_{yz}$

Then calculate value of x + y - z here x is total number of gerade orbital and y is total number of ungerade orbitals and z is total number of axial orbital in given above orbitals.

- **21.** Calculate value of |x y|, here, x and y are the total number of bonds in benzene and benzyne respectively which are formed by overlapping of hybridized orbitals.
- 22. Consider the following compounds:

(i) IF₅

(ii) ClI₄

(iii) XeO₂F₂

(iv) NH₂

(v) BCl₃

(vi) BeCl₂

(vii) AsCl₄

(viii) B(OH)₃

(ix) NO_2^-

(x) ClO_2^+

Then calculate value of "x + y - z", here, x, y and z are total number of compounds in given compounds in which central atom used their all three p-orbitals, only two p-orbitals and only one p-orbital in hybridisation respectively.

23. Total number of species which used all three *p*-orbitals in hybridisation of central atoms and should be non-polar also.

$$XeO_2F_2$$
, $SnCl_2$, IF_5 , I_3^+ , XeO_4 , SO_2 , XeF_7^+ , SeF_4

24. Consider the following species NO_3^- , SO_4^{2-} , ClO_3^- , SO_3 , PO_4^{3-} , XeO_3 , CO_3^{2-} , SO_3^{2-}

Then calculate value of |x - y|, where

- x: Total number of species which have bond order 1.5 or greater than 1.5
- y: Total number of species which have bond order less than 1.5
- **25.** Consider the following orbitals 3s, $2p_x$, $4d_{xy}$, $4d_{z^2}$, $3d_{x^2-y^2}$, $3p_y$, 4s, $4p_z$ and find total number of orbital(s) having even number of nodal plane.

26. For the following molecules:

$$PCl_5$$
, BrF_3 , ICl_2^- , XeF_5^- , NO_3^- , XeO_2F_2 , PCl_4^+ , CH_3^+

Calculate the value of
$$\frac{a+b}{c}$$

- $a = \text{Number of species having } sp^3d\text{-hybridisation}$
- b = Number of species which are planar
- c = Number of species which are non-planar
- 27. Find out number of transformation among following which involves the change of hybridisation of underlined atom.

(a)
$$H_2\underline{O} + H^+ \longrightarrow H_3\underline{O}^+$$

(b)
$$NH_3 + \underline{B}F_3 \longrightarrow NH_3 \cdot \underline{B}F_3$$

(c)
$$\underline{XeF}_6 \longrightarrow \underline{XeF}_5^+ + F^-$$

(d)
$$2PCl_5 \longrightarrow \underline{PCl_4}^+ + PCl_6^-$$

(e)
$$\underline{CH}_3 - \underline{CH}_3 \longrightarrow \underline{CH}_3^- + \underline{CH}_3^+$$

ANSWERS

Level 1

1.	(b)	2.	(a)	3.	(a)	4	. (d)	5.	(a)	6.	(d)	7.	(c)	8.	(a)	9.	(c)	10.	(a)
11.	(c)	12.	(b)	13.	(c)	14	. (d)	15.	(a)	16.	(c)	17.	(c)	18.	(d)	19.	(a)	20.	(c)
21.	(d)	22.	(d)	23.	(c)	24	. (c)	25.	(b)	26.	(d)	27.	(c)	28.	(b)	29.	(c)	30.	(d)
31.	(a)	32.	(b)	33.	(b)	34	(c)	35.	(b)	36.	(a)	37.	(a)	38.	(c)	39.	(c)	40.	(c)
41.	(c)	42.	(d)	43.	(d)	44	. (c)	45.	(d)	46.	(c)	47.	(b)	48.	(d)	49.	(c)	50.	(d)
51.	(d)	52.	(d)	53.	(a)	54	i. (a)	55.	(b)	56.	(c)	57.	(b)	58.	(b)	59.	(d)	60.	(a)
61.	(a)	62.	(c)	63.	(c)	64	(b)	65.	(b)	66.	(c)	67.	(b)	68.	(c)	69.	(a)	70.	(d)
71.	(b)	72.	(b)	73.	(b)	7	1. (a)	75.	(a)	76.	(b)	77.	(c)	78.	(c)	79.	(c)	80.	(d)
81.	(b)	82.	(b)	83.	(d)	8	4. (d)	85.	(a)	86.	(c)	87.	(d)	88.	(a)	89.	(c)	90.	(c)
91.	(c)	92.	(a)	93.	(b)	9	4. (b)	95.	(a)	96.	(b)	97.	(a)	98.	(a)	99.	(c)	100.	(a)
101.	(a)	102.	(d)	103.	(c)	10	4. (b)	105.	(b)	106.	(b)	107.	(d)	108.	(d)	109.	(a)	110.	(a)
111.	(d)	112.	(c)	113.	(c)	11	4. (b)	115.	(d)	116.	(d)	117.	(c)	118.	(d)	119.	(b)	120.	(c)
121.	(a)	122.	(d)	123.	(b)	12	4. (c)		1			i dini		172 00	144	noss	aS-	troit is	128/

Level 2

1.	(d)	2.	(a)	3.	(d)	4.	(b)	5.	(a)	6.	(c)	7.	(c)	8.	(d)	9.	(b)	10.	(b)
11.	(b)	12.	(d)	13.	(d)	14.	(b)	15.	(d)	16.	(c)	17.	(c)	18.	(c)	19.	(b)	20.	(d)
21.	(d)	22.	(c)	23.	(d)	24.	(c)	25.	(c)	26.	(b)	27.	(d)	28.	(b)	29.	(c)	30.	(d)
31.	(d)	300			500				Bun,			1000							

Level 3

Passage-1	1.	(d)	2.	(d)	3.	(d)					t			
Passage-2	1.	(d)	2.	(d)	3.	(c)						4		
Passage-3	1.	(c)	2.	(d)	3.	(d)			Bi I					
Passage-4	1.	(b)	2.	(c)	3.	(c)								
Passage-5	1.	(a)	2.	(c)	3.	(c)								
Passage-6	1.	(a)	2.	(a)	3.	(d)	4.	(d)						
Passage-7	1.	(d)	2.	(c)	3.	(b)								
Passage-8	1.	(c)	2.	(a)							200			
Passage-9	1.	(d)	2.	(d)	3.	(c)								
Passage-10	1.	(b)	2.	(a)	3.	(c)				1				

RESERVED TO SEE JAMES TO A SECTION OF THE SECTION O		GOMEST AND	(c)	17820TE	(c)		grif (4)	01/2			
Passage-12 1.	(c)	2.	(c)			1			1100	100	

One or More Answers is/are correct

1.	(a,b,c,d)	2.	(a,b,c)	3.	(a,b,c)	4.	(a,d)	5.	(a,c,d)	6.	(c,d)
7.	(a,b,d)		(a,c)		(b,c,d)				(a,b,c)	12.	
13.	(a,c)				(a,c)		10.0000.20	17.	(a,c)	18.	(a,b,d)
19.			(a,b,c,d)				(a,c,d)	23.	(a,c)	24.	(a,b,c,d)

Match the Column

1.	$A \rightarrow P$, S, T;	$B \rightarrow P, R, T;$	$C \rightarrow P$, S, T;	$D \rightarrow Q, S, T$
	$A \rightarrow P, S;$	$B \rightarrow P, R;$	$C \rightarrow Q$;	$D \rightarrow R$
3.	$A \rightarrow R$;	$B \rightarrow P$;	$C \rightarrow Q, S;$	$D \rightarrow R$
4.	$A \rightarrow P, Q, S;$	$B \rightarrow Q, S;$	$C \rightarrow Q, R;$	$D \rightarrow Q, R, S$
5.	$A \rightarrow Q$;	$B \rightarrow R$;	$C \rightarrow S$;	$D \rightarrow P$
6.	$A \rightarrow P$;	$B \rightarrow T$;	$C \rightarrow S$;	$D \rightarrow R$
7.	$A \rightarrow R,S;$	$B \rightarrow P$;	$C \rightarrow Q$;	$D \rightarrow P, Q$
8.	$A \rightarrow R$;	$B \rightarrow P, T;$	$C \rightarrow S$;	$D \rightarrow Q$
9.	$A \rightarrow P, Q, S, T;$	$B \rightarrow P, S;$	$C \rightarrow P, R, T;$	$D \rightarrow P, R, T$
10.	$A \rightarrow Q, R, T;$	$B \rightarrow P$, S, T;	$C \rightarrow S, T;$	$D \rightarrow Q, R, T$
11.	$A \rightarrow P$;	$B \rightarrow S$;	$C \rightarrow R$;	$D \rightarrow Q, T$
12.	$A \rightarrow P, Q, R, T;$	$B \rightarrow S, T;$	$C \rightarrow P, S, T;$	$D \rightarrow R, T$
13.	$A \rightarrow R, S, T;$	$B \rightarrow Q$, S, T;	$C \rightarrow P.S$:	$D \rightarrow T$

Assertion-Reason Type Questions

1.	(D)	2.	(B)	3.	(B)	4.	(A)	5.	(D)	6.	(C)	7.	(B)	8.	(C)	9.	(D)	10.	(B)
11.	(A)	12.	(C)														\- /		\- /

Subjective Problems

1. 4 8. 4	2. 4 or 16 9. 39	3. 2 10. 13	4. 4 11. 0	5. 5 12. 6	6. 4 13. 4	7. 4 14. 3
15. 3	16. 2	17. 0	18. 2	19. 4	20. 1	21. 1
22. 8	23. 2	24. 0	25. 5	26. 3	27 . 3	-2. 1

Hints and Solutions

4. (d) Strength of H-bonding is higher in H₂O, than H₂O₂ because the amount of formal negative charge on oxygen atom in case of water is more than that of H₂O₂.

the first to highly soluble in scales because it locies in water and fore ion-dipose in

8. (a)

(a)
$$CH_3 - C - O - H \dots O - H$$

(b), (c), (d) \rightarrow No scope of hydrogen bonding

13. (c)

Non-polar Non-planar

Polar Non-planar Decreption Planar

Non-polar

Non-planar

$$F \xrightarrow{Be} F$$

$$\mu = 0$$

=C=O is linear and

is trigonal planar hence net polarity of both

molecules is zero.

- 16. (c) The net polarity of angular molecules SO₂ and SCl₂ is not equal to zero.
- 17. (c)

(a)
$$^{8+}_{H}$$
 $^{8-}_{Cl}$

$$|EN_{CD}\rangle = EN_{CD}$$

$$[EN_{(Cl)} > EN_{(H)}]$$
 (b) Br—Cl $[EN_{(Cl)} > EN_{(Br)}]$

(c)
$$^{\delta+}Cl$$
 $O^{\delta--}Cl^{\delta+}$ $[EN_{(O)} > EN_{(CI)}]$

(d)
$$^{\delta-}Cl > S^{\delta++} Cl^{\delta-} [EN_{(S)} < EN_{(CL)}]$$

18. (d) Strength of molecular forces :

Ion-dipole > dipole-dipole > ion-induced dipole>dipole-induced dipole > London forces.

21. (d) Correct order of molecular force: $H_2O > O$ $Br_2 > O(C H_3)_2$

- 22. (d) HCl is highly soluble in water because it ionise in water and form ion-dipole interaction with water.
- 23. (c) Among given solid, molecular solid is weak, hence, it has low melting point.
- 24. (c) London dispersion force ∞ molecular mass of covalent molecule.
- 25. (b) HCl has least boiling point among all halogen acids because it contains V.W. force never contains H-bond HCl < HBr < HI < HF.</p>

V.W._{force} H-bon

- $\textbf{26.} \hspace{0.2cm} \textbf{(d)} \hspace{0.2cm} \textbf{C}_{2}\textbf{H}_{6} \hspace{0.2cm} < \hspace{0.2cm} \textbf{CH}_{3} \hspace{0.2cm} \textbf{OH} \hspace{0.2cm} < \hspace{0.2cm} \textbf{KCl} \\ \hspace{0.2cm} \textbf{(Molecular lattice)} \\ \hspace{0.2cm} \textbf{(molecular lattice)} \\ \hspace{0.2cm} \textbf{(mich H-bonding)} \\ < \hspace{0.2cm} \textbf{Covalent lattice)}$
- 27. (c) CO, CO₂ and P₂O₅ are covalent compounds having their molecular lattice. But SiO₂ is a covalent compound having 3-dimensional network structure and it has covalent lattice, so M.P. of SiO₂ is maximum.

$$H_3BO_3 + OH^- \longrightarrow [B(OH)_4]^-$$

$$H_2O + H^+ \rightleftharpoons H_3O^+ sp^3$$

40. (c) By sp²-hybridisation.

Hybridisation orbital = 3 [3 σ -bonds] Unhydrised orbital = 1 [1 π -bond]

41. (c) H
$$-N - C - C - O - F$$

$$(sp^2)$$

$$(sp^2)$$

- **42.** (d) V sp^3 -Hybridisation V
- **48.** (d) In SiCl₄ difference between electronegativity of Si (1.8) and chlorine (3.0) is higher than in other given compounds.
- 49. (c) More effective axial and sideways overlapping between atomic orbitals of carbon and those of oxygen atom is higher due to smaller size of oxygen atom. Oxygen is more electronegative than oxygen atom, due to these factors CO has highest bond energy.
- **50.** (d)

(b)
$$F > B - F$$
 (6e⁻, hypovalent)

CHEMICAL BONDING (Basic)

51. (d) In SFF molecule central S-atom is surrounded by 10 valence electrons and it is hypervalent compound.

- **52.** (d) Due to presence of vacant *d*-orbital excitation occurs in Cl-atom and it can have more than eight valence electrons when it is forming hypervalent compound like HClO₄.
- **53.** (a) Bond polarity is directly related to difference of electronegativity of bonded atoms.
- **54.** (a) The set of compounds BCl₃, SiCl₄, PCl₃ are predominatly covalent compounds. NH₄Br and NaI ionic compounds and Al contains metallic lattice.
- **55.** (b) Maximum covalency of oxygen atom is three, hence OF_4 does not exist.
- **58.** (b) $A^{2+} + BC_4^{3-} \Rightarrow A_3(BC_4)_2$
- **59.** (d) Among given non-metals, O-atom has high electron affinity and strong ionic bond is formed between Al and O-atom.

Number of resonating structures = 3

78. (c) XeF_3^+ hybridisation of $Xe: sp^3d$

Shape: Bent T

- **79.** (c) In XeF_n , possible value of n is 2, 4, 6, 8, then compound should be XeF_2 (linear), XeF_4 (square planar), XeF₆ (capped octahedral). So in this case trigonal planar molecule does not possible.
- 80. (d)

81. (b) CS₂ :S: □ C □

Total lone pairs = 4

Total double bond = 2

All the atoms have complete octet Sulphur is the central atom.

Square pyramidal (sp3d2-hybridisation)

Maximum atoms that → can lie in a plane

- **94.** (b) In \ddot{N} H₃ central atom is nitrogen which is sp^3 hybridized hence, it will be at the centre of tetrahedron with H-atoms at three vertices.
- 95. (a) In trigonal by pyramidal geometry lone pair electrons cannot occupy axial positions.

3

- 96. (b) (ii) (F) In general as the number of lone pair of electrons on central atom increases, value of bond angle from normal bond angle decreases due to lp - lp > lp - bp
 - (iv) (F) Structures of xenon fluorides and xenon oxy fluoride are explained on the basis of VSEPR theory. In SOBr₂, S—O bond has maximum bond length in comparison to S—O bond lengths in SOF₂ and SOCl₂, because in SOBr₂, S—O bond has been formed by hybrid orbital containing less s-character.
- **97.** (a)

83. (d)

(Trigonal planar)

(Trigonal planar)

98. (a)
$$\begin{bmatrix} Br \\ I \\ Br \end{bmatrix}$$
 IBr: $X = 2 + \frac{1}{2}[7 - 2 + 1] = (2\sigma - bonds + 3 lone pairs) sp3-hybridisation Shape \rightarrow Linear$

99. (c)
$$ClF_3$$

$$\begin{bmatrix} F & Cl \\ F & Cl \\ F \end{bmatrix} X = 3 + \frac{1}{2} [7-3] = (3\sigma - bonds + 2 lone pairs) (sp^3d-hybridisation)$$

Shape → Bent - T - shape

- 100. (a) NH₃ → Trigonal pyramidal
 - (a) $SO_3^{2-} \longrightarrow Trigonal pyramidal$
- (b) $CO_3^{2-} \rightarrow Trigonal planar$

at 14H PH PH AsH SbH (As E.N. value of C.A. Toond anglet)

nong CH 22, there are dipole-dipole interac

- (c) NO₃ → Trigonal planar
- (d) $SO_3 \rightarrow Trigonal planar$

101.(a)
$$H$$
 $C \oplus H$
 H
 $(sp^3-hybrid)$
 $(sp^3-hybridised)$
(Trigonal planar)
(Trigonal pyramidal)

102. (d)

Bond pairs = 2, Lone pairs = 2

(c)
$$H$$
 $C=C$ $\ddot{C}l$:

Bond pairs = 6

Lone pairs = 6

Bond pairs = 3

Lone pairs = 6

- 103.(c) Stability order of carbon family hydride Silane > German > Stannane > Plumbane
- **107.** (d) Incorrect overlaps (if internulcear axis = Z):

(B)
$$2p_x + 2p_x \Rightarrow \pi$$
-bond; (C) $3d_{xy} + 3d_{xy} \Rightarrow \delta$ -bond; (D) $2s + 2p_y \Rightarrow \text{No bond formation}$.

109. (a)
$$H - C$$
 $H + C - H$ Number of σ -bonds = 14

112. (c) LE
$$\propto \frac{q^+ \cdot q^-}{r^+ + r^-}$$

- (a) AlF₃ > MgF₂ [Charge on cation]
- (b) Li₃N > Li₂O [Charge on anion]
- (c) NaCl > LiF [Size of cation and anion]
- (d) TiC > ScN [Charge on cation and anion]
- 113. (c) Lattice energy ∝ Charge of cation × charge of anion Inter ionic distance
- **123.** (b) (a) N = N = 0 (There is no 0 N 0 bond angle)

- 124. (c) Correct order of bond angle:
 - (a) $NH_3 < PH_3 < AsH_3 < SbH_3$ (As E.N. value of C.A. \uparrow bond angle \downarrow)
 - (b) $OF_2 < OH_2 < OCl_2$
 - (c) H₃Te⁺ < H₃Se⁺ < H₃S⁺ < H₃O⁺
 - (J) $BF_3 = BCl_3 = BBr_3 = BI_3$

Level 2

1. (d) Correct order of B.P.

 $CH_3N_3 < HN_3$

Among CH₃N₃ there are dipole-dipole interaction while among HN₃ intermolecular H-bonding occurs.

Bond pairs = 1.

2. (a) (I—I)···(I—I)

London forces between two I2 molecules in solid lattice.

- 9. (b) (a) C103 (b) ClO₃
- B.O. = 1.66B.O. = 2 (max.)
- B.O. = 1.75 ClO_2
- (c)
- C102 B.O. = 1.5(d)

Number of atoms in 'X-Y' plane =6

Number of atoms in (X-Y) plane = 5

Number of atoms in (X-Y) plane = 5

Hyb. :
$$sp^3$$

 $\mu_D \neq 0$
Planar

Hyb. :
$$sp^3d$$

 $\mu_D = 0$
Planar

- **14.** (b) (a) Pentagonal planar $\rightarrow sp^3d^3[s+p_x+p_y+p_z+d_{x^2-y^2}+d_{x^2}+d_{xy}]$
 - (b) Trigonal planar $\rightarrow sp^2[s + Any two p]$
- (c) Linear $\rightarrow sp^2[s + \text{any one } p]$ $\rightarrow sp^2[s + \text{any two } p]$ $\rightarrow sp^3[s + p_x + p_y + p_z]$ $\rightarrow sp^3d[s + p_x + p_y + p_z + d_{z^2}]$
- (d) Square planar $\to sp^3d^2[s + p_x + p_y + p_z + d_{x^2-y^2} + d_{z^2}]$

19. (b)
$$BF_3$$
 sp^2 Trigonal planar BrF_3 sp^3d Bent 'T' shape ICl_2^{Θ} sp^3d Linear $BeCl_2$ sp Linear BCl_3 sp^2 Trigonal planar PCl_3 sp^3 Pyramidal NCl_3 sp^3 Pyramidal

20. (d)

(a)
$$-0$$
 0 B.O. of Cl—O = 1.67 (b) -0 0 B.O. of P—O = 1.2

(c)
$$-0$$
 $= 0$ $= 1.5$ $= 1.5$ $= 0$ $= 1.5$ $= 0$ $=$

Bond order of O - O in $O_2 = 2.0$

- 21. (d) As size of sulphur is higher than that of oxygen atom, hence bond length of S—H bond is higher than that of O—H bond.
- 22. (c)

(a)
$$CH_2 = \overset{\cdot}{CH} - \overset{\cdot}{C} = CH$$

(b) $HC = \overset{\cdot}{C} - \overset{\cdot}{C} = CH$
(c) $H_2 \overset{\cdot}{C} - \overset{\cdot}{C} H = CH_2$
(d) $H_2C = \overset{\cdot}{C}H - \overset{\cdot}{C}H = CH_2$

- **23.** (d) Two different non-axial d-orbitals will lie in planes perpendicular to each other hence, such d-orbital will not form π -bond.
- **24.** (c) C: $2s^2$ 2pC (In ground state) $\uparrow \downarrow$ $\uparrow \uparrow \uparrow$ C (In excited state) $\uparrow \uparrow$ $\uparrow \uparrow \uparrow \uparrow$

In the unhybridized state of carbon, 2p orbitals are 90° to one another and each one will overlap with 1s orbital of three hydrogen atoms, thus three C—H bonds are formed which are 90° to one another. For the fourth hydrogen atom, its 1s orbital may overlap with non-directional 2s orbital of the carbon and this σ -bond will be stronger than σ C—H bonds formed by 2p—1s overlap. In such situation CH₄

- molecule can never has tetrahedral geometry. **28.** (b) d_2 can not form π as well δ -bond but it can form σ -bond.
- 29. (c) Correct order of Lewis acidic character: PF₅ > SiF₄ > SF₆. Although, S has vaccant 3*d*-orbitals but it cannot accept co-ordinate bond from Lewis base due to steric crowding factor as S-atom is already bonded to six F-atoms.
- 31. (d) Order of decreasing bond angle.

On the basis of electronegativity of halogens

$$(b) \begin{array}{c|c} \hline \\ I \end{array} \begin{array}{c} \hline \\ Sb \\ Br \end{array} \begin{array}{c} \hline \\ Cl \end{array} \begin{array}{c} C$$

Involvement of s-orbital in hybridisation decreases downward in a group

Level 3

Passage-1

1. (d)

⇒ both have see-saw structure

 \Rightarrow Hyb : sp^3d^2

⇒ T.B.P. geometry

2. (d)

both have distorted square pyramidal structure

sond clases at on energy : CI - CI > P - P > Si

(b) $\Rightarrow p_{s} + d_{ss}$, can preduce non-bonding if inter-auclear axis $c_{ss} + d_{ss}$; will always form non-bonding irrespective of interpretative of interpretative of $c_{ss} + d_{ss} = c_{ss} + d_{ss}$.

⇒ T.B.P. structure

⇒ Triangular pyramid

Non-bonding

3. (d)

$$\Rightarrow Cl \xrightarrow{S} Cl \xrightarrow{H_2O} HO \xrightarrow{S} OH + 2HCl$$

Hyb: sp^3

(No. of $p\pi$ - $d\pi$ bonds = 2)

Passage-2

1. (d)

Option	Type of orbital	For n	-bond	For o-bond		
	combination	Internuclear	Nodal plane	axis	Nodal plane	
a	$d_{yz} + d_{yz}$	y-axis z-axis	xy xz	x-axis	xy and xz	
b	$d_{xy} + d_{xy}$	x-axis y-axis	xz yz	z-axis	xz and yz	
с	$p_y + d_{xy}$	x-axis	xz	No. δ-bo	nd formation	

- 2. (d) (a) $\Rightarrow p_y + d_{x^2-y^2}$: can produce non-bonding if inter-nuclear axis is either x, y or z-axis
 - (b) $\Rightarrow p_z + d_{yz}$: can produce non-bonding if inter-nuclear axis is either x, y or z-axis
 - (c) \Rightarrow $s+d_{xx}$: will always form non-bonding irrespective of inter-nuclear axis
 - (d) $\Rightarrow d_{xy} + d_{xy}$: either form π -bond if inter-nuclear axis is x/y axis or can also form δ -bond if inter-nuclear axis is z-axis.
- 3. (c) Nodal plane of π -bond between C_3 and C_4 lies in yz-plane formed by sideways overlapping of p_x -orbitals.

Passage-10

1. (b) Bond dissociation energy: Cl - Cl > P - P > Si - Si

- 3. (c)
- (a) SO_3 No. of $p\pi p\pi = 1$,
- $p\pi d\pi = 2$

- (b) NO_3^-
- No. of $p\pi p\pi = 1$,
- $p\pi d\pi = 0$

- (c) SO_4^{2-}
- No. of $p\pi p\pi = 0$,
- $p\pi d\pi = 2$

- (d) CO_3^{2-}
- No. of $p\pi p\pi = 1$,
- $p\pi d\pi = 0$

Passage-11

	10000000		
1	(4)	Code element	Actual element
1.	(u)	Code element	Actual element

P		C .	
Q		0	exhibits only covalency = 2;
R	in SO ₂ is one	CI ^{B OWI ES}	minimum covalency =1;
S	E	Al	maximum covalency = 7
T	ore stable than Pb 41.	S , F 49 ,	Secuences of their pair effec
U		Si	,

R and S will combine as SR_3 not as SR_5 .

2. (c) Maximum electron affinity is of R. Maximum electronegativity is of Q T and U belong to different groups.

3. (c) SR_3 : AlCl₃ UR_4 : SiCl₄ PQ_2 : CO₂ can act as Lewis acid. Lewis acidic character of SiCl₄ > AlCl₃

Passage-12

1. (c)

(a)
$$Xe$$
 O Three $(d\pi - p\pi)$ bonds

(b) S O Two
$$(d\pi - p\pi)$$
 bonds

(c) One
$$(p\pi - p\pi)$$
 and two $(d\pi - p\pi)$ bond

(d) HO O Three
$$(d\pi - p\pi)$$
 bonds

2. (c)

- (a) Involvement of hybridisation (NH3, SO2, SO3, BF3, PCl3, IF7)
- (b) Hypervalent compounds (SO2, SO3, IF7)
- (c) Non-planar molecules (NH3, PH3, PCl3, IF7, P4)
- (d) SO_2 [one $(p\pi p\pi)$ bond and one $(d\pi p\pi)$ bond], SO_3 [one $(p\pi p\pi)$ bond and two $(d\pi p\pi)$ bonds]

Code element

ONE OR MORE ANSWERS IS/ARE CORRECT

4. (a, d)

Correct statement is:

- (b) Number of $p\pi d\pi$ bond(s) in SO₃ is two and in SO₂ is one
- (c) Lewis basic order: NCl₃ > NF₃
- **10.** (b, d)

Due to phenomenon of inert pair effect Pb²⁺ is more stable than Pb⁴⁺.

12. (a, b, ,c)

 $AX_2:SO_2$

 \rightarrow Hyb. of S: sp^2 ; shape: Bent

- AY2: SCl2
- \rightarrow Hyb. of S : sp^3 ; shape : Bent

 $\rightarrow \alpha > \beta$ to an act $\beta > \beta$

→ Both are planar

16. (a, c)

No.

(i)

Total no. of Hybridisation b.p. + l.p.

Geometry

Shape

acidic character it SICL, in Alci,

3 + 1

a luci

Pyramidal

- (ii) 2 + 2
- sp^3

V-shape/bent

- (iii) 2 + 1
- sp^2

V-shape/bent

- (iv) 2 + 0
- sp

Linear

- (v)
- sp3d

Bent T-shape

- (vi)
- 3

3 + 2

...3

90 SOL BP., PC

Y

17. (a, c)

(b)
$$O = N = O$$

HF > HI > HBr > HCl

B.O. = 4/3 = 1.33

B.O. = 3/2 = 1.5

(Boiling point order)

(c) $NF_3 < NCl_3 < NBr_3 < NI_3$ (As E.N. value of C.A. \downarrow bond angle and Lewis basic character \uparrow) (d) HF > HCl > HBr > HI Planar sustenure as both B-atoms (rabro tnamom aloqiO)

22. (a, c, d)

> has 2p,-3p, back bonding in B--Cl bond (a) $p_z + p_y \implies$ Non-bonding if internuclear axis is x-axis

(b) $p_y + d_{xx} \implies$ Form non-bonding if internuclear axis is x-axis

(c) $d_{xz} + d_{xz} \Rightarrow \text{Can form } \delta \text{-bond if internuclear axis is } y \text{-axis}$

(d) $p_z + d_{xz} \implies$ Can form π -bond, if internuclear axis is x-axis.

23. (a, c)

- + has no co-ordinate bond $s + p_z$: Non-bonding; $s + s : \sigma$ -bond; $p_z + p_x$: Non-bonding; $d_{xy} + p_y : \pi$ -bond

24. (a, b, ,c,d)

It has two angular nodes modified in shape of nodal cones. (A) $\frac{10-9}{10} = \frac{9-0}{10} = \frac{100}{100} = \frac{100}{1$

One lobe is dumb-bell shape while the other is in the shape of circular ring (in XY plane)

-> has no ce-ordinate bond

(D) Hypophosphorus acid (H₃PO₃) HO-

(D)2p,-3d, back bonding

-- Non-planar

MATCH THE COLUMN

- → Planar as both B and N are sp² -hybridized
- $\rightarrow \mu_D = 0$ (non-polar)
- \rightarrow has $2p_{\pi} 2p_{\pi}$ back bonding between B—N bond.
- → has no co-ordinate bond

- → Planar structure
- $\rightarrow \mu_0 = 0$
- → has no back bond

$$\vdots \vdots - \ddot{\vdots} : + \vdots \vdots \iff \vdots \ddot{\vdots} - \ddot{\vdots} + \ddot{\vdots}$$

$$(C)$$
 CI $B-B$ CI CI

- → Planar structure as both B-atoms are sp²-hybridised
- $\rightarrow \mu_D = 0$
- \rightarrow has $2p_{\pi}$ - $3p_{\pi}$ back bonding in B—Cl bond
- → has no co-ordinate bond
- (D) $2p_{\pi}$ -3 d_{π} back bonding
 - → Non-planar
 - $\rightarrow \mu_D = 0$
 - → has no co-ordinate bond

4. (A) Hypophosphoric Acid
$$(H_4P_2O_6)HO-P-P-OH$$
; Basicity = 4
OH OH

(B) Pyrophosphoric Acid (
$$H_4P_2O_5$$
) HO $P - O - P - OH$; Basicity = 2

(C) Boric Acid (H₃BO₃)

$$H_3BO_3 + OH^- \rightleftharpoons [B(OH)_4]^-$$

(L.A.) borate ion

(D) Hypophosphorus acid (H₃PO₂) HO—
$$P = H$$
; Basicity = 1

$$\Rightarrow -0 \longrightarrow P \longrightarrow 0^{-} B.Oof P - O = 1.25$$

$$\Rightarrow 0 \stackrel{O^{-}}{=} 0 \stackrel{Cl}{=} 0_{B.O. \text{ of } Cl - O = 1.75}$$

$$\Rightarrow {\overset{(1)}{\longrightarrow}} {\overset$$

9. (a) Hybridis

As Shape:

All As—

All As—

Hybridisation of As : sp3

Shape: Tetrahedron

All As-O bonds are of equal length due to resonance

Combining orbitals (internuclear axis).

gr d hybridisation (s + p_x + p_y + p_z + d_{xx} $_y$ - d_{xy} + d_{yz} - d_{yz}). d orbital wi

Number of $p\pi - d\pi$ bond = 1

Hydridisation: sp3

Shape: V-shape

All I-Cl bonds are of equal length.

Hybridisation of S: sp^3d ($sp_xp_y + p_zd_{2}$)

Shape: T.B.P.

Number of $p\pi - d\pi$ bond = 1 $q + q + d\pi$ by up the like it is $q + d\pi$

Hybridisation of Xe : sp^3d^2 (= $sp_xp_yp_zd_{x^2-y^2}d_{x^2}$)

Shape: Square pyramidal Number of $p\pi - d\pi$ bond = 1 q + q + 2 is 'q2 domastic dyH

hose (s, h) analy labor one of the faid to-b Hybridisation: sp²; Shape: Angular; Polar; Planar

Bond angle < 900

de noussibacyH

Hybridisation: sp3d; Shape: Linear; Non-polar; Planar

Hybridisation: sp^3d^2 ; Shape: Square planar; Non-polar; Planar

Hybridisation : sp3Shape : Angular; Polar; Planar

11.	Combining orbitals	(internuclear axis)
-----	--------------------	---------------------

Polar: Planus

Type of bond formed π-bond

	Combining orbitals (internuo
P	$d_{\gamma z} + p_{\gamma}, (z)$
Q	$s+p_x$, (y)
R	$d_{\gamma z} + d_{\gamma z}$, (x)
S	Simple $s+s$, (z)
T	$s+d_{xy}$, (y)

Non-bonding δ-bond σ-bond Non-bonding

12. (a)
$$\begin{bmatrix} F & & & \\ & & & \\ F & & & \end{bmatrix} F F$$

 sp^3d^3 -hybridisation ($s+p_x+p_y+p_z+d_{x^2-y^2}+d_{z^2}+d_{xy}$), d-orbital with zero nodal Plane (d_{z^2}) and non-axial d-orbital (d_{xy}) used in hybridisation.

Planar. Bond angle, 72°

$$(b) \begin{bmatrix} Br \\ Br \\ P \\ Br \end{bmatrix}$$

Hybridisation sp^3d $(s + p_x + p_y + p_z + d_z)$

Non-planar species Bond angle 109°28'

$$(c) \bigcirc \begin{matrix} \vdots \\ I \\ F \end{matrix} \begin{matrix} F \\ O \end{matrix}$$

Hybridisation $sp^3d (s + p_x + p_y + p_z + d_{z^2})$ d-orbital with zero nodal plane (d_{z^2}) used Non-planar

Bond angle < 90°

Hybridisation sp3

Planar

Bond angle < 109°28'

13. (a)
$$IO_2F_2^-$$
: O

See-saw, Non-planar

(b)
$$IOF_4 : F \bigcirc F$$

Square pyramidal, non-planar

CHEMICAL BONDING (Basic)

101

4. B - 3. Q = 2

(c) SeOF₂: Se F O

(d) XeOF₂:
$$O = Xe$$

Trigonal pyramidal, non-planar

Bent-T-shape, Planar

ASSERTION-REASON TYPE QUESTIONS

Hybridisation of $Xe: sp^3d^2$, shape: square planar

SUBJECTIVE PROBLEMS

1. b.p. l.p. (A) XeF_4 4 2 (B) XeF_5^+ 5 1 (C) XeF_5^- 5 2 (D) XeF_6 6 1 (E) XeF_8^{2-} 8 1 28 7

$$\Rightarrow \frac{p}{q} = \frac{28}{7} = 04$$

- 2. G-1 A(Li), B(Na), C(K), D(Rb), E(Cs)
 - G-2 F(Be), G(Mg), H(Ca), I(Sr), J(Ba)
 - G-13 K(B), L(Al), M(Ga), N(ln), O(Tl)
 - G-15 P(N), Q(P), R(As), S(Sb), T(Bi)
 - G-17 U(F), V(Cl), W(Br), X(I), Y(At)
 - (i) Tl+ > Ca2+; Polarising power (T)
 - (ii) $Bi^{3+} > Sb^{3+} > As^{3+}$; Stability of cation (T)
 - (iii) $F^{-}(aq) > Cl^{-}(aq) > Br^{-}(aq) > I^{-}(aq)$; Size (T)
 - (iv) BaCl₂ > SrCl₂ < MgCl₂ < AlCl₃; Covalent nature (T)
 - (v) MgCO₃ > CaCO₃ > SrCO₃ > BaCO₃; Thermal stability (F)
 - (vi) LiCl > NaCl > KCl > RbCl > CsCl; Thermal stability (T) (1)
 - (vii) K₃N > Na₃N > Li₃N; Lattice energy (F)
 - (viii) BF₃ < BCl₃ < BBr₃ < BI₃; Melting point (T) $\Rightarrow |p-q|^2 |6-2|^2 = 16$

- 3. SO₂, HCHO
- **4.** $P_1 = 3$, $P_2 = 5$, $Q_1 = 2$, $P_3 = 7$, $Q_2 = 3$ $= \frac{5(7-3)}{3} = 4^{10.5} \text{ Lisburnary fanos in }$ 3+2
- 7. X = 5 and Y = 1so, X - Y = 5 - 1 = 4
- 9. X = 120 (sp²-hybridization) Y= 180 (sp-hybridization) Z = 90 (sp^3d^2 -hybridization) $\frac{120 + 180 + 90}{10} = \frac{390}{10} = 39$
- 15.
 - x = 7, y = 1, z = 5 $7+1-5 \Rightarrow 3$
- **16.** p=3, q=5, r=2s = 6, t = 2
 - $3+5+2-6-2 \Rightarrow 2$
- - y = 6x = 6 $\therefore y \times z - x = 6 \times 1 - 6 = 0$
- z = 1

- **20.** x=3, y=1, z=3; x+y-z=3+1-3=1
- H 21. x = 12H
- y = 11H

H

ASSERTION-REASON TYPE QUESTIONS

- **22.** (i) $IF_5(sp^3d)$
- (ii) $ClI_4(sp^3d^2)$
- (iii) $XeO_2F_2(sp^3d)$ (iv) $NH_2^-(sp^3)$

CPM felial early may reprint

- (v) $BCl_3(sp^2)$
- (vi) BeCl₂(sp)
- (viii) AsCl $_4^+$ (sp 3) (viii) B(OH) $_3$ (sp 2)

til dett familier i i i i i i i i

- (ix) $NO_2(sp^2)$ $x = (sp^3)2 + sp^3d(1) + sp^3d^2(2) = 5$
- (x) $ClO_2^+(sp^2)$

$$y = 4$$
, $z = 1$; $5 + 4 - 1 = 8$

23. XeO₄, XeF₇

$$Sn$$
 Cl
 Sp^2
 $\rightarrow polar$

$$F \downarrow F \\ F \downarrow F \\ \rightarrow sp^3d^2$$

$$\begin{bmatrix} \bigcirc \\ I & I \end{bmatrix}^{+}$$

$$\rightarrow sp^{3}$$

$$\rightarrow polar$$

$$Sn$$
 $\rightarrow sp^2$
 $\rightarrow polar$

$$\begin{bmatrix} F & F \\ F & Xe \\ F & F \end{bmatrix}^{+}$$

$$\rightarrow sp^{3}d^{3}$$

$$\rightarrow \text{non-polar}$$

24.

Bor	nd order	
	1.33	
	1.50	
rib nummer dis		
r and years hin	2.00 11 20 11 11 11 11 11 11 11 11 11 11 11 11 11	
	2.00 a instruct to mindre in garage. In	
in of taggrencing	1.33 logod suibnit to tiling con h to life	
so,	4 - 4 = 0	
	the spentum distributed the selection of	1.50 1.66 d control a formación de la control de control de la control

25. 3s: 0 Nodal plane

 $4d_{z^2}: 0$ Nodal plane

4s: 0 Nodal plane

 $BrF_3 \longrightarrow sp^3d$, bent, T-shape, planar

x = 4

 $2p_x: 1$ Nodal plane $3d_{x^2-y^2}: 2$ Nodal plane

4p_z: 1 Nodal plane

(II) H-S (II)

4dxy: 2 Nodal plane

 $3p_y: 1$ Nodal plane

3s, $4d_{xy}$, $4d_{z^2}$, $3d_{x^2-y^2}$, 4s (Five)

26.

 $PCl_5 \longrightarrow sp^3d$, non-planar $ICl_2^- \longrightarrow sp^3d$, linear, planar $NO_3^- \longrightarrow sp^2$, planar $PCl_4^+ \longrightarrow sp^3$, tetrahedral, non-planar $XeF_5 \longrightarrow sp^3d^3$, pentagonal planar $XeO_2F_2 \longrightarrow sp^3d$, see-saw, non-planar $CH_3^+ \longrightarrow sp^2$, Trigonal planar

a = 4, b = 5, c = 3

 $\frac{a+b}{a+b}=3$

27. Transformations (b), (c) and (d) involve change in hybridisation.

Level

(a) all four

(c) (I), (II) and (III)

First Introducing Question

1. On decreasing internuclear distance below, the optimum distance (where potential energy is minimum), there is steep increase in potential energy due to :

'190m-pon --

- (a) Increase in force of attraction between electrons and nucleus
- (b) Increase in stability of bonded atoms
- (c) Equal probability of finding bonding electrons near to either of nuclei
- (d) Increase in interelectronic and internuclear repulsions

Molecular Geometry and Shape

2.	Identify the correct	sequence of increasin	g number of π-bonds in th	e structure of the following
	molecules :	1	6 manufact of 1/2 bolids III (I)	e structure of the following
	(I) $H_2S_2O_6$	(II) $H_2S_2O_3$	(III) $H_2S_2O_5$	6 Act - 408 "
	(a) I, II and III		(b) II, I and III	
	(c) II, III and I		(d) I, III and II	
3.	C ₂ H ₂ is isostructur	ral with:		
	(a) H ₂ O ₂		(b) NO ₂	
	(c) SnCl ₂		(d) CO ₂	
4.	The shapes of nitri	ite and nitrile respecti	vely are :	
	(a) Linear and ang	gular	(b) Angular and lin	1ear
	(c) Both angular		(d) Both linear	icai
5.	Linear structure is	assumed by:		
	(I) NCO	(II) CS ₂	(III) $\stackrel{+}{N}O_2$	(IV) Solid BeH ₂
				() Cond Della

(b) (II), (III) and (IV)

(d) (II) and (III)

6.	Among the oxides of nitroger			
	(a) N ₂ O and NO			
-	(c) N ₂ O and NO ₂			
7.	Which of the following pair of			
	(a) SiO_2, P_4O_{10}			
	(c) P_4O_{10}, P_4O_6			
8.	Which of the following ions			
	(a) $S_2O_8^{2-}$ (b) S_2	${}_{2}O_{6}^{2-}$ (c)	$S_2O_5^2$	(d) $S_2O_3^{2-}$
9.	Among KO2, KAlO2, CaO2 ar	nd NO2, unpaired el	ectron is present	in:
	(a) NO_2^+ and CaO_2 (b) Ke			(d) CaO ₂ only
10.	Structure of S2Cl2 is analog		a a viliale in	A SECTION ASSESSMENT OF THE PROPERTY OF THE PR
10.	(a) $SOCl_2$ (b) Co		H ₂ S	(d) H_2O_2
11.	Number of P—H, P—O—		P—O bonds	in sodium dihydrogen
	pyrophosphate respectively		1 — O bonds	
	(a) 1, 1, 1, 2 (b) 0		0, 1, 2, 4	(d) 2, 0, 0, 2
	C C C C C C C C C C C C C C C C C C C	, -, -, -		and configurated to a
	bridisation			o la materia sociale e i
12.	Two hybrid orbitals have a l	oond angle of 120°.	The percentage o	of s-character in the hybrid
	orbital is nearly:	vel list		23. The crystal links of
		3%((c)		(d) 66%
13.	The state of hybridisation of	central atom in dim	er of BH ₃ and B	eH ₂ is:
	(a) sp^2, sp^2 (b) sp^2	p ³ , sp ² (c)	sp, sp	(d) sp^2, sp^3
14.	In NO ₂ molecule N atom un	dergoes in :	e ese griwana.	and the matter of the same
	(a) sp ³ hybridization	(0)	sp nybridizatio	on
	(c) sp hybridization	. (d)	sp2d hybridizat	ion
	The second secon	1. meritano, 3.791 s		
	nd Length			Jany Cless
15.	The strongest P—O bond is	found in the molecu	le:	25. In our recognish of I
	(a) F ₂ PO (b) C	cl ₃ PO (c)	Br ₃ PO	(d) (CH ₃) ₃ PO
16.	O_2F_2 is an unstable yellow or	range solid and ${ m H}_2{ m O}_2$	is a colourless li	quid, both have O—O bond
	and O—O bond length in H	$_2O_2$ and O_2F_2 respectively.	ctively is :	lo sell ac enu. (a).
	(a) 1.22 Å, 1.48 Å	donod nipleye de	1.48 A, 1.22 A	tal our beness greate
	(c) 1.22 Å, 1.22 Å	(a)	1.48 A, 1.48 A	26. The control of a
17.	The bond length of the S—C	bond is maximum	in which of the	following compounds?
	(a) SOCl ₂	A Haby (b)	SOBr ₂	FANTED STOR
	(c) SOF ₂	d white bearing the) All have same	length
Bo	nd Angle			
		1 molecule is :		
18	\angle FAsF bond angle in AsF ₃ C (a) 90° and 180° (b) 1	20° (c)	90°	(d) 180°
10	Which of the following has		et i - jernige islii	(d) 180°
19			Cl ₂ O	(d) H ₂ S
	(a) H ₂ O (b) F	20 (0,	2-	\-/ <u>2</u> -

Molecular Forces

- 20. The boiling points of noble gases are illustrative of the operation of forces of the type :
 - (a) ion-dipole

(b) dipole-induced dipole

(c) ion-induced dipole

(d) London dispersion forces

- 21. Among the following, which has the lowest enthalpy of fusion?
 - (a) Fluorine
- (b) Hydrogen
- (c) Chlorine

(d) Helium

Hydrogen Bonding

22. Out of the two compounds shown below, the vapour pressure of *B* at a particular temperature is expected to be :

- (a) higher than that of A
- ()) lower than that of A
- (c) same as that of A
- (d) can be higher or lower depending upon the size of the vessel
- 23. The crystal lattice of ice is mostly formed by:
 - (a) ionic forces

(b) covalent bonds

(c) intramolecular H-bonds

- (d) covalent as well as H-bonds
- **24.** The boiling points of methanol, water and dimethyl ether are respectively 65°C, 100°C and 34.5°C. Which of the following best explains these wide variations in b.p.?
 - (a) The molecular mass increases from water (18) to methanol (32) to diethyl ether (74)
 - (b) The extent of H-bonding decreases from water to methanol while it is absent in ether
 - (c) The extent of intramolecular H-bonding decreases from ether to methanol to water
 - (d) The density of water is $1.00 \,\mathrm{g\,mL^{-1}}$, methanol $0.7914 \,\mathrm{g\,mL^{-1}}$ and that of diethyl ether is $0.7137 \,\mathrm{g\,mL^{-1}}$
- 25. In ice, the length of H-bonds:
 - (a) is less than that of covalent bonds
 - (b) is greater than that of covalent bonds
 - (c) is same as that of covalent bonds
 - (d) can be less greater or same as that of covalent bonds
- 26. The correct order of the strength of H-bonds is:
 - (a) H...F>H...O>H...N

(b) H...N > H...O > H...F

(c) H...O > H...N > H...F

- (d) H...F > H...N > H...O
- **27.** *o*-nitrophenol can be easily steam distilled whereas *p*-nitrophenol cannot be. This is because of:
 - (a) strong intermolecular hydrogen bonding in o-nitrophenol
 - (b) strong intramolecular hydrogen bonding in o-nitrophenol
 - (c) strong intramolecular hydrogen bonding in p-nitrophenol
 - (d) dipole moment of p-nitrophenol is larger than that of o-nitrophenol

(b) RbCl and BeCl₂

(d) MgCl₂ and BeCl₂

(c) MgSO₄ (d) BaSO₄

(c) AgCl standard (d) CsCl standard (d)

respectively are:

(a) NaCl

(a) BaCl₂

(c) RbCl and MgCl₂

(a) LiCl and RbCl

38. The compound with the highest degree of covalency is:

39. The salt having the least solubility in water is:

(b) $Ba(NO_3)_2$

(b) MgCl₂

40.	 The solubility of Na₂SO₄, BeSO₄, MgSO₄ an 	d BaSO ₄ in water follow the order:			
	(a) $BaSO_4 > BeSO_4 > MgSO_4 > Na_2SO_4$	(b) $Na_2SO_4 > BeSO_4 > MgSO_4 > BaSO_4$			
	(c) $BeSO_4 > MgSO_4 > BaSO_4 > Na_2SO_4$	(d) $MgSO_4 > BeSO_4 > Na_2SO_4 > BaSO_4$			
41.	. Solubility of alkali metal fluorides increases d				
	given statement :				
	(a) Hydration energy increases and lattice en	nergy decreases down the group			
	(b) Both energy decrease down the group bu				
	(c) Both energy decrease down the group bu				
	(d) Both energy increase down the group but				
42.	Covalency favoured in the following case:	increase in nyuration energy to rapid			
	(a) smaller cation	(b) larger anion			
	(c) large charge on cation and anions	(b) larger anion			
43		(d) all of these			
40.	 The melting point of RbBr is 682°C while that fact is : 	of Nar is 988 C. The principal reason for this			
	(a) the molar mass of NaF is smaller than the	at of RbBr			
	(b) the bond in RbBr has more covalent char	acter than the bond in NaF			
		en Rb and Br is smaller than the difference			
	between Na and F				
	(d) the internuclear distance, $r_c + r_a$ is greated	er for RbBr than for NaF			
Ba	ick Bond				
		and leavel is about 10			
44.	In which of the following compounds B—F be	The state of the s			
		(b) $BF_3 \leftarrow NH_3$			
	(c) BF ₃	(d) $BF_3 \leftarrow N(CH_3)_3$			
Dip	pole Moment				
	Which of the following pair of molecules will	have permanent dipole momenta			
40.		(b) NO ₂ and O ₃			
		(d) SiF ₄ and NO ₂			
46	The dipole moment of HCl is 1.03 D, if H—Cl	hond distance is 1.26 Å sub-a in a			
70.	of ionic character in the H—Cl bond?	bond distance is 1.20 A, what is the percentage			
		(c) 29% (d) 17%			
47	The dipole moment of o , p and m -dichloroben	(4) 1//0			
4 /.		(b) $p > o > m$			
		(d) $o > m > p$			
48	Which of the following molecules has highest				
10.		() 177			
49.					
47.					
		(b) $H_2S < NH_3 < H_2O < HF$			
EO		(d) $HF < H_2O < NH_3 < H_2S$			
50.		(b) NE - CH - NH			
	(a) $CH_4 < NF_3 < NH_3 < H_2O$	(b) $NF_3 < CH_4 < NH_3 < H_2O$			
	(c) $NH_3 < NF_3 < CH_4 < H_2O$	(d) $H_2O < NH_3 < NF_3 < CH_4$			

Resonance

51. The correct order of 'S-O' bond length is:

(a)
$$SO_3^{2-} > SO_4^{2-} > SO_3 > SO_2$$

(b)
$$SO_3^{2-} > SO_4^{2-} > SO_2 > SO_3$$

(c)
$$SO_4^{2-} > SO_3^{2-} > SO_2 > SO_3$$

(d)
$$SO_4^{2-} > SO_3^{2-} > SO_3 > SO_2$$

- 52. What is not true about resonance?
 - (a) The resonating structures are hypothetical
 - (b) The unpaired electrons in various resonating structures are same
 - (c) Hybrid structure is most energetic
 - (d) Hybrid structure is least energetic
- 53. Which of the following conditions is not correct for resonating structures?
 - (a) The contributing structures must have the same number of unpaired electrons
 - (b) The contributing structures should have almost similar energies
 - (c) The contributing structures should be so written that unlike charges reside on atoms that are far apart
 - (d) The positive charge should be present on the electropositive element and the negative charge on the electronegative element
- **54.** A molecule may be represented by three structures having energies E_1 , E_2 and E_3 , respectively. The energies of these structures follow the order $E_3 < E_2 < E_1$, respectively. If the experimental bond energy of the molecule is E_0 , the resonance energy is:

(a)
$$(E_1 + E_2 + E_3) - E_0$$

(b)
$$E_0 - E_3$$

(c)
$$E_0 - E_1$$

(d)
$$E_0 - E_2$$

Co-ordinate Bond

55. A: tetracyanomethane

B: carbondioxide

C: benzene

D: 1, 3-buta-di-ene

Ratio of σ and π bonds is in order:

(a)
$$A = B < C < D$$

(b)
$$A = B < D < C$$

(c)
$$A = B = C = D$$

(d)
$$C < D < A < B$$

56. In a compound

$$\frac{NC}{NC}$$
 $> C = C \left\langle \frac{M(CO)_3}{C_2H_5} \right\rangle$

the number of sigma and pi bonds respectively are:

- (a) 19, 11
- (b) 19, 5
- (c) 13, 11
- (d) 7, 3
- 57. Which of the following does not contain any co-ordinate bond?
 - (a) H₃O⁺
- (b) BF₄
- (c) HF-
- (d) NH+
- 58. Which of the following molecules does not have co-ordinate bonds?
 - (a) PH₄
- (b) NO₂
- (c) O₃
- (d) CO_3^{2-}

L. Acid-Base

- 59. Which of the following halides is inert towards hydrolysis at room temperature?
 - (a) SiCl₄

(b) PCl₃

(c) NCl₃

(d) NF_3

60. Amongst the following trihalide, which one is least basic?

(a) NF₃

(b) NCl₃

(c) NBr₃

(d) NI_3

I Pair

61. Increasing order of stability of the +2 oxidation state of the ions?

(a) $Ca^{2+} < Ba^{2+} < Sr^{2+}$

(b) $Pb^{2+} < Ge^{2+} < Sn^{2+}$

(c) $Ge^{2+} < Sn^{2+} < Pb^{2+}$

(d) $Cu^{2+} < Au^{2+} < Ag^{2+}$

Bridge Bond

62. The number of three centre two electron bonds in a molecule of diborane is:

(a) 0

(b) 2

(c) 4

(d) 6

63. In which of the following compounds octet is complete and incomplete for all atoms:

	Al ₂ Cl ₆	$Al_2(CH_3)_6$	AlF ₃	Dimer of BeCl ₂	Dimer of BeH ₂
(a)	IC	IC	IC	C	С
(b)	C	IC o	i pro IC	C	IC
(c)	С	IC	С	IC	IC
(d)	IC	С	IC	IC	IC

(Note: C for complete octet and IC for incomplete octet.)

Metallic Bond

64. In which of the following metal to metal bond is present?

(a) Cupric chloride

(b) Stannous chloride

(c) Mercurous chloride

(d) Mercuric chloride

Level 2

First Introducing Question

 Consider the given figure showing the formation of H₂⁺ ion depending on internuclear distance versus potential energy of the system.

atom esed abnost 25% securious in their hybrid sortif.
(c) If 3% is W, then species thought be polar and pyramidal.

which is correct statement:

- (a) Curve-1 represents the most stable state of the system for H₂⁺ ion
- (b) Curve-2 represents the most stable state of the system for H₂⁺ ion
- (c) Curve-1 indicates that the molecular hydrogen ion is formed
- (d) Curve-2 represents the energy level of the antibonding region

Molecular Geometry and Shape

2.	Molecule having	non-polar as well as pola	r donas but the	molecule	as a whole	is polar	: :
	(a) S ₂ F ₂	(b) N ₂ O ₄	(c) Si ₂ H ₆		(d) I ₂ Cl ₄		

- 3. Choose the correct statement regarding SeOCl2 molecule:
 - (a) It does not contain plane of symmetry
 - (b) 'Cl Se— Cl' bond angle is greater than 'Cl Se— O' bond angle
 - (c) Lone pair has greater than 33.3% s-character
 - (d) Central atom used one d-orbital in bonding
- **4.** In which species, X—O bond order is 1.5 and contains $p\pi d\pi$ bond(s).

(a) $IO_2F_2^-$

(b) HCOO-

(c) SO_3^{2-}

(d) XeO₂F₂

5. Which of the following species has polar and non-polar bonds but molecule as a whole is non-polar?

(a) $S_2O_3^{2-}$

(b) (SCN)₂

(c) Be₂Cl₄

(d) Si₂H₆

- **6.** The incorrect statement(s) regarding $\dot{C}X_3$ species is :
 - (a) If electronegativity of surrounding element 'X' is less than 2.5, then central carbon atom used almost 33% s-character in their hybrid bonding orbitals

	(b) If electronegativity of surrounding element 'X' is greater than 2.5, then central carbon atom used almost 25% s-character in their hybrid bonding orbitals
	(c) If 'X' is 'F', then species should be polar and pyramidal
-	(d) If 'X' is H, then species should be polar and planar
7.	Consider following compounds:
	(I) $H_3X - NCS$ (II) $H_3Y - NCS$ (III) $(H_3X)_2O$ (IV) $(H_3Y)_2O$
	The incorrect statement regarding given compound is:
	(a) IF Y is carbon in compounds (II) and (IV), then both are bent
	(b) If X is silicon in compounds (I) and (III), then both are linear
	(c) If X is carbon and Y is silicon then compound (I) is more basic than compound (II)
	(d) If X is silicon and Y is carbon then $X - O - X$ bond angle compounds (III) is greater than
_	Y—O—Y bond angle in compounds (IV)
8.	The incorrect statement about carbene (CH ₂) is:
	(a) In singlet carbene, carbon is sp^2 -hybridized whereas in triplet carbene, carbon is sp -
	hybridized
	(b) Triplet carbene is less stable than singlet carbene
	(c) Stability order of singlet halocarbenes is : CHF > CHCl > CHBr
	(d) None of the above
9.	The lowest O—O bond length in the following molecule is :
	(a) O_2F_2 (b) O_2 (c) H_2O_2 (d) O_3
10.	Out of CHCl ₃ , CH ₄ and SF ₄ the molecules do not having regular geometry are:
	(a) CHCl ₃ only (b) CHCl ₃ and SF ₄ (c) CH ₄ only (d) CH ₄ and SF ₄
11.	When iodine is dissolved in aqueous potassium iodide, the shape of the species formed is:
	(a) linear (b) angular (c) triangular (d) see-saw
12.	Which of the following set of species have planar structures?
	(a) I_3^- , $\dot{C}H_3$, ClO_3^- , SiF_6^{2-} (b) I_3^+ , ICl_4^- , Al_2Cl_6 , $TeCl_4$
	(a) I_3^- , $\dot{C}H_3$, ClO_3^- , SiF_6^{2-} (b) I_3^+ , ICl_4^- , Al_2Cl_6 , $TeCl_4$ (c) SCl_2 , N_2O_5 , SF_4 , $XeOF_4$ (d) I_2Cl_6 , XeF_2 , BrF_4^- , XeF_5^-
10	
13.	Which of the following compounds have the same no. of lone pairs with their central atom?
	(I) XeF_5^- (II) BrF_3 (III) XeF_2 (IV) H_3S^+ (V) Triple Methylene
	(a) IV and V (b) I and III (c) I and II (d) II, IV and V
14.	Given the correct order of initials T or F for following statements. Use T if statements is true
	and F if it is false:
	(I) (CH ₃) ₂ P(CF ₃) ₃ is non-polar and (CH ₃) ₃ P(CF ₃) ₂ is polar molecule
	(II) CH ₃ PCH ₃ bond angles are equal in (CH ₃) ₃ P(CF ₃) ₂ molecule
	(III)PF3 will be more soluble in polar solvent than SiF4
	(a) TTF (b) FFT (c) FFF (d) FTT
15.	The correct sequence of polarity of the following molecule
	(1) Benzene (2) Inorganic Benzene
	(3) PCl3F2 (4) PCl2F3
	1 2 3 4 1 2 3 4
	(a) P NP NP P (b) NP NP P
	(c) NP P NP P (d) NP P P NP

CHEMICAL BONDING (Advanced)

7	(Where, P = polar, NP = non-polar)	Meilesibilität.			
16.	. Which among the following molecules is not perfect fla	t? sets to let use to the sets			
	(a) $B_3N_3H_6$ (b) C_3N_3				
	(c) SO_3 (d) C_3N_3				
17.	. Which of the following structure(s) is/are non-planar?	and the section of th			
	(a) $Na_3B_3O_6$ (b) I_2CI_6				
		anic graphite layer			
18.	3. Nodal planes of π -bond(s) in $CH_2 = C = C = CH_2$ are lo				
	(a) all are in molecular plane	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	(b) two in molecular plane and one in a plane perp contains C—C σ-bond	endicular to molecular plane which			
	 (c) one in molecular plane and two in plane perpendicular C—C σ-bonds 	lar to molecular plane which contains			
	 (d) two in molecular plane and one in a plane perpendic C—C σ-bonds at right angle 	rular to molecular plane which bisects			
19.	Which of the following have X—O—X linkage?				
	(where X is central atom):				
	(i) $Cr_2O_7^{2-}$ (ii) $S_2O_3^{2-}$ (iii) Pyro	silicate (iv) Hyponitrous acid			
	(a) (i) (iii) (b) (iiii)				
	(c) (i) (iii) (iv) (d) (i) (i	i) en an la contrata de la contrata del la contrata de la contrata			
20.	Select the correct statement :	and the signeral sales and (a)			
	(a) HSO ₅ ion has one S—O—H linkage				
	(b) Number of B—O—B linkages in Borax is equal to number of P—O—P linkages in P ₄ O ₁₀				
	(c) Hybridization of both sulphur in H ₂ S ₂ O ₅ (pyrosul state of both sulphur are different				
	(d) Tetra-polyphosphoric acid has four P-O-P and r	o P—P linkage			
21.	1. Oxidation state of 'S' in peroxodisulphuric acid and so	dium tetrathionate:			
		-6,+6 w lapage to modes a stad			
	(c) $+6, +4, +2$ (d) $+6, +$	2,0			
22.	2. Structure of Na ₂ [B ₄ O ₅ (OH) ₄]·8H ₂ O contains:	38. The content of increases			
	(a) two triangular and two tetrahedral units				
	(b) three triangular and one tetrahedral units	(II) Xells			
	(c) all tetrahedral units				
	(d) all triangular units	vi - V ii - 1i: 0 *			
23.	3. Which of the following molecular species is not linear	with born you can't 2- so of self . e.			
	(a) $(CN)_2$ (b) OCN^- (c) XeF_2				
24	4. Incorrect match is:				
		ssible molecular shape from			
		spective electron geometry			
	(a) Tetrahedron — Be				
	(=)8	iangular planar			
	(0)	uare pyramidal			
	(d) Pentagonal bipyramidal Pe	ntagonal planar			

Hybridisation

25. Consider the following reaction:

$$MX_4 + X_2' \longrightarrow MX_4X_2'$$

If atomic number of M is 52 and X and X' are halogens and X' is more electronegative than X. Then choose correct statement regarding given information:

- (a) Both X' atoms occupy axial positions which are formed by overlapping of p and d-orbitals only
- (b) All M X bond lengths are identical in both MX_4 and MX_4X_2' compounds
- (c) Central atom 'M' does not use anyone valence non-axial set of d-orbital in hybridization of final product
- (d) Hybridization of central atom 'M' remains same in both reactant and final product.
- 26. Select the incorrect match:

	Statement	Shape	Example
(a)	Bond pair has > 75% p-character	8	HF
(b)	Reduction in axial bond angle is more than that of in equatorial bond angle		SF ₄
(c)	Two axial <i>d</i> -orbitals and one non-axial <i>d</i> -orbital are used in hybridization	X	XeF ₅
(d)	Two p-orbitals are used in hybridization	Ž.	SnCl ₂

- 27. In which of the following species, d-orbitals having xz and yz two nodal planes involved in hybridization of central atom?
 - (a) $IO_2F_2^-$
- (b) CIF₄
- (c) IF₇
- (d) None of these
- 28. The correct order of increasing s-character (in percentage) in the hybrid orbitals of following molecules/ions is:
 - (I) CO_3^{2-}
- (II) XeF₄
- (III) I₃
- (IV) NCl₃ (V) BeCl₂

(a) II < III < IV < I < V

(p) I < I V < I I I < V < I

(c) III < II < I < V < IV

- (d) II < IV < III < I < V
- 29. The shape of MnO_4^- ion and the hybridisation of Mn in MnO_4^- is :
 - (a) tetrahedral, sp³

(b) tetrahedral, d^3s

- (c) square planar, dsp²
- (d) square planar, sp³

Bond Length

- 30. Which one of the following molecule will have all equal X—F bond length? (where X = central atom)
 - (a) SOCl₂F₂
- (b) SeF₄
- (c) PBr₂F₃
- (d) IF₇

31. Consider the following information (X = F or Cl)

Molecule	P—X(axial) bond length	P—X(Equitorial) bond length
PF ₅	a act (1)	b
PF ₄ CH ₃	AA adi la ai c erad anno as	neto is a very) b .e diference in .
PF ₃ (CH ₃) ₂	y snaroddžies ar ána v	stold for the late of the late of
PCl ₅	with the state of 8 and production	h h moi no

According to given information choose the incorrect order of bond length:

- (a) g > a > d > b
- (b) g > e > f > b (c) f > d > a > b
- 32. In which of the following cases C—C bond length will be highest?
 - (a) $CH_3 CF_3$
- (b) FCH₂—CH₂F
- (c) F₂CH—CHF₂
- (d) $CF_3 CF_3$
- 33. Select the incorrect statement about N_2F_4 and N_2H_4 :
 - (I) In N₂F₄, d-orbitals are contracted by electronegative fluorine atoms, but d-orbital contraction is not possible by H-atom in N2H4
 - (II) The N-N bond energy in N₂F₄ is more than N-N bond energy in N₂H₄
 - (III)The N—N bond length in N₂F₄ is more than that of in N₂H₄
 - (IV)The N—N bond length in N₂F₄ is less than that of in N₂H₄
 - Choose the correct code:
 - (a) I, II and III
- (b) I and III
- (c) II and IV
- (d) II and III

Bond Angle

- **34.** The correct order of equatorial FSF bond angle in the following compound.
 - (I) SF₄
- (II) OSF₄
- (III) H2CSF4
- (a) (III) > (I) > (b) (I) > (III) > (II) (c) (I) > (III) > (III) (d) (II) > (III) > (I)
- 35. Incorrect order of bond angle is:
 - (a) $OCl_2 > SF_2 > AsH_3 > H_2Se$
- (b) $NH_3 > PF_3 > PH_3 > H_2S$
- (c) $XeO_4 > ClO_4^- > SO_4^{2-} > CF_4$
- (d) $N(SiH_3)_3 > O(SiH_3)_2 > OMe_2$
- 36. Minimum F S F bond angle present in:
 - (a) SSF₂
- (b) SF₆
- (c) SF₂

- 37. The correct order of increasing bond angles is:
 - (a) $OF_2 < ClO_2 < H_2O < Cl_2O$
- (b) $OF_2 < H_2O < Cl_2O < ClO_2$
- (c) $OF_2 < H_2O < ClO_2 < Cl_2O$
- (d) $ClO_2 < OF_2 < H_2O < Cl_2O$
- 38. The correct order of bond angles is:
 - (a) $NO_2^- > NO_2^+ > NO_2$

(b) $NO_2^+ > NO_2^- > NO_2$

(c) $NO_2 > NO_2^+ > NO_2^-$

- (d) $NO_2^+ > NO_2 > NO_2^-$
- **39.** Which one is correct for bond angle?
 - (a) $PF_3 > PCl_3$
- (b) $OCl_2 = ClO_2$
- (c) $NF_3 > NH_3$
- (d) $PCl_3 > PF_3$
- 40. In molecules of the type AX 2Ln (where L represents lone pairs and n is its number) there exists a bond between element A and X. The ∠X A X bond angle.
 - (a) Always decreases if n increases
- (b) Always increases if n increases
- (c) Will be maximum for n=3
- (d) generally decreases if n decreases

Molecular Forces

- 41. Which of the following solid has maximum melting point?
 - (a) NaCl
- (b) Ice
- (c) Dry ice
- (d) SiO₂
- **42.** The melting point of AlF_3 is $104^{\circ}C$ and that of SiF_4 is $-77^{\circ}C$ (it sublimes) because :
 - (a) there is a very large difference in the ionic character of the Al F and Si F bonds
 - (b) in AlF₃, Al³⁺ interacts very strongly with the neighbouring F⁻ ions to given a three dimensional structure but in SiF₄ no such interaction is possible
 - (c) the silicon ion in the tetrahedral SiF₄ molecule is not shielded effectively from the fluoride ions whereas in AlF₃, the Al³⁺ ion is shielded on all sides
 - (d) the attractive forces between the SiF₄ molecules are strong whereas those between the AlF₃ molecule are weak
- **43.** The correct order of boiling point is:
 - (a) $T_2 < D_2 < H_2$
 - (b) n -pentane < neo-pentane
 - (c) Xe < Ar < He
 - (d) m -nitrophenol > o -nitrophenol

Hydrogen Bonding

44. Cis-butene dioic acid $\xrightarrow{K_{a_1}(-H^+)}$ $X_1^- \xrightarrow{K_{a_2}(-H^+)} X_2^{2-}$

Trans-butene dioic acid $\xrightarrow{K_{a_1}(-H^+)}$ $Y_1^- \xrightarrow{K_{a_2}(-H^+)} Y_2^{2-}$

The incorrect statement regarding above information is:

- (a) X_2^{2-} species is more basic than Y_2^{2-} species
- (b) X_1^- species is more basic than Y_1^- species
- (c) K_{a_1} is greater than K'_{a_1}
- (d) K'_{a_2} is greater than K_{a_2}
- 45. Which of the following is not a best representation of the H-bond?

- (d) None
- 46. The H-bonds in solid HF can be best represented as:
 - (a) H—F----H—F----H—F

47. The type of molecular forces of attraction present in the following compound is:

- (a) Intermolecular H-bonding
- (c) van der Waals' force

- (b) Intramolecular H-bonding
- (d) All of these
- 48. Which of the following interaction lies in the range of 8 42 kJ/mol?
 - (a) $H_2...H_2O$
 - (c) F -... HF

- (b) HCl...HCl
- (d) HCN...NH₃

Fajan's Rule (Ionic Bond)

- 49. The incorrect order is:
 - (a) Covalent character: PbCl₂ > CaCl₂ > SrCl₂ > BaCl₂
 - (b) Thermal stability: PbF₄ > PbCl₄ > PbBr₄ > PbI₄
 - (c) Melting point : KF > KCl > KBr > KI
 - (d) Boiling point : CHCl₃ > CH₃Cl > CCl₄
- **50.** If CdI₂ is pink in colour, the CdCl₂ will be '----' coloured.
 - (a) yellow
- (b) red
- (c) blue
- (d) cannot be predicted

- 51. Which order are correct?
 - (I) Thermal stability:
- $BeSO_4 < MgSO_4 < CaSO_4 < SrSO_4 < BaSO_4$
- (II) Basic nature:
- ZnO > BeO > MgO > CaO
- (III) Solubility in water: LiOH > NaOH > KOH > RbOH > CsOH
- (IV) Melting point:
- NaCl > KCl > RbCl > CsCl > LiCl

(b) (I), (II) and (IV) (c) (II), (III)

(d) All correct

- 52. The correct solubility order is/are:
 - (I) $CaCO_3 > SrCO_3 > BaCO_3$
- (II) $\text{Li}_2\text{CO}_3 < \text{Na}_2\text{CO}_3 < \text{K}_2\text{CO}_3$
- (III) $K_2CO_3 < Rb_2CO_3 < Cs_2CO_3$
- (IV) $Na_2CO_3 > K_2CO_3 > Rb_2CO_3$
- (b) I, IV

(a) II, IV (c) II, III,IV

(a) (I), (IV)

- (d) I, II, III
- 53. On heating to 400-500°C, relatively unstable hydrides and carbonates decompose. Which of the following will decompose when heated to 400-500°C? (IV) Na₂CO₃
 - (I) LiH
- (II) NaH
- (III) Li₂CO₃

- (a) II, III (c) I, III
- (b) I, II, III menuger slogib a(d) III, IV and Empedial sen

Back Bond

- 54. Both N(SiH₃)₃ and NH(SiH₃)₂ compounds have trigonal planar skeleton. Incorrect statement about both compounds is:
 - (a) SiNSi bond angle in NH(SiH₃)₂ > SiNSi bond angle in N(SiH₃)₃

do medicipiem (d)

(b) N—Si bond length in NH(SiH₃)₂ > N — Si bond length in N(SiH₃)₃

(1)

- (c) N—Si bond length in NH(SiH₃)₂ < N Si bond length in N(SiH₃)₃
- (d) Back bonding strength in NH(SiH₃)₂ > Back bonding strength in N(SiH₃)₃

55.	The incorrect statement regarding O(SiH ₃) ₂ and OCl ₂ molecule is/are:			
	(a) The strength of back bonding is more in O(SiH ₂) ₂ molecule than OCl ₂ molecule			
	(b) Si $-$ O $-$ Si bond angle in O(SiH ₃) ₂ is greater than Cl $-$ O $-$ Cl bond angle in OCl ₂			
	(c) The nature of back bond in both molecules is $2p_{\pi}-3d_{\pi}$			
	(d) Hybridisation of central O-atom in both molecules is same			
56.	Among following molecule N-Si bond len	gth is shortest :		
	(a) N(SiH ₃) ₃	(b) $NH(SiH_3)_2$		
	(c) NH ₂ (SiH ₃)	(d) All have equal N	—Si bond length	
57 .	Which of the following molecule has weak	est $(p\pi - d\pi)$ back bond	ing ?	
	(a) OCl_2 (b) $N(SiH_3)_3$	(c) SiF ₄	(d) $O(SiH_3)_2$	
58.	"Hybridisation of central atom does not always		onding". This statement is	
	valid for v' 'ch of the following compound	s ?		
	(i) CCl ₃ (ii) CCl ₂	(iii) $(SiH_3)_2O$	(iv) $N(SiH_3)_3$	
	(a) (i), (ii) (b) (i), (iii)	(c) (ii), (iii)	(d) All	
59 .	The geometry with respect to the central at		olecules are :	
	$N(SiH_3)_3$; Me_3N ; $(SiH_3)_3$ P	(a)		
	(a) planar, pyramidal, planar			
	(b) planar, pyramidal, pyramidal			
	(c) pyramidal, pyramidal			
	(d) pyramidal, planar, pyramidal			
60.	Incorrect statement regarding BF ₂ NH ₂ mole	ecule is ·		
	(a) FBF bond angle < 120°	(b) HNH bond angle	> 100°20'	
	(c) Exhibits intermolecular H-bond	(d) Hybridization of I		
	(c) Lambia Intermorecular 11 bond	(a) Hybridization of h	N-atom is sp	
Di	oole Moment			
61.	In which of the following molecule μ (observed)	ed) is found to be greater	than u(theoretical)	
	ĊI	NO ₂	OH	
	, CI	NO ₂	I C	
	(a) CHCl ₃ (b)	(c) ()		
	(2) 41.43		(d) (O)	
62	Among the following the molecule with his			
02.	Among the following, the molecule with hig (a) CH ₃ Cl		10 3 18 N	
	(c) CHCl ₃	(b) CH ₂ Cl ₂		
69		(d) CCl ₄		
03.	Which of the following compounds has dipole moment approximately equal to that of chlorobenzene?			
	(a) o-dichlorobenzene	(h) 4:41 1		
	(c) p-dichlorobenzene	(b) m-dichlorobenzen		
	Section 1 ■ Construction of the Construction	(d) p-chloronitrobenz	ene	
Co	ordinate Bond			
64.	Which of the following bonds have lowest b	and energy?		
-	(a) C—C (b) N—N	(c) H—H	(4) 0 0	
65.	The bond having the minimum bond energy		(d) O—O	
	(a) C — C (b) O — O	(c) S — S	(1) D D	
	N	(4) 0 — 3	(d) P — P	

L. Acid-Base

- 66. The correct increasing order of extent of hydrolysis is:
 - (a) $CCl_4 < MgCl_2 < AlCl_3 < SiCl_4 < PCl_5$
- (b) $CCl_4 < AlCl_3 < MgCl_2 < PCl_5 < SiCl_4$
- (c) $CCl_4 < SiCl_4 < PCl_5 < AlCl_3 < MgCl_2$
- (d) $CCl_4 < PCl_5 < SiCl_4 < AlCl_3 < MgCl_2$
- 67. Inorganic benzene reacts with HCl to form a compound B₃N₃H₉Cl₃. The protonation occurs at:
 - (a) B-atom
 - (b) N-atom
 - (c) First at B-atom then rearranges into N-atom
 - (d) First at N-atom then rearranges into B-atom
- **68.** Select correct statement about hydrolysis of BCl₃ and NCl₃:
 - (a) NCl₃ is hydrolysed and gives HOCl but BCl₃ is not hydrolysed
 - (b) Both NCl3 and BCl3 on hydrolysis gives HCl
 - (c) NCl₃ on hydrolysis gives HOCl but BCl₃ gives HCl
 - (d) Both NCl3 and BCl3 on hydrolysis gives HOCl

Molecular Orbital Theory

- 69. The incorrect statement regarding molecular orbital(s) is:
 - (a) If there is a nodal plane perpendicular to the internuclear axis and lying between the nuclei of bonded atoms then corresponding orbitals is antibonding M.O.
 - (b) If a nodal plane lies in the inter-nuclear axis, then corresponding orbitals is $pi(\pi)$ bonding M.O.
 - (c) The σ-bonding molecular orbital does not contain nodal planes containing the rternuclear axis
 - (d) The δ -bonding molecular orbital possesses three nodal planes containing the internuclear axis.
- **70.** Which of the following species absorb maximum energy in its HOMO-LUMO electronic transition?
 - (a) O₂
- (b) N
- (c) C₂
- (d) N₂
- 71. If P to T are second period p-block elements then which of the following graph show correct relation between valence electrons in P_2 to T_2 (corresponding molecules) and their bond order is:

- 72. Which of the following facts given is not correct?
 - (I) Bond length order : $H_2^- = H_2^+ > H_2$
 - (II) O_2^+ , NO, N_2^- have same bond order of $2\frac{1}{2}$
 - (III) Bond order can assume any value including zero upto four

(IV) NO and BO have sa	me bond order for X —	O bond (where X	is central	atom)
------------------------	-----------------------	-----------------	------------	-------

- (a) I, II & III
- (b) I & IV
- (c) II & IV
- (d) I & II

73. N_2 and O_2 are converted to monocations N_2^+ and O_2^+ respectively, which is wrong statement:

- (a) In N₂⁺, the N—N bond weakens
- (b) In O₂, the O—O bond order increases
- (c) In O₂⁺, the paramagnetism decreases
- (d) N₂ becomes diamagnetic
- **74.** In which of the following transformations, the bond order has increased and the magnetic behaviour has changed?
 - (a) $C_2^+ \rightarrow C_2$
- (b) $NO^+ \rightarrow NO$
- (c) $O_2 \rightarrow O_2^+$
- (d) $N_2 \rightarrow N_2^+$

75. H.O.M.O. (Highest Occupied Molecular Orbital) of CO molecular is :

- (a) Non-bonding M.O. with slight antibonding character
- (b) Non-bonding M.O. with slight bonding character
- (c) Pure non-bonding M.O.
- (d) None of the above

Molecular Structure

76. The structure of B₃N₃H₆ is as follows:

How may derivative structures of $B_3N_3H_4X_2$ can be derived from the basic structure, by the replacement of two hydrogen atoms?

- (a) 2
- (b) 3
- (c) 4
- (d) 5

Valence Bond Theory

- 77. Correctly match is:
 - (a) $d_{r^2-r^2}$ atomic orbital

One nodal plane

(b) p_y^{x-y} atomic orbital

Two nodal planes

(c) σ_{p_x}

— ψ (gerade)

(d) $p_{p_y}^{\bullet}$

ψ (ungerade)

78. Select correct statement(s):

- (a) Acidic strength of HBr > HCl but reverse is true for their reducing property
- (b) Basic strength of PH₃ > AsH₃ but reverse is true for their bond angle
- (c) Dipole moment of $CH_3Cl > CH_3F$ but reverse is true for their $H\widehat{C}H$ bond angle
- (d) K_{a_1} of fumaric acid is higher than maleic acid but reverse is true for their K_{a_2}

Level 3

PASSAGE 1

Colour of compounds occurs due to phenomenon of polarisation, charge transfer, *d-d* transition and H.O.M.O.-L.U.M.O. transition. Most of the transition metal complex compound are coloured either due to *d-d* electron transition or charge transfer and ionic compounds are coloured due to polarisation of anion.

- 1. Which of the following is correct about KFe^{II}[Fe(CN)₆] and KFe^{III}[Fe(CN)₆] complex compounds?
 - (a) Both are blue coloured compound because colour arises due to *d-d* electron transition in Fe cation present outside the complex ion.
 - (b) Both are blue coloured compound because colour arises due to transfer of electron between Fe $^{\rm II}$ and Fe $^{\rm III}$ cation
 - (c) Both are blue coloured compound because in complexes Fe^{II} cation shows same d-d transition band
 - (d) Complex (I) has blue colour while complex (II) has brown colour.
- 2. If MCl₂ salt is white, then comment on colour of its iodide salt.
 - (a) Coloured

(b) White

(c) May be white or coloured

(d) Black

- 3. Choose incorrect statement.
 - (a) Halogens are coloured due to HOMO-LUMO transition
 - (b) During charge transfer, oxidation state of atoms changes
 - (c) Higher the polarisation, more is colour intensity
 - (d) Complex compound having no unpaired electron can not undergo d-d transition and therefore it is colourless

PASSAGE 2

Hydrogen bond is the term given to the relatively weak secondary interaction between a hydrogen atom bound to an electronegative atom and another atom which is also generally electronegative and which has one or more lone pairs and can thus acts as a base. We can give the following generalized representation of a hydrogen bond.

Bond dissociation energy of H-bond ranges from 8 to 42 kJ/mol, and the most commonly encountered hydrogen bonds are O—H...O, N—H...O and F—H...R

- 1. Among molecules of HCl, which of the following forces are present.
 - (a) Interaction between two HCl molecules is found to be greater than 8 kJ/mol
 - (b) Weak dipole-dipole interactions
 - (c) Weak ion-dipole interactions
 - (d) All of the above
- 2. Which of the following interaction has energy between 8-42 kJ/ mol?
 - (a) Na+:CCl4
- (b) CHCl₃:Br⁻
- (c) C_6H_6 : CCl_4
- (d) H₂O: HCN

PASSAGE

3

The intermolecular forces of attraction (i.e., H-bonding and van der Waals' forces) exist among polar and non-polar species which affect melting point, boiling point, solubility and viscosity of covalent compounds:

- 1. Melting and boiling point of halogens increase down the group due to :
 - (a) Increase in London dispersion forces
- (b) Increase in extent of polarity

BUS WORLD THE WORLD

- c) Increase in molecular mass
- (d) Both (a) and (b)
- 2. The type of molecular force of attraction present in the following compound is :

- (a) Intermolecular H-bonding
- (b) Intramolecular H-bonding

felt Contribut compound having an att

(c) van der Waals' force

- (d) All of these
- 3. Select the incorrect order of boiling point between the following compounds:
 - (a) $N_3H < CH_3N_3$

(b) $Me_2SO_4 < H_2SO_4$

(c) $Me_3BO_3 < B(OH)_3$

(d) $BF_3 < BI_3$

PASSAGE

- 1. According to given information the incorrect match is:
 - (a) $P = N_2^+$
- (b) $R = O_2^+$
- (c) $S = CO^{+}$
- (d) $T = CN^+$

- 2. The correct statement is:
 - (a) If P is having 13 electrons then removal of one electron retains its magnetic behaviour
 - (b) If Q is having 17 electrons then addition of one electron retains its magnetic behaviour
 - (c) If R is having 15 electrons then addition of one e^- retains its magnetic behaviour
 - (d) If T is having 12 electrons then addition of one e^- retains its magnetic behaviour
- 3. The incorrect statement is:
 - (a) If R has 15 electrons then bond order of R is greater than its parent molecule
 - (b) If Q has 17 electrons then bond order of Q is less than its parent molecule
 - (c) If P has 13 electrons then bond order of P is greater than its parent molecule
 - (d) On addition of two electrons in P(having 13 electrons) the bond order remains same

se four hybride or iggle to form appropria

a complete aresen**y ben'veen p**yling

PASSAGE

	1200	0.39	83.6	803
<u>に</u>	Y			107
J	1.88			

Compound, MX_n type ($n = 2$ or 3 or 4)	Value of $\cos \theta$ (θ = bond angle between equivalent hybrid orbitals)	
P	-0.241	
Q	-0.292	
R	-0.5	
S	-0.325	
T	-0.469	

togo of collaboration of the c

In all expected compounds each central atom only uses its s and p-orbitals in hybridization. The relationship between bond angle Θ and decimal fraction of s and p character present in the equivalent hybrid orbitals is given by :

 $\cos \theta = \frac{S}{S-1} = \frac{P-1}{P}$, S = decimal fraction of s-character in the equivalent hybrid orbital

P = decimal fraction of p-character in the equivalent hybrid orbital.

- 1. The correct order of % p-character in bond pairs of central atoms in the following compounds is:
 - (a) P > T > S > Q > R

(b) S > R > T > P > Q

(c) P > Q > S > R > T

- (d) P > Q > S > T > R
- **2.** If the value of n is 2 for compound T, then number of lone pair present at central atom of compound T will be:
 - (a) 0
- (b) 1
- (c) 2
- (d) 3

- 3. The incorrect statement is:
 - (a) The ratio of % p-character to % s-character is less than four, for the bond pair of central atom of compound S
 - (b) Central atom uses three hybrid orbitals to form compound R
 - (c) Central atom uses four hybrid orbitals to form compound S
 - (d) There are three compounds present between point C to E, according to % s-character in bond pair of central atom

The concept of redistribution of energy in different orbitals of an atom associated with different energies to give new orbitals of equal (or sometimes it may be non-equal) energy oriented in space in definite directions is called hybridisation and formed new orbitals are called hybrid orbitals. The bonds formed by such orbitals are called hybrid bonds. The process of mixing of orbitals itself requires some energy. Thus, some additional energy, is needed for the hybridisation (mixing) of atomic orbitals.

- 1. Select from each set the molecule or ion having the smallest bond angle:
 - (i) H₂Se, H₂Te and PH₃
 - (ii) NO_2^- and NH_2^-
 - (iii) POF_3 and $POCl_3$ (X P X angle)
 - (iv) OSF₂Cl₂ and SF₂(CH₃)₂(F S F angle)
 - (a) $\mathrm{H_2Se}$, $\mathrm{NH_2^-}$, $\mathrm{POF_3}$ and $\mathrm{OSF_2Cl_2}$
- (b) H_2 Te, NO_2^- , POF_3 and $SF_2(CH_3)_2$
- (c) PH₃, NH₂, POCl₃ and SF₂(CH₃)₂
- (d) H_2 Te, NH_2^- , POF_3 and $SF_2(CH_3)_2$
- 2. Which of the following statement is correct?
 - (a) In BrF3, maximum three halogen atoms can lie in same plane
 - (b) In CH₂SF₂(CH₃)₂ molecule all hydrogen atoms which bonded to s sp² overlapping, lie in equatorial plane
 - (c) In OSCl₄, Cl S Cl equatorial bond angle is greater than 120°
 - (d) Molecules IOF₅ and XeO₂F₄ have similar shape but have different number of lone pairs in whole molecule
- 3. In neutral molecule XeO_{n_1} F_{n_2} , central atom has no lone pair and ratio of $\frac{n_2}{n_1}$ is two, then which

of the following orbital does not participate in bonding $(n_1 \text{ and } n_2 \text{ are natural numbers})$:

- (a) d_{2}
- (b) pz
- (c) $d_{x^2-v^2}$
- (d) None of these

PASSAGE

Drago suggested an emprical rule which is compatible with the energetics of hybridization. It states that if the central atom is in the third row or below in the periodic table, the lone pair will occupy a stereochemically inactive s-orbital, and the bonding will be through p-orbitals and bond angles will be nearly 90° if the electronegativity of the surrounding atom is ≤ 2.5 .

1. In which of the following molecule central atom has higher % s-character in its bond pair :

(a) AsH₃

(c) P₄ (d) H₂Se

2. Correct order of bond angle is:

(a) $PH_4^+ > OF_2 > SF_2 > SbH_3 > H_2Te$ (b) $OF_2^- > SF_2^- > PH_4^+ > SbH_3 > H_2Te$

(c) $PH_4^+ > SF_2 > OF_2 > SbH_3 > H_2Te$ (d) $SF_2 > OF_2 > PH_4^+ > SbH_3 > H_2Te$

PASSAGE

According to hybridisation theory, the % s-character in sp, sp² and sp³-hybrid orbitals is 50, 33.3 and 25 respectively, but this is not true for all the species. When θ is the bond angle between equivalent hybrid orbitals then % s and p-character in hybrid orbital (when only sand p-orbitals are involved in hybridisation) can be calculated by the following formula:

$$\cos\theta = \frac{S}{S-1} = \frac{P-1}{P}$$

1. Two elements X and Y combined together to form a covalent compound. If % p-character is found to be 80% in a hybrid orbital then the hybridised state of central atom X for the orbital

(a) sp^2

- (b) sp^3

2. Smallest OSO bond angle is found in:

(a) SO₂F₂

- (b) SO₂Cl₂
- (c) $SO_2(CF_3)_2$
- (d) SO₂(CH₃)₂
- 3. Correct order of P-P bond length in the following compound is:
 - (a) $P_2F_4 < P_2(CH_3)_4 < P_2(CF_3)_4 < P_2H_4$ (b) $P_2F_4 < P_2(CF_3)_4 < P_2(CH_3)_4 < P_2H_4$
 - (c) $P_2F_4 < P_2H_4 < P_2(CH_3)_4 < P_2(CF_3)_4$
- (d) $P_2F_4 < P_2(CH_3)_4 < P_2H_4 < P_2(CF_3)_4$

PASSAGE

PCl₅ is an example of a molecule having sp³d-hybridisation. Three out of the five orbitals involved in sp_xp_y -hybridization while remaining two have $p_xd_{x^2}$ -hybridization. If P-atom is attached to substituents differ in electronegativity, as in PClxF5-x, then it has been experimentally observed that the more electronegative substituent occupies the axial position of t.b.p geometry.

- 1. The correct statement is:
 - (a) in Cl₂F₂ the F—C—F bond angle is larger 109° 28'
 - (b) in CH₂F₂ the C-F bond has more than 25% s-character
 - (c) in CH₂F₂ the H—C—H bond angle is larger than 109° 28'
 - (d) in CH₂F₂ the C—H bond has less than 25% s-character
- 2. The incorrect statement regarding PCl₂F₃ molecule will be :
 - (a) given compound is polar
 - (b) both axial position occupied by F-atoms
 - (c) both Cl atoms present in equatorial position
 - (d) one Cl atom present at axial and other Cl atom is present at equatorial position of
- 3. The highest H C H bond angle present in :
 - (a) CH_2F_2
- (b) CH₄
- (c) CH₃Cl
- (d) CH₃F

PISSAGE

The first compound of the noble gases was made in 1962. Bartlett and Lohman had previously used the highly oxidizing compound platinum hexafluoride to oxidize dioxygen.

$$O_2 + PtF_6 \longrightarrow O_2^+ [PtF_6]^-$$

The first ionization energy for $O_2 \rightarrow O_2$ is 1165 kJ mol⁻¹, which is almost the same as the value of 1170 kJ mol⁻¹ for Xe \rightarrow Xe⁺. It was predicated that xenon should react with PtF₆. Experiments showed that when deep red PtF₆ vapour was mixed with an equal volume of Xe, the gases combined immediately at room temperature to produce a solid.

$$Xe + PtF_6 \longrightarrow Xe[PtF_6]$$

- 1. IUPAC name of first xenon-compound synthesized by scientist Bartlett is :
 - (a) xenonhexafluoroplatinate (IV)
- (b) xenonhexafluoroplatinate (V)
- (c) hexafluoroplatinum (V) xenon
- (d) xenoniumhexafluoroplatinum (V)
- 2. Noble gases are water insoluble, however their insolubility in water decreases down the group due to increases in:
 - (a) dipole-dipole attraction
 - (b) dipole-induced dipole attraction
 - (c) instantaneous dipole-induced dipole attraction
 - (d) none of these
- 3. Which of the following species is not having perfect octahedron structure?
 - (a) XeF₆

(b) SiF_6^{2-}

(c) PCl₆

(d) XeO₆

PASSAGE 11

According to MOT, two atomic orbitals overlap resulting in the formation of molecular orbitals. Number of atomic orbitals overlapping together is equal to the molecular orbital formed. The two atomic orbital thus formed by LCAO (linear combination of atomic orbital) in the same phase or in the different phase are known as bonding and antibonding molecular orbitals respectively. The energy of bonding molecular orbital is lower than that of the pure atomic orbital by an amount Δ . This known as the stabilization energy. The energy of antibonding molecular orbital is increased by Δ' (destabilisation energy).

tydenter niursteer beiblief ei noussill (s)

(d) They are formed when the lones of the combining mon if seem is the notestate with, then a toleralm orbitals are

AVT- 1	antiboliding molecular orbital is increased b	y A (destablisation en	ergy).
1.	The bond order of N_2^- is equal to that of:		
	(a) O ₂	(b) O_2^{2-}	To artists
	(c) O ₂ ⁺	(d) None	
2.	Which among the following pairs contain bo	th paramagnetic specie	es.
	(a) O_2^{2-} and N_2^{-} (b) O_2^{-} and N_2	(c) O ₂ and N ₂	(d) O_2 and N_2
3.	Which of the following statement(s) is true (a) Higher the bond order lesser the bond le (b) Higher the bond order greater the bond (c) Higher the bond order lesser the bond e	ength length nergy	Viluan is a polen ma (a) XeF _a (X) (pile 3 a reomic molesi le
1	(d) Higher the bond order lesser the number Which of the following pairs of molecule can		h annua in mais mail
ु . ्र	(a) He ₂ and Be ₂ (b) O_2^{2-} and Na ₂		(d) Be ₂ and Mg ₂
5.	How many nodal plane is present in o (s and p	bonding molecular or	bital?
	(a) zero (b) 1	(c) 2	(d) 3
6.	Which of the following combination of orbit	als is correct?	u savi s V sdo i sa
	(a) $(+$ $(-)$ $+$ $(-)$ $(-)$	(g) square bla	(a) remaindrai
	(b) + - + • + • + •	olar, one is non (=	Waich of the follows (a) One isomer is p (b) Two isomers are
	(c) + - + + + (+ = -		fc) Two isomer are fd) 'two sources are
	(*) (*) (*)		To teach

- 7. Which of the following statements is not correct regarding bonding molecular orbitals?
 - (a) Bonding molecular orbitals possess less energy than the atomic orbitals from which they are formed
 - (b) Bonding molecular orbitals have low electron density between the two nuclei

- (c) Electron in bonding molecular contributes to the attraction between atoms
- (d) They are formed when the lobes of the combining atomic orbitals have the same sign
- 8. If x-axis is the molecular axis, then π -molecular orbitals are formed by the overlap of:
 - (a) $s + p_{x}$
- (b) $p_x + p_y$
- (c) $p_z + p_z$
- (d) $p_x + p_x$

Polar covalent molecules exhibit dipole moment. Dipole moment is equal to the product of charge separation, q and the bond length d for the bond. Unit of dipole moment is debye. One debye is equal to 10⁻¹⁸ esu cm.

Dipole moments is a vector quantity. It has both magnitude and direction. Hence, dipole moment of a molecule depends upon the relative orientation of the bond dipoles, but not on the polarity of bonds alone. A symmetrical structure shows zero dipole moment. Thus, dipole moment helps to predict the geometry of a molecules. Dipole moment values can be used to distinguish between cis-and trans-isomers; ortho-, meta- and para-forms of a substance, etc.

- 1. Which is a polar molecule?
 - (a) XeF₄

(b) BF₃

(c) I2Cl6

- (d) PCl₂F₃
- 2. A diatomic molecule has a dipole moment of 1.2 D. If the bond length is 1.0×10^{-8} cm, what fraction of charge does exist each atom?
 - (a) 0.1
- (b) 0.2
- (c) 0.25
- (d) 0.3
- 3. Arrange the following compounds in increasing order of dipole moments, toluene (I) o-dichlorobenzene (II), m-dichlorobenzene (III) and p-dichlorobenzene (IV):
 - (a) IV < I < II < III

(b) I < IV < II < III

(c) IV< I< III< II

- (d) IV < II < I < III
- 4. μ of the AX_4 type of molecule is zero. The geometry of it can be:
 - (a) tetrahedral
- (b) square planar
- (c) A or B
- (d) none of these
- 5. Which of the following statement is correct regarding C₂H₂F₂ molecule?
 - (a) One isomer is polar, one is non-polar
 - (b) Two isomers are polar, one is non-polar
 - (c) Two isomers are planar, one is non-planar
 - (d) Two isomers are only possible and planar

In general boiling point of covalent compounds is affected due to increasing molecular weight and hydrogen bonding. Thus it is observed that the boiling point of octanol is greater that water while that of methanol is lesser than water. The other properties which are considerably affected due to hydrogen bond formation are acidic nature, melting point, anamalous behaviour of water below 4°C., It is therefore concluded that hydrogen bonding plays a vital role in explaning many observable facts.

1. Which among the following has maximum boiling point?

(a)
$$CH_3 - CH_2 - (CH_2)_2 - CH_2OH$$

CHARLES EFFECT HE GOVERNMENTS FORM

(c)
$$CH_3 - CH_2 - CH_2 - CH_3 = CH_3 = CH_3 - CH_3 = CH_$$

- 2. Which of the following statements is true?
 - (a) the lattice structure of ice involves true covalent bond
 - (b) the lattice structure of ice is the result of dipole-dipole interaction
 - (c) the lattice structure of ice is the result of intra and inter-molecular hydrogen bond formation
 - (d) the lattice structure of ice is only due to inter-molecular hydrogen bonding
- 3. K_{a2} of Maleic acid is lesser than K_{a2} of fumaric acid due to:
 - (a) intramolecular hydrogen bonding in the formed after one proton removal in fumaric acid
 - (b) intermolecular hydrogen bonding in the ion formed after one proton removal in maleic acid
 - (c) intramolecular hydrogen bonding in the ion formed after one proton removal in maleic acid
 - (d) intermolecular hydrogen bonding in the ion formed after one proton removal in fumaric acid

PASSAGE

The molecule in which an atom is associated with more than 8 electrons is known as hypervalent molecule and less than 8 electrons is known as hypovalent molecule. All hypervalent molecules must have $p\pi$ - $d\pi$ bonding but the molecules having back bonding need not to have always $p\pi$ - $d\pi$ bonding.

- 1. Which of the molecule is not hypovalent but complete its octet :
 - (a) AlCl₃

(b) AlBr₂

(c) AlF₃

- (d) BF_3
- 2. Which of the following molecule is having complete octet:
 - (a) BeCl₂ (dimer)

(b) BeH₂ (dimer)

(c) $BeH_2(s)$

- (d) BeCl₂(s)
- 3. Which of the following molecule is not having $p\pi$ - $d\pi$ bonding :
 - (a) SO₂
- (b) P_4O_{10}
- (c) PF₃
- (d) $B_3N_3H_6$

ONE OR MORE ANSWERS IS/ARE CORRECT

1.	Which	is	correct	statement	2
		10	COLLCE	statement	

- (a) LiCl is more soluble in polar solvent (water) than NaCl
- (b) K_{a_2} fumaric acid is more than K_{a_2} of maleic acid
- (c) The O—O bond length in O₂[AsF₄] is shorter than KO₂
- (d) In $CF_2 = C = CF_2$ molecule all the four fluorine atoms are in the same plane

2. Select correct statement(s):

- (a) Thermodynamic stability of graphite > diamond, but reverse order is true for their kinetic stability
- (b) Melting point of NaCl > LiCl, but reverse order is true for their thermal stability
- (c) Ionisation energy of N₂ > O₂, but reverse order of ionisation energy is true for their corresponding atoms
- (d) Lewis acidic strength of BeI₂ > BeF₂, but reverse order is true for their melting point
- **3.** Select correct statements regarding σ and π -bonds :
 - (a) σ-bond lies on the line joining the nuclei of bonded atoms
 - (b) π -clectron cloud lies on either side to the line joining the nuclei of bonded atoms
 - (c) $(2p\pi 3d\pi)$ Pi-bond is stronger than $(2p\pi 3p\pi)$ Pi-bond
 - (d) σ -bond has primary effect to decide direction of covalent bond, which π -bond has no primary effect in direction of bond.
- 4. Which of the following molecular species is/are having π_{2p} as H.O.M.O. (highest occupied molecular orbital):

(a) N_{2}^{-}

(b) O_2^{2+}

(c) NO⁺

(d) B_{2}^{+}

5. Select correct order between given compounds.

(a) $COCl_2 > COF_2$

XCX bond angle

(b) $NO_2F > NO_2Cl$

ONO bond angle

(c) $SO_2F_2 < SOF_2$

FSF bond angle

(d) $N_2F_2 < N_2(CH_3)_2$:

N-N bond length

6. Select the correct statement(s) regarding BF₂NH₂ molecule :

(a) FBF bond angle < 120°

(b) HNH bond angle > 109°28'

(c) HNH bond angle < 109°28'

(d) FBF bond angle > 120°

- 7. Correct statement(s) about dipole moment of R_3NO and R_3PO is/are:
 - (a) dipole moment of $R_3NO >$ dipole moment of R_3PO
 - (b) dipole moment of R_3NO < dipole moment of R_3PO
 - (c) Experimental dipole moment of $R_3PO >$ theoretical dipole moment of R_3PO
 - (d) Experimental dipole moment of R_3PO < theoretical dipole moment of R_3PO
- 8. In which of the following compound, observed bond angle is found to be greater than expected, but not due to back bonding.

(a) $N(SiH_3)_3$

(b) $N(CH_3)_3$

(c) $O(CH_3)_2$

(d) $O(SiH_3)_2$

9. Two compounds PX_2Y_3 and PX_3Y_2 . (Where P = Phosphorous atom and X, Y = monovalent atoms). If all 'X' atoms are replaced by 'Z' atoms and electronegativity order is X > Y > Z. Then incorrect statement(s) is/are:

- (a) The dipole moment of product obtained from PX₂Y₃ is non-zero
- (b) The dipole moment of product obtained from PX2Y3 is zero
- (c) The dipole moment of product obtained from PX₃Y₂ is zero
- (d) The dipole moment of product obtained from PX₃Y₂ is non-zero
- 10. Correct order of bond angles in the given compounds is/are:

(a) $\gamma < \gamma'$

(b) $\gamma < \beta = \alpha$

(c) $\alpha > \alpha'$

(d) $\beta > \beta$

- 11. The correct statement(s) is/are:
 - (a) Boiling point of m-hydroxybenzaldehyde is greater than o-hydroxybenzaldehyde
 - (b) Boiling point of CHCl3 is higher than CCl4
 - (c) Melting point of BeCl₂ is higher than BeF₂
 - (d) Boiling point of HF is greater than CH₃F
- 12. Consider the following reactions

$$CHF_{3} \xrightarrow{K_{a}} CF_{3}^{-} + H^{+}$$

$$CHCl_{3} \xrightarrow{K'_{a}} CCl_{3}^{-} + H^{+}$$

Then regarding given reactions which of the following statement(s) is/are correct:

- (a) $K_a > K'_a$
- (b) CHF3 act as a stronger bronsted acid than CHCl3
- (c) CCl₃ is more stable than CF₃
- (d) CCl₃ is weaker lewis base than CF₃
- 13. In which of the following molecule $\mu_{exp.}$ (observed dipole moment) is found to be greater than $\mu_{th.}$ (expected dipole moment)?

(a)POCl₃

(b) (O)

c) HNC

(d) \bigcap^{F}

- 14. Correct statement(s) regarding As(CH₃)F₂Cl₂ molecule is/are :
 - (a) Maximum three halogen atoms can lie in same plane
 - (b) Both axial and equatorial plane may have equal number of atoms
 - (c) As-Cl bond length is longer than As-F bond length
 - (d) Maximum five atoms can lie in equatorial plane
- 15. Which of the following species is/are having 'N—N' bond order = 2?
 - (a) N_{3}^{-}
- (b) N_2F_2
- (c) N₂O₄
- (d) N_2O

- 16. Which of the following statements is correct?
 - (a) ClF₃ molecule is bent 'T' shape
 - (b) In SF₄ molecule, F—S—F equatorial bond angle is 103° due to *lp-lp* repulsion
 - (c) In [ICl₄] molecular ion, Cl—I—Cl bond angle is 90°
 - (d) In OBr2, the bond angle is less than OCl2

132	INORGANIC CHEMISTRY
17.	Which of the following species is/are not know? (a) FeI ₃ (b) SH ₆ (c) PbI ₄ (d) PI ₅
18.	Select correct order between following compounds: (a) NH ₃ > NF ₃ : Bond angle (b) NH ₃ > NF ₃ : Dipole moment (c) NH ₃ > NF ₃ : % s-Character of lone pair (d) NH ₃ > NF ₃ : Reactivity towards Lewis acid
19.	Which of the following is (are) V-shaped ?
	(a) S_3^{2-} (b) I_3^{-} (c) N_3^{-} (d) I_3^{+}
20.	Select correct order between given compounds:
	(a) $COCl_2 > COF_2$: $X \hat{C} X$ bond angle
	(b) $NO_2F > NO_2Cl$: $O\hat{N}O$ bond angle
	(c) $SO_2F_2 < SOF_2$: $F \hat{S}F$ bond angle
	(d) $N_2F_2 < N_2(CH_3)_2$: N — N bond length
21.	Which of the following equilibria would have highest and lowest value of K_p at a common
	temperature ?
	(a) $BeCO_3 \rightleftharpoons BeO + CO_2$ (b) $CaCO_3 \rightleftharpoons CaO + CO_2$
22	(c) $SrCO_3 \rightleftharpoons SrO + CO_2$ (d) $BaCO_3 \rightleftharpoons BaO + CO_2$
44.	Which of the following process is/are associated with change of hybridization of the underlined compound?
	(a) Al(OH) ₃ ppt. dissolved in NaOH (b) B ₂ H ₆ is dissolved in THF
	(c) SiF ₄ vapour is passed through liq. HF (d) Solidification PCl ₅ vapour
23.	Which of the following are true?
	(a) van der Waals forces are responsible for the formation of molecular crystals
	(b) Branching lower the boiling points of isomeric organic compounds due to decrease in van der Waals forces
	(c) In graphite, van der Waals forces act between the carbon layers
	(d) In diamond, van der Waals forces act between the carbon layers
24.	Which of the following statement is incorrect:
	(a) O ₂ is paramagnetic, O ₃ is also paramagnetic
	 (b) O₂ is paramagnetic, O₃ is diamagnetic (c) B₂ is paramagnetic, C₂ is also paramagnetic
	(d) Different observation is found in their bond length when $NO \rightarrow NO^+$ and $CO \rightarrow CO^+$
25.	Which of the following statements are not correct?
20.	(a) All C—O bonds in CO ₃ ⁻ are equal but not in H ₂ CO ₃
	(b) All C—O bonds in HCO ₂ are equal but not in HCO ₂ H
	(c) C—O bond length in HCO ₂ is longer than C—O bond length in CO ₃ ²

(d) C—O bond length in HCO_2^- and C—O bond length in CO_3^{2-} are equal 26. In the structure of H₂CSF₄, which of the following statement is/are correct? (a) Two C—H bonds are in the same plane of axial S—F bonds (b) Two C—H bonds are in the same plane of equitorial S—F bonds

	(c) Total six atoms are in the same plane(d) Equitorial S—F plane is perpendicula		bond
27.	In which compound vacant hybride orbita		386 16 1 1
2/.	(a) B_2H_6 (b) Al_2Cl_6	(c) C ₂ H ₅ Cl	(d) H_3BO_3
28.	Which of the following is true for N ₂ O?	14.5	
	(a) Its molecule is linear	A Thirty of	
	(b) Symmetric N — O — N is a favoured	structure as compared to	N — N — O skeleton
	(c) Bond orders are fractional for N - N		
	(d) It is a neutral oxide		
29.	Silane is more reactive than CH ₄ towards	s Nu substitution due to:	
	(a) larger size of Si compared to C which	n facilitate the attack by nu	ıcleophile
	(b) Polarity of Si-H bond is opposite to	that of C—H bond	
	(c) Availability of vacant 3d orbitals in ca	se of Si to form the reactio	n intermediate easily for
8.	nucleophilic attack	The State of the S	
	(d) Si—H bond energy is lower than tha		
30.	Which of the following statements is/are	not correct for following o	compounds?
	(I) $SCl_2(OCH_3)_2$ and (II) $SF_2(OCH_3)_2$		
	(a) —OCH ₃ groups in both cases occupy		
	(b) Cl-atoms occupy equitorial position in	n case of (1) and F-atoms of	ccupy equitorial position
	in case of (II) (c) Cl-atoms occupy axial position in case of	f (I) & Eatoms occupy equito	rial position in case of (II)
	(d) Cl and F-atoms occupy either axial or e		
91	If N_B is the number of bonding electrons		
31.	molecule. Then choose the incorrect state	ement(s) for the relationsh	sip, $N_R > N_A$:
	(a) Molecule may be stable or unstable		I' B A
	(b) Molecule may have any integral, frac	ctional or zero value of bor	nd order
	(c) Molecule is only paramagnetic species		
	(d) Molecule does not exist		
32.	Stepwise hydrolysis of P ₄ O ₁₀ takes place	e via formation of:	
	(a) tetrametaphosphoric acid	(b) tetrapolyphospho	
	(c) pyrophosphoric acid	(d) orthophosphoric	acid
33.	Select the correct statement(s) about the	e compound $NO[BF_4]$:	
	(a) If has 5σ and 2π bond		
	(b) Nitrogen-oxygen bond length is high	er than nitric oxide (NO)	
	(c) It is a diamagnetic species	()	
	(d) B—F bond length in this compound		
34.	Which of the following molecules has as		(4) 11 0 0
25	(a) H ₂ S ₂ O ₈ (b) H ₂ S ₂ O ₇	(c) H ₂ SO ₅	(d) $H_2S_2O_6$
33.	Which of the following species is param (a) CN (b) NO	(c) O ₂ ² -	(d) O ₂
36	CO ₂ molecule is not isostructural with:		(3) 02
30,	(a) HgCl ₂ (b) SnCl ₂	(c) C ₂ H ₂	(d) NO ₂
		• • • •	A TABLE OF STREET, 4

(d) O(CH₃)₂ < O(SiH₃)₂: reactivity towards Lewis acid

MATCH THE COLUMN

Column-I and Column-II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

Column-II
(P) Hybridization of central atom does not change due to back bonding
(Q) Bond angle of central atom increases due to combined effect of back bonding and steric factor
(R) Anyone of t_{2g} <i>d</i> -orbital is involved in back bonding
(S) Electron density on central atom decreases due to back bonding (T) Electron density on central atom increases due to back bonding

2.

Column-I

- (A) CO, CN^- , NO^+ , O_2^{2+}
- (B) N_2^+, O_2^+, O_2^-, NO
- (C) NO^- , N_2^{2+} , C_2 , B_2^{2-}
- (D) CN, C_2^+ , B_2^+ , N_2^-

Column-II

- (P) All are paramagnetic
- (Q) All are diamagnetic
- (R) All have intermixing of s and p-orbitals
- (S) All have same bond order
- (T) All have fractional bond order

3.

Column-I (Reactions)

- (A) Formation of cation and anion by self ionization of iodine
- (B) Attack of hydroxide ion on boric acid

(C) Ba²⁺(aq) + SO₄²⁻(aq)
$$\longrightarrow$$
 BaSO₄ \downarrow (white ppt.)

(D) MgSO₄
$$\xrightarrow{T>800^{\circ}C}$$
 MgO + SO₂ + $\frac{1}{2}$ O₂

Column-II (Characteristics of final products)

- (P) Lone pair(s) is/are present at central atom
- (Q) d-orbital(s) involved in hybridization of central atom of either of product
- (R) *d*-orbital(s) not involved in hybridization of central atom of either of product
- (S) $d\pi p\pi$ bond(s)
- (T) Planar covalent species is formed

4.

Column-I (Compounds)

- (A) H₄SiO₄
- (B) H₂SeO₄
- (C) H_3BO_3
- (D) H₂NBF₂

Column-II (Characteristics)

- (P) Back bond
- (Q) Intermolecular hydrogen bond
- (R) Hypovalent compound
- (S) Proton donor acid
- (T) Hypervalent compound

5. Column-I (Characteristics)

- (A) The distribution of s-character in hybrid orbitals of central atom is not equal and all bond lengths (CA—X) are equivalent
- (B) The distribution of s-character in hybrid orbitals of central atom is equal and all bond lengths (CA—X) are equivalent

Column-II (Species)

- (P) (CH₃)₂O
- (Q) NH₃

- (C) The distribution of s-character in hybrid orbitals of central atom is not equal and bond angle (X—CA—X) is greater than 109°28'
- (D) The distribution of s-character in hybrid orbitals of central atom is equal and bond angle (X—CA—X) is either equal or less than 109°28'
- (R) PBr₄⁺
- (S) H₂O
- (T) XeO₆

6. Column-I

- (A) NH₂BF₂
- (B) Be₂Cl₄
- (C) CH₂SF₄
- (D) IF₇

Column-II

- (P) Six-atoms are in same plane
- (Q) Polar $(\mu \neq 0)$
- (R) Non-planar
- (S) All 'CA—X' (X= halogen) bond lengths are identical
- (T) All surrounding atoms contain nonbonding electron pair (lone pair)

7. Column-I

- (A) Re₂Cl₈²
- (B) NO₃
- (C) SO₄²
- (D) SO₃

Column-II

- (P) $p\pi p\pi$ bonding
- (Q) $p\pi d\pi$ bonding
- (R) $d\pi d\pi$ bonding
- (S) δ-bonding

8. Column-l

- (A) (-+)-(+)-
- (B) (†) + (+)
- (C) (+) + (+)

Column-II

- (P) Resulting H. O. M. O. of ${\rm O}_2$ molecule
- (Q) Resulting H. O. M. O. of C_2 molecule
- (R) Resulting molecular orbital having one nodal plane
- (S) Resulting M. O. having lower energy than participating atomic orbitals

9.

Column-I (Species)

- (A) XeF5
- (B) MnO
- (C) CH₃

Column-II (Characteristics)

- (P) Non-polar and planar
- (Q) Species having equal bond angle and bond length
- (R) Both axial d-orbitals are involved in hybridisation

(D) I2Cl6

10. Column-I (Axial/sideways combination of appropriate/ inappropriate pure orbitals)

- (A) p + p pure orbitals
- (B) s + p pure orbitals
- (C) (non-axial) d + p pure orbitals
- (D) (axial) d + p pure orbitals

(S) All non-axial d-orbitals are involved in hybridisation

Column-II (Types of molecular orbital)

- (P) σ bonding molecular orbital
- (Q) π anti-bonding molecular orbital
- (R) σ anti-bonding molecular orbital
- (S) π bonding molecular orbital
- (T) Non-bonding molecular orbital

Column-II (Oxidation state of S-atom)

11.	Column-I
	(Oxyacids)
(1)	And the Control of Control of Control

- (A) $H_2S_4O_6$
- (B) $H_2S_2O_3$
- (C) H_2SO_5
- (D) $H_2S_2O_5$

Column-I

- (A) NH₄Cl
- (B) CuSO₄·5H₂O
- (C) HNC make meaning of guilt
- (D) Liquid H₂O₂

Column-II

+5

-2

- (P) Hydrogen bond
- (Q) Co-ordinate bond
- (R) Ionic bond

(P)

(Q)

(R)

(S) Covalent bond

13. Column-I

- (A) B₃N₃H₆
- (B) S₂Cl₂
- (C) B_2H_6
- (D) I2Cl6

Column-II

- (P) Planar geometry
- (Q) Non-planar geometry
- (R) No lone pair
- (S) Non-polar molecule

14.

Column-I (Pair of species)

- (A) PCl₃F₂, PCl₂F₃
- (B) BF3 and BCl3
- (C) CO₂ and CN₂⁻²
- (D) C₆H₆ and B₃N₃H₆

Column-II (Identical Property in pairs of species)

- (P) Hybridisation of central atom
- (Q) Shape of molecule/ion
- (R) μ (dipole moment)
- (S) Total number of electrons

138 INORGANIC CHEMISTRY

15.	ingler e	Column-I (Decreasing order)	Column-II (Physical properties)	
	(A)	NH ₃ ,SbH ₃ ,AsH ₃ ,PH ₃	(P) Bond dipole moment	
	(B)	HI, HBr, HCl, HF	(Q) Reducing property	
	(C)	SnH ₄ , GeH ₄ , SiH ₄ , CH ₄	(R) Enthalpy of fusion	
	(D)	H ₂ O, H ₂ Te, H ₂ Se, H ₂ S	(S) Boiling point	
16.		Column-I (Species)	Column-II (Bond angle)	
	(A)	NO ₂ +	(P) 180°	
	(B)	NO ₂	(Q) 120°	
	(C)	NO ₂	(R) 134°	
	(D)	NO ₃	(S) 115°	
		Landania ()	(T) 109°	

ASSER

ASSERTION-REASON TYPE QUESTIONS

These questions consist of two statements each, printed as assertion and reason, while answering these questions you are required to choose any one of the following responses.

- (A) If assertion is true but the reason is false
- (B) If assertion is false but reason is true
- (C) If both assertion and reason are true and the reason is the correct explanation of assertion
- (D) If both assertion and reason are true but reason is not the correct explanation of assertion
- 1. Assertion: C₃O₂ is non-planar molecule.
 - **Reason:** Terminal π -bonds of the molecule are lying in different planes.
- 2. Assertion: If $d_{x^2-y^2}$ and p_y -orbital come close together along z-axis, then they can form
 - π -bond by sideways overlapping.
 - Reason: Both orbitals do not have electron density along z-axis.
- 3. Assertion: BF₃ undergoes in partial hydrolysis.
 - **Reason:** Due to strong back bondig in BF₃ only two fluoride groups have come out on
 - nucleophilic attack by H₂O.
- 4. Assertion: The central carbon atom in $F_2C = C = CF_2$ and both carbon atoms in
 - $F_2B C \equiv C BF_2$ are sp-hybridized.
 - **Reason:** Both molecules are planar.
- 5. Assertion: Formation of PH₄ ion is relatively difficult in comparison to NH₄ ion.
 - **Reason**: Lone pair of phosphorus atom in PH₃ resides in stereochemically inactive pure
 - s-orbital.
- 6. Assertion: Bond dissociation energy of B—F bond in BF₃ molecule is lower than C—F
 - bond in CF₄ molecule.
 - **Reason**: Atomic size of B-atom is larger than that of C-atom.

7. Assertion: PF₃ is stronger Lewis base than PH₃.

Reason: l.p. of P-atom in PF₃ molecule is present in sp^3 -hybrid orbital, whereas l.p. of P-atom in PH₃ is present in almost pure s-orbital.

8. Assertion: NiO is less basic than CaO.

Reason: Ni²⁺ is pseudo noble gas configuration cation whereas Ca²⁺ is noble gas configuration cation.

 Assertion: When two gaseous OF molecules are allowed to cool, then they undergo dimerisation through O-atom.

Reason: Dimer-form of OF molecule (i.e., O₂F₂) is having one peroxy linkage in its structure.

10. Assertion: Bond dissociation energy of N—F bond in NF₃ molecule is lower than that of in NCl₃ molecule.

Reason: Interelectronic repulsion exists between small size N and F atoms in N—F bond of NF₃ molecule.

11. Assertion: If $d_{x^2-y^2}$ and p_y orbitals come close together along z-axis, they can form π -bond by sideways overlapping.

Reason: Both orbitals do not have electron density along z-axis.

12. Assertion: HOF bond angle is higher than HOCl.

Reason : Oxygen is more electronegative than chlorine.

13. Assertion: NaCl is more ionic than NaI.

Reason

Reason : Chlorine is more electronegative than iodine.

14. Assertion: PbI₄ doesn't exist and converts into PbI₂ and I₂ spontaneously at room temperature but PbCl₄ needs heating to convert into PbCl₂ and Cl₂.

: Pb 2+ is more stable than Pb 4+ due to inert pair effect.

15. Assertion: Dipole moment of NF3 is less than that of NH3.

Reason : Polarity of N—F bond is less than that of N—H bond.

16. Assertion : Solubility of n-alcohol in water decreases with increase in molecular weight.

Reason: The hydrophobic nature of alkyl chain increase.

17. Assertion: The unpaired electron of CH₃ free radical occupies *p*-orbital.

eason : CH₃ possesses sp² hybridization.

18. Assertion: Nitrogen is inactive at room temperature but becomes reactive at elevated temperature (on heating or in the presence of catalyst).

Reason: In nitrogen molecule, there is delocalization of electrons.

19. Assertion: The p-isomer of dichlorobenzene has higher melting point than o- and m-isomer.

Reason: p- isomer is symmetrical and thus shows more closely packed structure.

20. Assertion: Na₂SO₄ is soluble in water while BaSO₄ is water insoluble.

Reason: Lattice energy of BaSO₄ exceeds its hydration energy.

21. Assertion: N₂ and NO⁺ both are diamagnetic substances.

Reason: NO⁺ is isoelectronic with N₂.

22. Assertion: Bond order can assume any value including zero.

Reason: Higher the bond order, shorter is the bond length and greater is the bond

INORGANIC CHEMISTRY

energy.

23. Assertion: C₃O₂ has linear structures.

Reason : Each C atom in C_3O_2 is *sp*-hybridised.

24. Assertion: H bonding occurs in H₂O due to larger size of O-atom.

Reason: The size of O- atom is larger than H atom.

25. Assertion: (CH₃)₃N geometry is pyramidal but in case (SiH₃)₃N it is planar.

Reason: The maximum covalency of Si is six but that of C is four.

26. Assertion: Superoxides of alkali metals are paramagnetic.

Reason: Superoxides contain the ion O_2 which has one unpaired electron in its

anti-bonding molecular orbital.

27. Assertion: The HF_2^- ion exists in the solid state & also in liquid state but not in aqueous state.

Reason: The magnitude of hydrogen bonds among HF molecules is weaker than that in

between HF and H2O.

28. Assertion: If $d_{x^2-y^2}$ and p_y -orbitals come close together along z-axis, then they can form

 $\boldsymbol{\pi}$ –bond by sideways overlapping.

Reason: Both orbitals do not have electron density along z-axis.

29. Assertion: The H-bond present in NH₃ dissolved in water is best represented by:

Reason: The O—H bond polarity is more compared to that of N—H bond.

SUBJECTIVE PROBLEMS

1. There are two groups of compounds A and B. Group A contains three compounds Px_4, Qy_3, Rz_2 . Group B also contains three compounds Sx_4, Ty_3, Uz_2 . Hybridization of each central atom of group A compounds is same as that of iodine in $IBrCl^-$ while in group B compounds it is same as that of iodine in $IBrCl^+$. Substituents X, Y and Z exhibit covalency of one in ground state. Then find the value of x/y.

Where, x and y are total number of lone pairs present at central atoms of compounds of group A and B respectively.

2. Consider the following three compounds (i) AX_{2n}^{n-} , (ii) AX_{3n} and (iii) AX_{4n}^{n+} , where central atom A is 15th group element and their maximum covalency is 3n. If total number of proton in surrounding atom X is n and value of n is one, then calculate value of " $x^3 + y^2 + z$ ". (Where x, y and z are total number of lone pair at central atom in compound (i), (ii) and (iii)

3. Consider the following combination of atomic orbitals:

Combinding orbitals (internuclear axis)Combinding orbitals (Internuclear axis)

(i)
$$s + p_x(x)$$

(ii) $d_{xy} + d_{xy}(x)$

(iii)
$$d_{yz} + p_z(z)$$

(vi) s + s(z)

$$(v) \quad d_{yz} + d_{yz}(x)$$

(iv) $p_y + p_y(y)$

(vii)
$$d_{z^2} + d_{yz}(x)$$

(viii) $d_{z^2} + d_{z^2}(z)$

(viii) $d_{xy} + d_{xy}(z)$

(ix)
$$p_x + p_x(y)$$

(x) $s + p_x(x)$

Then calculate value of " $a^2 + b^2 + 2cd$ ". (where $a = \sigma$ M.O.; $b = \pi$ M.O.; $c = \delta$ M.O.; $d = \sigma$ non-bonding M.O.)

4. Consider the following six changes

(i) NO
$$\longrightarrow$$
 NO⁺

(ii)
$$O_2^- \longrightarrow O_2^{2-}$$
 (iii) $O_2 \longrightarrow O_2^+$ (iv) $NO^+ \longrightarrow NO^-$

(iii)
$$O_0 \longrightarrow O_2^{\dagger}$$

(iv)
$$NO^+ \longrightarrow NO^-$$

(v) NO⁺
$$\longrightarrow$$
 NO²⁺

(vi) CO
$$\longrightarrow$$
 CO⁺

Then calculate value of " $c^3 - b^2 - a$ ", where a, b and c are total number of transformations in which magnetic property will be changed, bond order increases and bond order decreases respectively.

5. When B₂H₆ is allowed to react with following Lewis bases, then how many given Lewis bases form adduct through symmetrical cleavage of B2H6?

MeNH₂,

Pyridine,

CO,

 PH_3 , T.H.F.,

PF₃,

Me₃N,

6. Consider the following elements A, B, C and D and their outer electronic configurations are ns^2np^1 , ns^2np^3 , ns^2np^4 and ns^2np^5 respectively. Element E also has same outer electronic configuration like D but shows only single oxidation state (-1). If element A, B, C and D belong to same period as that of sodium. Consider the following compounds.

(i) CE 4

(ii) BD_2E_3

(iii) DE₃

(iv) CE_2

(v) BD_3E_2

(vi) C_2E_2

(vii) DE

(viii) A_2D_6

Then calculate the value of " $x \div y$ ", (where x and y are total number of polar and non-polar compounds).

7. Consider following four compounds :

(a)
$$C_x O_y$$

(b) $C_x O_{y+1}$

(c)
$$C_{r+2}O_{r+1}$$
 and

(d)
$$C_{z+11}O_{y+8}$$

If "x = y = 1", then calculate the value of |p - q|, where p and q are total number of sp^2 and sphybridized carbon atoms respectively in given four compounds:

8. Total number of species among following which can use any one t_{2g} d-orbital in back bonding.

$$H_4SiO_4$$
, H_2NBF_2 , $O(SiH_3)_2$, $\stackrel{\uparrow\downarrow}{C}Cl_2$, $N(SiH_3)_3$, $(BN)_x$, R_3PO , P_4O_{10} , CCl_3^-

9. Calculate expression (x + y + z) for diatomic molecules.

Where $x = \text{Total number of singly occupied molecular orbital (SOMO) in O₂$

 $y = \text{Total number of singly occupied molecular orbital (SOMO) in B₂$

z = Total number of singly occupied molecular orbital (SOMO) in NO

10. If Hund rule violats, then find the total number of species among following which will be diamagnetic:

$$B_2$$
, O_2 , N_2^- , C_2 , NO, OF, N_2^{2-} , BN

11. Consider the following table

Compounds (X are monovalent surrounding atoms)		Central atoms(A to D) belong to group	Characteristics of compounds	Number of lone pair(s) at central atom
(i)	AX_{n_1}	16	Planar and polar	m_1
(ii)	BX_{n_2}	15	Trigonal pyramidal	m_2
(iii)	CX_{n_3}	14	Zero dipole moment	m_3
(iv)	DX_{n_4}	13	All X — D — X bond angle are 120°	m_4

Than calculate value of expression
$$\left| \frac{n_1 + n_2 + n_3 + n_4}{m_1 + m_2 + m_3 + m_4} \right|^2$$

12. Total number of species among following, in which bond angle is equal to or less than 109°28' and also they act as lewis base :

$$\mathrm{NH_3}$$
, $\mathrm{NMe_3}$, $\mathrm{O(SiH_3)_2}$, $\mathrm{ICl_4^-}$, $\mathrm{XeO_3}$, $\mathrm{BF_2Cl}$, $\mathrm{SiF_4}$, $\mathrm{AsH_3}$, $\mathrm{SO_2F_2}$

- **13.** Total number of unpaired electron(s) present in both cationic and anionic part of compound O₂[PtF₆].
- **14.** Total number of species which has/have symmetrical electronic distribution in their HOMO and also paramagnetic.

$$N_2^+$$
, O_2^{2-} , C_2 , O_2 , B_2 , C_2^{2-} , N_2^{2-}

- **15.** Total number of molecules, in which each covalent bond is comprised of effective back bond. BF₃, N(SiH₃)₃, PF₃, POF₃, B(OH)₃, O(SiH₃)₂, NH(SiH₃)₂, BFH₂, BF₂(NH₂)
- 16. Total number of angle in SeCl₄ which are less than 90°.
- 17. Consider the following species

O(Me)₂, N(SiH₃)₃, CO, O(SiH₃)₂, CCl₂(Singlet), CCl₃, H₄SiO₄, OCl₂, MeNCS Then calculate total number of species which have $(p_{\pi} - p_{\pi})$ back bond or $(p_{\pi} - d_{\pi})$ back bond.

- 18. Total number of molecules which can form H-bond among themselves.
 SiH₃OH, HCN,B(OMe)₃,NHMe₂,CH₃CONH₂,HCHO,HCOOH,NH₂OH,H₄SiO₄
- 19. Consider two covalent compounds AL_{n_1} and BL_{n_2} , if central atom (A) of first compounds has total six electron pairs and central atom (B) of second compound contains total five electron pairs in its valence shell and both compounds are planar and non-polar then calculate value of expression $(n_1 n_2)^2$.

[where n_1 and n_2 are number of monovalent surrounding atom (L)]

- 20. Calculate the I I distance in (Å) for given compound H₂CCI₂ if C I bond length is 2.35 Å. (sin 60° = 0.866)
- 21. There are some arrangements of atomic orbitals which are given below:

Then calculate the value of " $Q \times R - P$ " where, P, Q and R are no. of arrangements which give bonding molecular orbitals (positive overlap), antibonding molecular orbitals (negative overlap) and non-bonding molecular orbitals (zero overlap) respectively.

- **22.** Number of hybrid orbital C atoms which have 33% p character in $C(CN)_4$.
- 23. Max. no. of equal P O bonds in $P_2O_7^{4-}$ ion is:
- 24. Consider the following species:

(i) CH₃⁺

(ii) (CH₃)₃Al (iii) HCHO

(iv) CH₄

 $(v) (C_2H_5)_3N$

(vi) TiCl₄

(vii) CO₂

(viii) SiCl₄

(ix) BF₃

Then find out total number of species which can act as Lewis acid.

- **25.** Calculate value of |x-y|, here x and y are the total number of bonds in benzene and benzyne respectively which are formed by overlapping of hybridized orbitals.
- **26.** Consider the following compounds:

(i) IF₅

(ii) ClI₄

(iii) XeO₂F₂

(iv) NH₂

(v) BCl₃

(vi) BeCl₂

(vii) AsCl₄

(viii) B(OH)₃

(ix) NO_2^-

(x) ClO₂⁺

Then, calculate value of "x + y - z", here x, y and z are total number of compounds in given compounds in which central atom used their all three p-orbitals, only two p-orbitals and only one p-orbital in hybridisation respectively:

27. Consider the following molecule

Calculate value of $p \div q$, here p and q are total number of $d\pi$ - $p\pi$ bonds and total number of sp^3 hybridised atoms respectively in given molecule.

- **28.** Consider the following orbitals (i) $3p_x$ (ii) $4d_{z^2}$ (iii) $3d_{x^2-y^2}$ (iv) $3d_{yz}$ Then, calculate value of "x + y z" here x is total number of gerade orbital and y is total number of ungerade orbitals and z is total number of axial orbitals in given above orbitals.
- 29. Consider the following oxyanions:

$$PO_{4}^{3-}, P_{2}O_{6}^{4-}, SO_{4}^{2-}, MnO_{4}^{-}, CrO_{4}^{2-}, S_{2}O_{5}^{2-}, S_{2}O_{7}^{2-}$$

and find the value of R + Q - P

Where

P = Number of oxy anions having three equivalent

X - O bonds per central atom

Q = Number of oxy anions having two equivalent

X — O bonds per central atom

R = Number of oxy anions having four equivalent

X — O bonds per central atom

- **30.** Consider the following three compounds (i) AX_{2n}^{n-} , (ii) AX_{3n} and (iii) AX_{4n}^{n+} , where central atom A is 15 th group element and their maximum covalency is 3n. If total number of proton in surrounding atom X is n and value of n is one, then calculate value of " $x^3 + y^2 + z$ ". (Where x, y and z are total number of lone pair at central atom in compound (i), (ii) and (iii) respectively).
- **31.** Consider the following compounds and Calculate value of $\left(\frac{P^2 Q^2}{R + S}\right)$.

(i) BrF

(ii) ICl

(iii) BrF₃

(iv) BrF₅

(v) ICl₃

(vi) IF₃

(vii) IF

(viii) IF₇,

Where P: Total number of polar compounds,

Q: Total number of planar compounds

R: Total number of non-polar compounds

S: Total number of non-planar compounds

32. Consider the following compounds

(1) H₃CF

(2) H₂CF₂

(3) CH₄

(4) H₃CCF₃

(5) CH₃ CH₂

(6) C2H4

and calculate value of Y + X, (Where X is the total number of compounds which have H - C - H bond angles equal to $109^{\circ}28'$ and Y is the total number of compounds which have H - C - H bond angles greater than $109^{\circ}28'$ and less than 120°)

33. There are some species given below.

(i) O₂⁺

(ii) CO

(iii) B₂

(iv) O_2^-

(v) NO+

(vi) He₂⁺

(vii) C₂+

(viii) CN-

(ix) N_2

Total number of species which have their fractional bond order.

34. Following compounds *A* and *B* have similar structure with delocalization of π -electron system.

(A) $(PNCl_2)_{x/2}$

(B) $(CH)_x$

If value of x is 6, then calculate value of "P+Q", where 'P' is total no. of σ -bonds in compound A and B and 'Q' is total no. of π bond in compound A and B.

- **35.** The hybridization of central atoms of compounds A,B,C and D are sp^3d,sp^3,sp^2 and sp respectively. If compounds A and D have same shape like I_3^- and compounds B and C have same shape like water molecule. Then calculate value of "P+Q+R+S", where P,Q,R and S are number of lone pairs on central atoms of compounds A,B,C and D respectively.
- **36.** In compound PCl_xF_{5-x} , possible values of x are 0 to 5, then calculate value of $x_1 + x_2 + x_3$ (where x_1, x_2 and x_3, \ldots are possible values of x, with zero dipole moment for given compound).

ANSWERS

Treat counter of species which have their fractional bond orden

1.	(d)	2.	(c)	3.	(d)	4,	(b)	5.	(c)	6.	(b)	7.	(d)	8.	(a)	9.	(c)	10.	(d)
11.	(c)	12.	(b)	13.	(b)	14.	(b)	15.	(a)	16.	(b)	17.	(b)	18.	(a)	19.	(c)	20.	(d)
21.	(d)	22.	(a)	23.	(d)	24.	(b)	25.	(b)	26.	(a)	27.	(b)	28.	(d)	29.	(b)	30.	(b)
31.	(b)	32.	(c)	33.	(c)	34.	(c)	35.	(b)	36.	(c)	D 37.	(b)	38.	(c)	39.	(d)	40.	(b)
41.	(c)	42.	(d)	43.	(d)	44.	(c)	45.	(b)	46.	(d)	47.	(d)	48.	(b)	49.	(b)	50.	(a)
51.	(b)	52.	(c)	53.	(c)	54.	(b)	55.	(a)	56.	(a)	57.	(c)	58.	(d)	59.	(d)	60.	(a)
61.	(c)	62.	(b)	63.	(c)	64.	(c)	00 9		1.80.8		e saledia		NX W		The state of		mania Likasa	

Level 2

1.	(b)	2.	(a)	3.	(d)	4.	(a)	5.	(d)	6.	(d)	7.	(b)	8.	(b)	9.	(b)	10.	(b)
11.	(a)	12.	(d)	13.	(c)	14.	(d)	15.	(b)	16.	(b)	17.	(c)	18.	(b)	19.	(a)	20.	(c)
21.	(a)	22.	(a)	23.	(d)	24.	(b)	25.	(c)	26.	(b)	27.	(c)	28.	(a)	29.	(b)	30.	(a)
31.	(c)	32.	(b)	33.	(b)	34.	(d)	35.	(c,d)	36.	(d)	37.	(b)	38.	(d)	39.	(d)	40.	(c)
41.	(d)	42.	(b)	43.	(d)	44.	(b)	45.	(c)	46.	(c)	47.	(d)	48.	(d)	49.	(d)	50.	(d)
51.	(a)	52.	(d)	53.	(a)	54.	(b)	55.	(d)	56.	(c)	57.	(a)	58.	(a)	59.	(b)	60.	(d)
61.	(d)	62.	(a)	63.	(b)	64.	(d)	65.	(b)	66.	(a)	67.	(b)	68.	(c)	69.	(d)	70.	(d)
71.	(a)	72.	(b)	73.	(d)	74.	(a)	75.	(a)	76.	(c)	77.	(c)	78.	(c)				

Level 3

Passage-1	1.	(b)	2.	(c)	3.	(d)	3 W.S		(CHEE)		STEWN .		The same		
Passage-2	1.	(b)	2.	(d)											
Passage-3	1.	(d)	2.	(d)	3.	(a)									
Passage-4	1.	(c)	2.	(c)	3.	(c)									
Passage-5	1.	(d)	2.	(b)	3.	(d)				S Books					
Passage-6	1.	(d)	2.	(d)	3.	(d)		S. Vis.		A CONTRACT		Series.			
Passage-7	1.	(b)	2.	(a)											
Passage-8	1.	(c)	2.	(d)	3.	(b)									
Passage-9	1.	(c)	. 2.	(d)	3.	(a)									
Passage-10	1.	(b)	2.	(b)	3.	(a)				题					
Passage-11	1.	(c)	2.	(d)	3.	(a)	(b)	5.	(a)	6.	(c)	7.	(b)	e.	(c)

Hints and Solutions

Level 1

2. (c)
$$HO = S = S = OH$$
 $HO = S = OH$ $HO = S = S = OH$ $HO = S = S = OH$

13. (b) $2BH_3 \rightarrow B_2H_6$
 $H = Sp^3$
 $H = Sp^3$

16. (b)
$$\begin{vmatrix} x_1 & x_1 & x_2 \\ x_1 & x_2 & x_3 \\ x_4 & x_4 & x_5 \\ x_5 & x_6 & x_6 \\ x_7 & x_9 & x_9 \\ x_8 & x_1 > x_2 \\ x_9 & x_9 & x_9 \\ x_9 & x_1 > x_2 \\ x_1 & x_1 > x_2 \\$$

According to Bent's Rule in O_2F_2 , there is more *p*-character in O—F bond in comparison to O—H bond in H_2O_2 ; hence s-character in O—O bond is greater in O_2F_2 .

According to Bent's Rule

22. (a) Compound (B) exhibits intramolecular H-bonding has more vapour pressure than compound (A) involved in intermolecular H-bonding.

41. (c) Although both hydration and lattice energies of alkali metal fluorides decrease down the group and hydration energy dominates over lattice energy, therefore, solubility increases down the group.

44. (c) Only in BF₃ $p\pi$ - $p\pi$ back bonding is possible due to which B—F bond length is shortest. In other compounds, p-orbital at boron is not vacant hence, $p\pi$ - $p\pi$ back bonding is not possible.

Water molecules are hexagonally closed packed in ice with the help of H-bonds, hence due to existance of voids/interstitial spaces it has cage like structure with less density than water.

- 49. (b) As electronegativity difference of bond increases, polar character also increases.
- 51. (b)

 B. O. = $\frac{4}{3}$ = 1.33

 B. O. = $\frac{6}{4}$ = 1.5

 [B. L. $\propto \frac{1}{B. O.}$]

 SO₃² > SO₄² > SO₂ > SO₃

 Bent's Rule
- 63. (c) (i) Cl Al Cl (ii) CH₃ Al CH₃ (CH₃ Al CH₄ (CH₃ CH₃ (CH₃ Al CH₄ (CH₃ Al CH₄ (CH₃ Al CH₄ (CH₃ (CH₃ Al CH₄ (CH₃ (CH₃ Al CH₄ (CH₃ (CH₃ Al CH₄ (CH₃ (CH
 - (iii) AlF_3 \longrightarrow Al^{3+} + $3F^ 2s^22p^6$ (octet complete) (octet complete)
 - (iv) Cl—Be Cl Be—C (Incomplete octet)

64. (c) Cl-Hg-Hg-Cl

Mercurous ion is represented as Hg_2^{2+} it is evidenced by the fact that its $\mu = 0$, i.e., it is diamagnetic. It is possible only when there is presence of a metal-metal bond.

Level 2

2. (a)

μ (180°) μ	Non-polar bond : S—S Polar bond : S—F $\mu_D \neq 0$
$ \begin{array}{c} \mu_2 \\ \vdots \\ \vdots \\ \mu_1 \end{array} $ $ \begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \mu_2 \end{array} $	Non-polar bond : N—N Polar bond : N—O $\mu_D = 0$
Η H H H Si H Si H H H H H H H H	Non-polar bond : Si—Si Polar bond : Si—H $\mu_D = 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Non-polar bond : Absent Polar bond : I—Cl $\mu_D = 0$

$$p_{\pi}$$
- p_{π} bond(s) = 0
 p_{π} - d_{π} bond(s) = 1
Bond order of (I—O) = 1.5

$$H-C$$

$$p_{\pi}$$
- p_{π} bond(s) = 1
 p_{π} - d_{π} bond(s) = 0
Bond order of (C—O) = 1.5

$$p_{\pi}$$
- p_{π} bond(s) = 0
 p_{π} - d_{π} bond(s) = 1
Bond order of (S—O) = 1.33

$$p_{\pi}$$
- p_{π} bond(s) = 0
 p_{π} - d_{π} bond(s) = 2
Bond order of (Xe—O) = 2.0

7. (b)
$$H_3C$$
 $N = C = S$ H_3Si $N = C = S$ H_3C $N = C = S$ H_3C $N = C = S$ $N = C$ $N = C$

8. (b) Triplet carbene is more stable than singlet carbene.

13. (c) XeF_5^- : 2 lone pairs ; pentagonal planar BrF_3 : 2 lone pairs ; Bent-T-shape XeF_2 : 3 lone pairs ; Linear H_3S^+ : 1 lone pairs ; Pyramidal CH_2 : 2 unpaired $\bar{e}s$; Linear (No lone pair)

(II)
$$H_3C$$
— P
 CH_3
 CH_3

(III)
$$F$$
 F
 $\mu \neq 0$
(Polar)

 F
 F
 $\mu = 0$
(No Polar)

15. (b) Cl
$$P$$

$$F \downarrow Cl$$

$$F \downarrow Cl$$

$$\mu = 0$$

$$\mu \neq 0$$

In sheet silicates although one SiO_4^{4-} tetrahedron is linked to other three tetrahedrons but the layer/sheet obtained is not planar, as fourth oxygen atom is projecting away from sheet.

each layer is planar as both B and N are sp^2 hybridized (d)

Hyponitrous acid

Pyrosulphurous Acid:
$$H-O \stackrel{3}{\overset{}{=}} S \stackrel{-S}{\overset{}{=}} O \stackrel{1}{\overset{}{=}} O \stackrel{1}{\overset{=$$

Tetra Polyphosphoric Acid: (H₆P₄O₁₃)

No. of P-O-P linkages = 3

(a)
$$N \equiv C - C \equiv N$$

(b)
$$^{-}O - C = N$$
(Linear)

(P₄O₁₀)

24. (b) In trigonal bipyramidal geometry lone pairs (if present) never placed at axial positions.

(Trigonal bipyramidal geometry)

(Trigonal planer shape is not possible)

- → Hybridization of Te : $sp^3d^2(sp_xp_yp_zd_{x^2-y^2}d_{z^2})$ → Axial positions are formed by hybrid orbitals. → All M—X bond lengths are identical.

- → Hybridization of Te : $sp^3d(\equiv sp_xp_y + p_zd_{z^2})$ → All M X bond lengths are not identical
- 26. (b) In see-saw structure, as lone pair lies in equatorial position, hence there is more reduction in equatorial bonds than in axial bonds.
- **27.** (c) $IO_2F_2^-$: Hyb. sp^3d , $[= sp_xp_yp_zd_{z^2}]$ CIF_4^- : Hyb. sp^3d^2 $[= sp_xp_yp_zd_{x^2-y^2}d_{z^2}]$ IF_7 : Hyb. sp^3d^3 . $[sp_xp_yp_zd_{x^2-y^2}d_{xy}d_{z^2}]$ d_{xy} : orbital has two nodal planes xz and yz
- **28.** (a) CO₃ sp²
- **30.** (a) $\Rightarrow Q = S$: both S—F bonds are of equal length.
 - $\Rightarrow \bigcirc \stackrel{F}{\text{Se}} = \text{Equatorial Se} = \text{F bond is shorter than axial Se} = \text{F bond}$
 - $\Rightarrow F \xrightarrow{P} \xrightarrow{P} \Rightarrow \text{Equatorial P} \Rightarrow \text{F bond is shorter than axial P} \Rightarrow \text{F bond}$
 - $F \Rightarrow$ Equatorial I—F bond is longer than axial I—F bond.

31. (c)
$$a = 1.577\text{Å}$$

$$b = 1.534$$
Å $c = 1.612$ Å $d = 1.543$ Å $e = 1.643$ Å

f = 1.553Å

1.553Å
$$g = 2.19$$
Å

$$h = 2.04$$
Å

 \rightarrow According to Bent's Rule : f > d > b and

$$h > f$$
 as $r_{\rm Cl} > r_{\rm F}$

$$g > e$$
 as $r_{\rm Cl} > r_{\rm F}$

32. (b) According to Bent's Rule more electronegative substituents attached to hybrid orbital that contains more p-character. Hence, more p-character, longer will be bond length.

It can be explained on the basis of Bent's rule. In N₂F₄, N—N bond has more s-character hence bond length decreases.

While in N₂H₄, N—N bond has less s-character (i.e., more p-character), hence bond lengths

∠OSO =109°28' ∠OXeO =109°28' ∠OClO =109°28' \angle FCF = 109°28' \Rightarrow Order of bond angle O(SiH₃)₂ > N(SiH₃)₂ > OMe₂

∠FSF < 109°28'

∠FSF < 90°

NO₂

∠FSF < 109°28'

43. (d)

36. (d)

- (a) $T_2 > D_2 > H_2$
- [BP ∝ mol.wt.]
- (b) n-pentane > neo-pentane
- [BP ∝VWf ∝ contact area ∝

(c) Xe > Ar > He OH (d)

Intermolecular H-bonding

Intramolecular H-bonding

44. (b)

Its formation is faster than that of X_2^{2-} ; Therefore weaker conjugate base than X_2^{2-}

45. (c) NH₃ is stronger lewis base than H₂O and H₂O has more acidic H-atom than NH₃.

- **48.** (d)
- (a) H_2 H_2 O Dipole-induced dipole interaction (van der Waals' force) energy < 8 kJ/mol (b) H—Cl....H—Cl Dipole-dipole interaction (van der Waals' force) < 8 kJ/mol (c) F $^-$HF Ion-dipole H-bond (very strong H-bond energy) > 42 kJ/mol H-bond energy ranges from 8-42 kJ/mol
- 50. (d) In CdI₂, Pink colour is due to polarization of I⁻ by Cd²⁺ has pseudonoble gas configuration. In CdCl₂ extent of polarization of Cl⁻ by Cd²⁺ is relatively less, hence specific colour cannot be predicted.

157

- **54.** (b) → In NH(SiH₃)₂ electron density or lone pair at N-atom is involved in back bonding only with two empty 3*d*-orbitals of two silicon atoms while in N(SiH₃)₃ it is involved with three empty 3*d*-orbitals of three silicon atoms.
 - \rightarrow Strength of back bonding in NH(SiH₃)₂ is higher than in N(SiH₃)₃ hence N—Si bond length in NH(SiH₃)₂ is less than that of in N(SiH₃)₃.
- **55.** (d)

Hybridisation of O-atom: sp^2 due to more extent of $(2p_\pi-3d_\pi)$ back bonding

Hybridisation of O-atom remains sp^3 , because of less effective $(2p_{\pi}-3d_{\pi})$ back bonding due to d-orbital resonance

56. (c) More stronger the back bond, smaller will be the bond length.

$$H > N - SiH_3$$

Strongest back bond ☐
∴ Smallest bond length

due $p\pi$ - $p\pi$ back bonding Hybridisation of Nitrogen : sp^2 planar shape Hybridisation: sp² pyramidal shape

No back bonding pyramidal shape

60. (d)
$$BF_2NH_2 \stackrel{F}{F} > B = N < H \approx \stackrel{F}{F} > \overline{B} = \stackrel{+}{N} < H$$

- * Both boron and nitrogen are sp²-hybridised.
- * FBF bond angle < 120° (VSPER theory)
- * HNH bond angle is less than 120° but greater than 109°28' due to back bonding.
- * Due to presence of H-atom attached to nitrogen this molecule can exhibits intermolecular H-bonding.

Due to steric repulsion among Cl-atoms observed ∠Cl C Cl is found to be greater than expected.

Bond angle between both C—Cl bonds is greater than 60° due to steric repulsion between both Cl-atoms, hence μ_D (observed) < μ_D (Theoretical)

Observed bond angle between both C—NO₂ bonds is found to be greater than 60° due to steric repulsion, between NO₂ groups, hence μ_D (observed) < μ_D (Theoretical)

Observed bond angle between C—O and C—Cl bond is found to be less than 60° due to intramolecular H-bonding present in it, hence, μ_D (observed) > μ_D (Theoretical)

- **65.** (b) Due to inter electronic repulation between lone pairs on both oxygen atoms bond energy of 0—0 bond is less.
- 66. (a) Aqueous hydrolysis of CCl₄ is not possible due to absence of vacant orbital on carbon, while hydrolysis of MgCl₂, AlCl₃, SiCl₄ and PCl₅ is possible. Extent of hydrolysis is proportional to the amount of positive formation charge present on the atomic site prone to attack of H₂O molecules.
 CCl₄ < MgCl₂ < AlCl₃ < SiCl₄ < PCl₅

68. (c)
$$BCl_3 + 3H_2O \longrightarrow H_3BO_3 + 3HCl$$

 $NCl_3 + 3H_2O \longrightarrow NH_3 + 3HOCl$

71. (d)	Species : Bond order Total No. of	P ₂ : (B ₂)	Q ₂ :(C ₂)	R ₂ : (N ₂) 3.0	S ₂ (O ₂) 2.0	T ₂ : (F ₂
	valence e s	H a comm	9 8 M	10	12	14

74. (a)

(a) $C_2^+ \longrightarrow BO \approx 1.5$ Paramagnetic	C ₂ BO = 2 Diamagnetic	(b)	NO ⁺ → BO = 3 Diamagnetic	NO BO = 2.5 Paramagnetic
(c) $O_2 \longrightarrow Paramagnetic$	O_2^+ BO = 2.5 Paramagnetic	(d)	$N_2 \longrightarrow BO = 3$ Diamagnetic	N ₂ ⁺ BO = 2.5 Paramagnetic

75 (a) According to coulsion model, H.O.M.O. (Highest Occupied Molecular Orbital) of CO molecule is non-bonding M.O. with slight antibonding character.

77. (c) σ -bonding molecular orbital is gerade due to having center of symmetry.

78. (c) (a) Acidic strength of HBr > HCl and their reducing properties are also in same order (b) Basic strength of PH₃ > AsH₃, their bond angles are also in same order

(c) $\theta_2 > \theta_1$ because C—H bond has more s-character in CH₃F than in CH₃Cl.

(d) K_{σ_1} of maleic acid is higher than K_{σ_1} of fumaric acid but reverse is true for their K_{σ_2}

Level 3

Passage-2

1. (b) H—Cl ... H—Cl. The bond energy (E) between two H—Cl molecules, caused by dipole-dipole interaction is not found to be in the range of unsymmetrical H-bond energy, rather it is less than 8 kJ/mol, hence this interaction is called weak dipole-dipole interaction.

2. (d) Na*:CCl₄: ion-induced dipole < 8 kJ/mol
CHCl₃: Br: Weaker ion-dipole < 8 kJ/mol
C₆H₆:CCl₄: London dispersion forces < 8 kJ/mol
H₂O: HCN: Unsymmetrical H-bond: 8-42 kJ/mol

Passage-3

(d) → Halogens are non-polar species, hence London dispersion forces act among them and these forces
are directly proportional to molecular weight.

 \rightarrow London dispersion forces \propto B.P. and M.P. in such non-polar species.

2. (d)
$$\cdots$$
 HO \cdots HO \cdots HO \cdots HO \cdots Intermolecular H-bonding

- 3. (a) → Boiling point of HN₃ > CH₃N₃ as in hydrazoic acid (HN₃) intermolecular H-bonding occurs and its bond energy is higher than weak dipole-dipole interactions present in CH₃N₃.
 - → Boiling point of BI₃ is greater than that of BF₃ as molecular weight of BI₃ is higher than that of BF₃.
 - → Due to intermolecular H-bonding in H₂SO₄ its boiling point is higher than Me₂SO₄.
 - \rightarrow Similarly due to intermolecular H-bonding in B(OH)₃ its boiling point is higher than that of Me₃BO₃.

Passage-4

- **1.** (c) **P**: $\sigma 1s^2 < \overset{\star}{\sigma} 1s^2 < \sigma 2s^2 < \overset{\star}{\sigma} 2s^2 < \pi 2p_{x^2} < \pi 2p_{y^2} < \sigma 2p_{z^1}$
 - \rightarrow by removing one \bar{e} , P becomes diamagnetic from paramagnetic.
 - \rightarrow Bond order of $P(i.e., N_2^+) < Bond order of N_2$

Q:
$$\sigma 1s^2 < \dot{\sigma} 1s^2 < \sigma 2s^2 < \dot{\sigma} 2s^2 < \sigma 2p_{z^2} < \pi 2p_{x^2} = \pi 2p_{y^2} < \dot{\pi} 2p_{y^2} = \dot{\pi} 2p_{y^2}$$

 \rightarrow by adding one \overline{e} , Q become diamagnetic from paramagnetic Bond order of $Q(i.e., O_2^-)$ < bond order of O_2

R:
$$\sigma 1s^2 < \overset{\star}{\sigma} 1s^2 < \sigma 2s^2 < \overset{\star}{\sigma} 2s^2 < \sigma 2p_{z^2} < \pi 2p_{x^2} = \pi 2p_{x^2} < \overset{\star}{\pi} 2p_{y^1} = \overset{\star}{\pi} 2p_{y^0}$$

 \rightarrow by adding one \bar{e} , R retains its paramagnetic behaviour

$$\mathbf{T}:\sigma 1s^2 < \overset{\star}{\sigma} 1s^2 < \sigma 2s^2 < \overset{\star}{\sigma} 2s^2 < \pi 2p_{_{\chi^2}} = \pi 2p_{_{\chi^2}}$$

 \rightarrow by adding one \bar{e} , T becomes paramagnetic from diamagnetic

Passage-5

3. (d)

Compound, MX_n type $(n = 2 \text{ or } 3 \text{ or } 4)$	Value of cos θ (θ = bond angle between equivalent hybrid orbitals)
P	$-0.241 \longrightarrow \text{close to } sp^3$
Q	$-0.292 \longrightarrow close to sp^3$
R	$-0.5 \longrightarrow sp^2$
S	$-0.325 \longrightarrow sp^3$
T	$-0.469 \longrightarrow close to sp^2$

Passage-6

- 1. (d) Order of bond angle :
 - (i) $PH_3 > H_2Se > H_2Te$

- (ii) $NO_2^- > NH_2^-$
- (iii) $POCl_3 > POF_3(X P X \text{ angle})$
- (iv) $OSF_2Cl_2 > SF_2(CH_3)_2(\angle F S F)$

- 2. (d)
- (a) $\bigcirc Br F$

 \Rightarrow Maximum number of atoms that can lie in a plane = 4

- (b) $H = CH_3$ \Rightarrow Hydrogen atoms bonded by $1s sp^2$ overlapping lie in axial plane.
- Cl $Cl \Rightarrow \angle Cl S Cl \text{ is less than } 120^{\circ}, \text{ due to shifting of } s\text{-character in } S = O \text{ bond.}$ Cl
- (d) : F: F:
- :O: :F₁-#--F: :F -#--F:

No. of lone pairs = 17

No. of lone pairs = 16

3. (d) For XeO_2F_4 , $=\frac{n_2}{n_1}=1$

Hyb. of Xe : $sp^3d^2[sp_xp_yp_zd_{x^2-v^2}d_{z^2}]$

Passage-7

- 1. (b) In AsH₃, P₄ and H₂Se \rightarrow No Hybridisation [Acc. to Drago's rule] $GeH_4 \rightarrow sp^3$ -hybridisation [% s=25%] maximum.
- 2. (a) $PH_4^{\oplus} \rightarrow sp^3[109^{\circ}28']$ $OF_2 \rightarrow sp^3$ [B.A. < 109°28'] $SF_2 \rightarrow sp^3[B.A. < 109^{\circ}28']$ $SbH_3 \rightarrow No hybridisation [B.A. \approx 90^{\circ}]$ $Order of B.A. : PH_4^{\oplus} > OF_2 > SF_2 > SbH_3 > H_2Te$

Passage-11

- 3. (a) Bond order ∞ Bond energy $\infty \frac{1}{\text{Bond length}}$
- 5. (a) $\xrightarrow{p_x}$ + $\xrightarrow{+}$ \xrightarrow{s} $\xrightarrow{\sigma_{sp}}$

(No nodal plane between both nuclei)

7. (b) bonding M.O. has maximum electron density between two nuclei

8. (c)
$$\left(\begin{array}{c} + \\ -\\ -\\ \end{array}\right)$$
 $\left(\begin{array}{c} + \\ -\\ -\\ \end{array}\right)$ $\left(\begin{array}{c} + \\ -\\ -\\ \end{array}\right)$

Passage-12

2. (c) Fraction of charge = $\frac{1.2 \times 10^{-18}}{4.8 \times 10^{-10} \times 10^{-8}} = 0.25$

3. (c)
$$(I) \qquad (II) \qquad (III) \qquad (III) \qquad (IV)$$

$$\mu_1 \qquad 2\mu \qquad \mu \qquad \mu = 0$$

5. (b)
$$F = C = C + F = F = C = C + F = F = C = C + F = F = C = C + C = C + F = C = C + F = C = C + F = C = C + F = C = C + F = C = C + F = C = C + F = C = C + F = C = C + F = C = C = C = C = C = C$$

Passage-14

1. (c) AlF₃ is ionic compound, hence Al³⁺ and F⁻ both have complete octet, rest compounds do not complete, their octet.

ONE OR MORE ANSWERS IS/ARE CORRECT

According to Bent's rule there is more p-character in B-F bond than in B-N bond; hence FBF is less than

As size of —NH2 group is larger than F-atom hence repulsion between —NH2 group and F-atoms is higher than between two F-atoms.

As lone pair of N-atom in NH2 group participate in back bonding hence H—N—H is greater than 109°28', as hybridization of N is changing from sp³ towards close to sp²

7. (a, d)

 $\mu_1>\mu_2\Rightarrow$ due to higher difference in electronegativity of N and C than between P and C $\mu_1' > \mu_2' \Rightarrow$ because $2p_{\pi} - 3d_{\pi}$ back bonding in the P—O bond decreases its dipole moment hence $(R_3NO)_{\mu} > (R_3PO)_{\mu}$

Hence, experimental dipole moment of R_3PO < theoretical dipole moment of R_3PO .

Due to $2p_{\pi} \cdot 3d_{\pi}$ back bonding observed bond angle in $N(SiH_3)_3$ and $O(SiH_3)_2$ is higher than expected

both have no back bonding but higher bond angle is due to steric repulsions between methyl groups.

$$\Rightarrow X \xrightarrow{X} Y \xrightarrow{\text{on replacement}} Z \xrightarrow{Z} Y$$

$$X \downarrow P \downarrow Z$$

$$X \downarrow P \downarrow Z$$

$$X \downarrow P \downarrow Z$$

$$Y \downarrow P \downarrow Z$$

10. (a, b, c, d)

According to Bent's rule, there is less s-character in C—F bonds in COF₂ than in C—Cl bonds in case of COCl₂ hence $\gamma' > \gamma$ and \angle FCF is less than 120°.

 $\Rightarrow \alpha = \beta$ as both C—F bonds are equivalent similarly $\alpha' = \beta'$ as both C—Cl bonds are equivalent $\alpha = \beta > \gamma$ $\alpha > \alpha'$

$$\beta > \beta'$$

11. (a, b, d)

[Melting point of a covalent compound having bond between metal and non-metal]

Hence, melting point of $BeF_2 > BeCl_2$

12. (c, d)

$$K_a' > K_a$$

$$CHF_3 \stackrel{K_a}{\rightleftharpoons} CF_3^- + H$$

$$F \stackrel{\text{...}}{\underset{F}{\overset{\text{...}}{\bigcap}}} F$$
 Stabilized by inductive effect of F-atoms

$$CHCl_3 \stackrel{K'_a}{\longleftarrow} CCl_3^- + H^+$$

$$Cl = \begin{bmatrix} \ddot{C} & 2p_{\pi}-3p_{\pi} \text{ back bonding} \\ & Cl & Cl \end{bmatrix}$$

Due to combined effect of inductive effect of Cl-atoms and $2p_{\pi}-3d_{\pi}$ back bonding, lone pair at C-atom (negative charge) in CCl_3^- is more delocalized than in CF_3^- . Hence CCl_3^- is more stable than CF_3^- and CCl_3^- is

14. (a, b, c, d)

- (a) The plane which passes from (Cl₁, F₁, F₂ and As) contains 3-halogen atoms.
- (b) Axial plane \rightarrow maximum atom = 5[F₁, F₂, As, C, H] equatorial plane \rightarrow maximum atom = 5[Cl₁, Cl₂, As, C, H]

- (c) (B. L. $)_{As-Cl} > (B. L.)_{As-F}$ As size of Cl-atom >> F-atom.
- (d) Equatorial plane \rightarrow maximum atoms = 5[Cl₁, Cl₂, As, C, H]
- 15. (a, b)
 - (a) N3,

$$\overset{\ominus}{N} = \overset{\oplus}{N} \overset{\ominus}{=} \overset{\ominus}{N} \overset{\ominus}{\leftrightarrow} \overset{\oplus}{N^2} \overset{-}{-} \overset{-}{N} \overset{=}{=} \overset{N}{N} \overset{-}{\leftrightarrow} \overset{-}{N} \overset{-}{\to} \overset{-}{\to}$$

(b)
$$N_2F_2$$
, $N=N_F$ (B.O.)_{N-N} = 2

$$(B.O.)_{N-N} = 2$$

(c)
$$N_2O_4$$
, $O_2N-N < O_1$ (B.O.)_{N-N} =1

$$(B.O.)_{N-N} = 1$$

(d)
$$N_2O$$
, $N \equiv N \rightarrow O$ (B.O.)_{N-N} ≈ 3

$$(B.O.)_N N \approx 3$$

(a)
$$\underline{\underline{Al}(OH)_3} + \text{NaOH} \longrightarrow \text{Na}[\underline{\underline{Al}(OH)_4}]$$

$$(sp^2) \qquad (sp^3)$$

(c)
$$\underline{\underline{SiF}_4} + 2HF \longrightarrow \underline{H_2\underline{SiF}_6} (sp^3d^2)$$

(d)
$$2\underline{PCl}_5 \xrightarrow{\text{solidification}} \underline{PCl}_4^{\oplus} + \underline{PCl}_6^{\ominus} \xrightarrow{(sp^3d)}$$

24. (a, c, d)

 O_2 = Paramagnetic molecule with 2 unpaired electrons in antibonding p-orbital

O₃ = diamagnetic molecule

 B_2 = Paramagnetic with 2 unpaired electron in bonding π -orbitals

C₂ = Diamagnetic molecule

 $NO \longrightarrow NO$ (Electron removes from antibonding orbital

bond length decreases)

 $CO \longrightarrow CO$ (Electron removes from antibonding orbital

bond length decreases)

bond length decreases)

25. (c,d)
$$H - C \stackrel{\bigcirc}{\longrightarrow} H - C \stackrel{\bigcirc}{\longrightarrow} B.O. = \frac{2+1}{2} = 1.5$$

B.O. =
$$\frac{2+1+1}{3} = \frac{4}{3} = 1.33$$

C-O bond length in HCOO is less than C-O bond length in CO₃²

26. (a,c,d)
$$\stackrel{\text{H}}{\underset{\text{F}}{\bigvee}} C = \stackrel{\text{F}}{\underset{\text{F}}{\bigvee}} F$$

Hydrogen atoms are in a vertical plane with axial fluorine atoms π -bond involving a p-orbital of carbon atom must lie in equatorial plane of the molecule.

Six atoms, i.e., 2 H-atoms, C, S and both axial F-atoms lie in one plane.

29. (a,b,c,d)
$$\stackrel{\delta+}{\text{Si}} \stackrel{\delta-}{\text{H}} \stackrel{\delta-}{\text{C}} \stackrel{\delta+}{\text{C}} \stackrel{\delta-}{\text{H}}$$

31. (b,c,d)

Molecule may have only integral/fractional value of bond order Molecule may or not be paramagnetic Molecule will exist

32. (a, b, c, d)

and

$$\begin{bmatrix} F \\ B \\ F \end{bmatrix}^{-}$$
 No. of σ bonds in $[BF_4]^{-} = 4$

B.O. of NO = 2.5

⇒ B.O. of NO⁺ = 3.0, i.e., one sigma bond and two π bonds
 ∴ No. of π bonds = 2
 No. of σ bonds = 5
 ⇒ B.O. of NO⁺ = 3.0

- ⇒ NO⁺ is diamagnetic and BF₄⁻ is also diamagnetic
- \Rightarrow B—F bonds are longer in BF₄ than in BF₃ due to absence of $p\pi$ - $p\pi$ back bonding in [BF₄]

apaired e a and helf

thedes and half

- → Si-O-Si ≈ 144°
- → Hybridization of O-atom changed to sp²
- \rightarrow In $2p_{\pi}$ $3d_{\pi}$ back bonding non-axial d-orbital of t_{2g} is used
- → Electron density at O-atom decreases

- → ∠Cl O Cl increases due to back bonding and steric repulsion between both Cl-atoms
- → Hybridization of C remains sp²
- → Electron density increases at central C-atom.

- \rightarrow Electron density at Si-atom increases due to $2p_{\pi} 3d_{\pi}$ back bonding
- \rightarrow Non-axial d-orbital of t_{2g} set of orbitals is involved in back bonding
- → All O—Si—O remains at 109°28' because all four substituents are same

$$(d) \begin{array}{c} Me_2N & \textcircled{\uparrow} & \textcircled{g} \\ Me_2N & B-NMe_2 \\ & \textcircled{g} \\ & 2p_{\pi}-2p_{\pi} \text{ back bonding} \end{array}$$

- $2p_{\pi}^{-2}p_{\pi}$ back boliding
- → Hybridization of central does not change
 → Electron density at B-atom increases
- → All N—B—N remain same as all three substituents are same.
- 2. M.O. configuration for molecules having total number electron less or equal to 14.

$$\sigma ls < \dot{\sigma} ls < \sigma 2s < \dot{\sigma} 2s < \pi 2p_x < \sigma 2p_z < \dot{\pi} 2p_x < \dot{\sigma} 2p_z$$

$$\pi 2p_y \qquad \dot{\pi} 2p_y$$

For molecules having total number of e^-s greater than 14

$$\sigma ls < \mathring{\sigma} \, ls < \sigma 2s < \mathring{\sigma} \, 2s < \sigma 2p_z < \pi 2p_x < \mathring{\pi} \, 2p_x < \mathring{\sigma} \, 2p_z$$

$$\pi 2p_y \qquad \mathring{\pi} \, 2p_y$$

S. No.	1		No. of unpaired e ⁻ s and lieff unpaired e ⁻ s and lieff	Mixing of s and p-orbitals	Bond order
а	CO	14	diamagnetic	Yes	3.0
	CN-	14	diamagnetic	Yes	3.0
	NO ⁺	14	diamagnetic	Yes	3.0
	O ₂ +	14	diamagnetic	No	3.0
ь	N_2^+	13	paramagnetic	Yes	2.5
	O_2^+	15	paramagnetic	No	2.5
	O_2^-	17	paramagnetic	No	1.5
	NO	15	paramagnetic	Yes	2.5
c	NO-	16	paramagnetic	Yes	2.0
	N_2^{2+}	13	diamagnetic	Yes	2.0
	C_2	12	diamagnetic Propried	Yes	2.0
	B ₂ -	12		Yes	2.0
d	CN	13 : 17 :	paramagnetic	Yes	2.5
	C_2^+	11	paramagnetic	Yes	1.5
	B_2^+	9	diamagnetic	Yes	0.5
	N_2^-	15	diamagnetic	Yes	2.5

3. (a) $3I_2 \rightarrow I_3^+ + I_3^-$

(b) $B(OH)_3 + OH^- \rightarrow B(OH)_4^-$

$$\begin{array}{ccc}
H & \rightarrow & \text{Hybridization of B} : sp^3 \\
\downarrow & \rightarrow & \text{Non-planar} \\
H & O & & \\
O & & & \\
H & & & & \\
\end{array}$$

(c) Ba²⁺SO₄²⁻: O-
$$\int_{0}^{S}$$
 O- \int_{0}^{S} ; Hybridization of S: sp^3 Non-planar $p\pi$ - $d\pi$ bonds = 2

(d) MgO ⇒ Ionic; SO₂: covalent

- Ogual distribution of s-character in hybrid orbits Hybridization of S: sp^2 , - All 2- Hr ponds siegequivalens

Planar

 $p\pi$ - $d\pi$ bonds = 1

 $\rightarrow 2p_{\pi}-3d_{\pi}$ back bond

→ Can exhibit intermolecular H-bonding as H-atom is bonded to O-atom.

- All Ne- O bonds are equivalent

→ Proton donor acid; basicity = 4

→ back bond is absent

→ can form intermolecular H-bond as H-atom is directly bonded to O-atom

→ Proton donor acid, basicity = 2

 \rightarrow Hypervalent, Number of e^- s at Se = 12

$$\Rightarrow \begin{array}{c} & & & \\ & \downarrow \\ \parallel 2p_{\pi} \cdot 2p_{\pi} \end{array}$$

$$\Rightarrow \begin{array}{c} & & \\ H - O \end{array}$$

 $\rightarrow 2p_{\pi}-2p_{\pi}$ back bond is present

 \rightarrow Hypovalent, as number of e^-s at B-atom = 6

→ Does not furnish H⁺

 $\rightarrow 2p_{\pi}$ -2 p_{π} back bond is present

→ Can form intermolecular H-bonding as H-atom is directly bonded to N-atom Hypovalent number of e^- sat B-atom = 6

→ Does not furnish H+

→ Unequal distribution of s-character in hybrid orbitals

 $\rightarrow \angle C - O - C > 109^{\circ}28'$

→ Both O—C bonds are equivalent

(b)
$$\begin{array}{c} \bigcirc \\ N \\ H \end{array} \rightarrow \begin{array}{c} \text{Unequal distribution of s-character in hybrid orbitals} \\ \rightarrow \angle \text{HNH} < 109^{\circ}28' \\ \rightarrow \text{All three N-H bonds are equivalent} \end{array}$$

(c) Br
$$\stackrel{P^+}{\underset{Br}{|}}$$
 Br $\xrightarrow{P^+}$ Br $\xrightarrow{\rightarrow}$ Equal distribution of s-character in hybrid orbitals $\xrightarrow{\rightarrow}$ \angle Br \xrightarrow{P} \xrightarrow{B} $\xrightarrow{\Rightarrow}$ All P—Br bonds are equivalent

(d)
$$O \longrightarrow O \longrightarrow O \longrightarrow C$$
 Equal distribution of s-character in all hybrid orbitals $O \longrightarrow C \longrightarrow C \longrightarrow C$ $O \longrightarrow C \longrightarrow C \longrightarrow C$ $O \longrightarrow C \longrightarrow C$ $O \longrightarrow C \longrightarrow C$ bonds are equivalent

11.
$$h S_4O_6$$
:

 $H = O = S^{+5} = S^0 = S^0 = S^{+5} = O = H$
 $S^{-2} = O = S^{+6} = O = H$
 $H_2S_2O_3$:

 $H = O = S^{+6} = O = H$
 $H_2S_2O_5$:

 $H = O = S^{+6} = O = H$
 $O = O = S^{+6} = O = H$
 $O = O = S^{+6} = O = H$

(B)
$$CusO_4.5H_2O$$

$$\begin{bmatrix}
H & O & 2 + & O & H \\
H & O & Cu & O & H
\end{bmatrix}^{2+}$$
(C) HNC
$$H - N = C$$

14. (A)
$$\mu_2 \leftrightarrow Cl$$
 F
 μ_1
 $\mu_2 \leftrightarrow F$
 μ_1
 $\mu_2 \leftrightarrow F$

sp³d hybridisation Trigonal bipyramidal

sp² hybridisation Trigonal planar

sp hybridisation linear

$$\mu = 0$$

No. of $e^-s = 22$

 $\begin{array}{l}
sp^2 \\
\text{planar} \\
\mu = 0 \\
\text{No. of } e^-s = 42
\end{array}$

sp³d hybridisation Trigonal bipyramidal

 sp^2 hybridisation Trigonal planar (a be nerve) perfected possible as s

sp hybridisation

linear
$$\mu = 0$$

No. of
$$e^-s = 22$$

B: sp² N: sp² a walked nagority dio necessirement a planar

$$\mu = 0$$
 No. of $e^-s = 42$. The property between the second and the second se

15. NH_2^{Θ} Hybridisation sp^3 V-shaped (2-bp, 2-lp)

 $XeOF_2$ sp^3d T-shaped (3-bp, 2-lp)

 $ICl_4^ sp^3d^2$ square planar (4-bp, 2-lp)

 $[SbF_5]^{2-}$ sp^3d^2 square pyramidal (5-bp, 1-lp)

ASSERTION-REASON TYPE QUESTIONS

4.
$$F \subset C = C = C \to F$$

 $F \subset Sp^2 Sp Sp^2 \to F$: Non-planar

$$F > B - C = C - B < F$$
: Planar $F > sp^2 sp sp sp sp^2 F$:

- **12.** (B) In H Cl, O is more electronegative than Cl. Hence, its will contain mores s character in hybrid orbital hence bond angle will be more than expected. Hence, bond angle is HOCl is greater than HOF.
- **14.** (D) $\Pr_{\substack{\text{Oxidizing}\\ \text{agent}}}^{4+} + \Pr_{\substack{\text{strong}\\ \text{reducing agent}}}^{4-} \longrightarrow \Pr_2 + \Gamma_2$

hence, PbI₄ does not exist

Pb⁴⁺ + 4Cl⁻
$$\longrightarrow$$
 PbCl₄ $\xrightarrow{\text{above}}$ PbCl₂ + Cl₂ oxidizing not good agent red, agent like 1⁻ \longrightarrow PbCl₄ \longrightarrow PbCl₂ + Cl₂

Since Cl_2 is a strong oxidizing agent, hence Cl^- is poor reducing agent, therefore $PbCl_4$ does from but decomposes on heating.

25. (A) In $(CH_3)_3$ N, N is sp^3 hybridized, having pyramidal structure because of absence of vacant orbital on carbon atom therefore no back bonding is possible.

In $(SiH_3)_3N$, N is sp^2 hybridized, on the basis of $p\pi$ - $d\pi$ back bonding $(SiH_3)_3N$ resulting into triangular planar structure

Covalency of both C and Si is four.

28. (B) This combination can not form π -bond by sideways overlapping due to different sign of ψ along z-axis.

29. (B) The correct representation of hydrogen bonding is
$$H - N - H - O$$

$$NH_3 + H_2O \longrightarrow NH_4^+ + OH^- \qquad | \qquad | \qquad H$$

and ammonia never acts as acid in aqueous medium.

$$NH_3 + H_2O \longrightarrow NH_2^- + H_3O^+$$

SUBJECTIVE PROBLEMS

1.
$$I_3^- \Rightarrow sp^3d$$

Group A

$$\begin{array}{cccc}
Px_4 & 1 \\
Qy_3 & 2 \\
Rz_2 & 3 \\
x &= \textbf{Total } l.P. &= \textbf{6}
\end{array}$$
AsF $_4^+ \Rightarrow sp^3$
Group B

$$\begin{array}{cccc}
LP. \\
Sx_4 & 0 \\
Ty_3 & 1 \\
Uz_2 & 2 \\
y &= \textbf{Total } l.P. &= \textbf{3} \\
x/y &= 6/3 \Rightarrow 2
\end{array}$$

2. n = 1, then X = H; A = N(i) NH_2^- (ii) NH_3 (iii) NH_4^+ lone pair x = 2, y = 1, z = 0 $x^3 + y^2 + z = (2)^3 + (1)^2 + (0) = 9$

4. (i) NO
$$\longrightarrow$$
 NO⁺ 2.5 3.0

Paramagnetic

(ii)
$$O_2^- \longrightarrow O_2^2$$

(1.5) (1)

(iii)
$$O_2 \longrightarrow O_2^+$$

(2) (2.5)

Paramagnetic Paramagnetic

(iv)
$$NO^+ \longrightarrow NO^-$$

(3) (2)

Diamagnetic Paramagnetic

 $\begin{array}{ccc} \text{(v)} & \text{NO}^+ & \longrightarrow & \text{NO}^{2+} \\ \text{(3)} & & & & \text{(2.5)} \end{array}$

Diamagnetic Diamagnetic

(vi) CO \longrightarrow CO⁺ (3.5)

Diamagnetic Paramagnetic

$$c^3 - b^2 - a = 3^3 - 3^2 - 5 = 27 - 9 - 5 = 13$$

5. → Unsymmetrical cleavage of B₂H₆: with small sized strong Lewis base like: NH₃, MNH₂, Me₂NH → Symmetrical cleavage of B₂H₆: with large sized strong Lewis base or weaker Lewis base like: PH₃, PF₃, H⁻, CO, T.H.F. Me₃N, pyridine.

$$H \rightarrow H \rightarrow H \rightarrow H \rightarrow 2H \rightarrow 2H \rightarrow 2H \rightarrow 1$$

6.
$$\frac{6}{2} = 3$$
, Elements $A = Al$, $B = P$, $C = S$, $D' = Cl$, $E = F$

	Compounds	Polarity
(i)	CE ₄ (SF ₄)	P
(ii)	$BD_2E_3(PCl_2F_3)$	P
(iii)	DE ₃ (ClF ₃)	P
(iv)	CE ₂ (SF ₂)	P
(v)	$BD_3E_2(PCl_3F_2)$	NP
(vi)	$C_2E_2(S_2F_2)$	P
(vii)	DE(ClF)	P
(viii)	$A_2D_6(Al_2Cl_6)$	NP NP

7.

Com	pounds	Geometry	sp²(C)	sp(C)
(i)	СО	C = 0	0	1
(ii)	CO ₂	O = C = O	0	1
(iii)	C ₃ O ₂	0 = C = C = C = 0	0	3
(iv)	C ₁₂ O ₉		12	0

$$\Rightarrow |p-q| = |12-5| = 7$$

11. Compound

SX₂
$$n_1 = 2$$
 $m_1 = 2$
PX₃ $n_2 = 3$ $m_2 = 1$
SiX₄ $n_3 = 4$ $m_3 = 0$
AlX₃ $n_4 = 3$ $m_4 = 0$
 $\left|\frac{2+3+4+3}{2+1}\right|^2 = \left|\frac{12}{3}\right|^2 = |4|^2 = 16$

12. Species having bond angle equal to or less than 109°28' and also can act as lewis base are :

- 13. O₂[PtF₆]
 - O_2^+ has one unpaired e^-

 $[PtF_6]^-$ has one unpaired e^- , because Pt is in +5 oxidation state so total unpaired electron is 2.

- 14. N₂⁺, O₂, B₂, N₂²⁻ have symmetrical electronic distribution in their HOMO and are also paramagnetic.
 - N₂ paramagnetic and symmetrical electronic distribution in their HOMO.
 - O2 paramagnetic and symmetrical electronic distribution in their HOMO.
 - B₂ paramagnetic and symmetrical electronic distribution in their HOMO.
 - $N_2^{2^2}$ paramagnetic and symmetrical electronic distribution in their HOMO. $O_2^{2^2}$ diamagnetic and symmetrical electronic distribution in their HOMO.

 - C_2 diamagnetic and symmetrical electronic distribution in their HOMO. C_2^{2-} diamagnetic and symmetrical electronic distribution in their HOMO.
- 15. Back bond found in each covalent bond in → BF₃, PF₃, POF₃

- 17. In O(Me)₂ and MeNCS back bonding is absent.
- 18. B(OMe)2 and HCHO can not form H-bond.

- Number of electron pair on A = 6
- Non-polar \Rightarrow
- Planar \Rightarrow

Hence $n_1 = 4$

- Number of electron pair on B = 5
- Non-polar
- Planar

Hence $n_2 = 2$

$$(n_1 - n_2)^2 = (4 - 2)^2 = 4$$

20. $H_2C = CI_2$, has sp^2 hybridised carbon and thus I - C - I bond angle is 120° .

$$\frac{IO}{CI} = \sin 60^{\circ}$$
H
$$C = C = C = 0$$
H
O

[In $\triangle ICO \angle ICO = 60^{\circ}$ and $\angle IOC = 90^{\circ}$] $IO = CI \sin 60^{\circ} = 2.35 \times 0.866$

. I — I distance = $2.0351 \times 2 = 4.07 \text{ Å} \approx 4$

21. (P) = (i), (iii), (iv), (vii)(4)

(Q) = (ii), (v)(ix)(3)

(R) = (vi), (vii)(2)

then $Q \times R - P = 3 \times 2 - 4 \Rightarrow 2$

24. CH_3^+ , $(C_3H_5)_3Al$, HCHO, $TiCl_4$, CO_2 , $SiCl_4$, BF_3

x = 12

$$y = 11$$

|x-y|=1**26.** (i) IF₅(sp³d)

(ii) $ClI_4^-(sp^3d^2)$ (vi) $BeCl_2(sp)$

(x) $ClO_2^+(sp^2)$

(iii) $XeO_2F_2(sp^3d)$ (vii) $AsCl_4^+(sp^3)$

(iv) $NH_2^-(sp^3)$ (viii) $B(OH)_3(sp^2)$

(v) $BCl_3(sp^2)$

(ix) $NO_2^-(sp^2)$ $x = (sp^3)2 + sp^3d(1) + sp^3d^2(2) = 5$

$$x = (sp^3)2 + sp^3d(1) + sp^3d^2(2) =$$

$$y = 4$$
, $z = 1$; $5 + 4 - 1 \Rightarrow 8$

$$p = 6$$
, $q = 6$; $\frac{p}{q} = 1$

28.
$$x = 3$$
, $y = 1$, $z = 3$

29.

$$P = 3, R = 4, Q = 2$$

30. n = 1, then X = H; A = N

(i) NH₂ (ii) NH₃ (iii) NH₄⁺

lone pair
$$x = 2$$
, $y = 1$, $z = 0$
 $x^3 + y^2 + z = (2)^3 + (1)^2 + (0) = 9$

32.

(4)
$$H C - C - F$$
 $> 109^{\circ}28' H$

(5)
$$H - C - C + 120$$

(6)
$$H = C = H^{<120^{\circ}}$$

33. → Molecular orbital configuration for upto 14 electrons

$$\sigma_{1s} < \mathring{\sigma}_{1s} < \sigma_{2s} < \mathring{\sigma}_{2s} < \mathring{\sigma}_{2s} < \pi_{2px} \pi_{2py} < \sigma_{2pz} < \mathring{\pi}_{2px}$$

$$=\mathring{\pi}_{2py}<\mathring{\sigma}_{2pz}$$

For more than 14 electrons

$$\sigma_{1s} < \mathring{\sigma}_{1s} < \sigma_{2s} < \mathring{\sigma}_{2s} < \sigma_{2px} < \pi_{2px} = \pi_{2py} < \mathring{\pi}_{2px}$$

$$=\mathring{\pi}_{2py}<\mathring{\pi}_{2pz}$$

Bond order = $\frac{1}{2}$ number of electrons in [Bonding M.O. – Antibonding M.O.]

Marie And							THE RESERVE OF THE PARTY OF THE	
	No.	Species	Total no.	No. of	electro	ns in	No. of electrons	Bond order
	(i)	02	15		10		5	2.5
	(ii)	CO	14		10		4	3
	(iii)	B ₂	10		6	1	4	1.0
	(iv)	0-	17		10		7	1.5
	(v)	NO ⁺	14	1	10		4	3
	(vi)	He ₂	3		2		1	0.5
	(vii)	C ₂ ⁺⁺	10		6		4	1.0
	(viii)	CN-	14		10		4	3.0
	(ix)	N_2	15		10		5	2.5
	σ-bond π-bond	A B 12 + 12 3 + 3	. 24					
				TT				

S = 0

35.
$$P = 3$$
 $Q = 2$ $R = 1$

Hence P + Q + R + S = 6

36. Value of
$$x$$
 Dipole moment
$$x_1 = 0 \qquad \qquad \mu = 0$$

$$x = 1 \qquad \qquad \mu \neq 0$$

$$x = 2 \qquad \qquad \mu \neq 0$$

$$x_2 = 3 \qquad \qquad \mu = 0$$

$$x = 4 \qquad \qquad \mu \neq 0$$

$$x_3 = 5 \qquad \qquad \mu = 0$$

Then, 0+3+5=8

Level

Classification of Ligands

- 1. The common features among the species CN⁻, CO and NO⁺ are:
 - (a) Bond order three and diamagnetic
 - (b) Bond order three and weak field ligands to implie to
 - (c) Paramagnetic and strong field ligands
 - (d) Paramagnetic and π acceptor ligands
- 2. Ni²⁺ ion can be estimated by using dimethyl glyoxime and forms a cherry-red precipitate. The complex is stabilized by:
 - (a) ionic bonds

(b) coordinate covalent bonds

(c) dative π-bonds

- (d) hydrogen bonds
- 3. Ammonia forms the complex [Cu(NH₃)₄]²⁺ with copper ions in alkaline solution but not in acidic solution. The reason for this is:
 - (a) In alkaline solution Cu(OH)2 is precipitated which is soluble in excess of alkali
 - (b) Copper hydroxide is amphoteric substance
 - (c) In acidic solution hydration protects Cu²⁺ ions
 - (d) In acidic solution protons are coordinated with ammonia molecules forming NH⁺₄ ions

Sidwick's Rule of EAN

- **4.** If EAN of central metal cation M^{2+} in a non-chelating complex is 36 and atomic no. of metal M is 26, then the number of monodentate ligand in this complex are :
 - (a) 5

(b) 4

(c) 6

- (d) none of these
- 5. Which of the following is an oxidizing agent?
 - (a) Mn(CO)₅

(b) $Fe(CO)_5$

(c) $Mn_2(CO)_{10}$

(d) Fe₂(CO)₉

	(a) Oxidation of Co(c) Dimerisation	ng pair the EAN of cen [Fe(NH ₃) ₆] ³⁺	and hence is less stable (b) Reduction of Co (d) Both (b) and (c) atral metal atom is not s (b) [Cr(NH ₃) ₆] ³⁺ ar (d) [Ni(CO) ₄] and [I	same? nd [Cr(CN) ₆] ³⁻					
Cr	ystal Field Theory	1							
			of Pd (II) . How man	y unpaired electrons are					
	present in analogous	complex of Ni (II) ?							
0	(a) Zero	(b) 1	(c) 2	(d) 3					
,	by weak field ligands	on only) of octahedron can be:	complex having CFSE=	$-0.8\Delta_{\it O}$ and surrounded					
	(a) $\sqrt{15} \text{ BM}$	(b) $\sqrt{8} \text{BM}$	(c) (a) & (b) both	(d) None of these					
10.	Consider the following	ng complex : [Co(NH	3)5CO3]ClO4						
	The coordination nud-electrons on the me	mber, oxidation numb	er, no. of d-electrons a	and number of unpaired					
	(a) 6, 2, 7, 3	etal are respectively:	(b) 7, 2, 7, 1						
	(c) 5, 3, 6, 4		(d) 6,3, 6, 0	ner to said					
11.	Consider the following	ig complex: [Co(CO ₃)(NH ₃) ₅]ClO ₄						
	-	Mark the correct option :							
	Coordinatio no.		No. of	Unpaired					
	no.	no.	d-electrons	d-electrons					
	no.	no. 3	d-electrons	d-electrons 0					
	no. (a) 6 (b) 7	no. 3 2	d-electrons	d-electrons 0 1					
	no. (a) 6 (b) 7	no. 3 2	d-electrons	d-electrons 0 1 4					
12.	(a) 6 (b) 7 (c) 7 (d) 6	no. 3 2 1 2	d-electrons 6 7 6 7	d-electrons 0 1 4 3					
12.	(a) 6 (b) 7 (c) 7 (d) 6 The magnetic momen	no. 3 2 1 2 ts of complexes given	d-electrons 6 7 6 7 below are in the order	d-electrons 0 1 4 3					
12.	(a) 6 (b) 7 (c) 7 (d) 6 The magnetic moment (I) [Ni(CO) ₄]	no. $\begin{array}{c} \mathbf{no.}\\ 3\\ 2\\ 1\\ 2\\ \end{array}$ ts of complexes given (II) $\left[\mathrm{Mn(CN)}_{6}\right]^{4-}$	d-electrons 6 7 6 7 below are in the order (III) [Cr(NH ₃) ₆] ³⁺	d-electrons 0 1 4 3 : (IV) [CoF ₆] ³⁻					
	(a) 6 (b) 7 (c) 7 (d) 6 The magnetic momen (I) [Ni(CO) ₄] (a) I>II>III>IV Which is low spin con	no. 3 2 1 2 ts of complexes given (II) [Mn(CN) ₆] ⁴⁻ (b) I < II < III < IV	d-electrons 6 7 6 7 below are in the order (III) [Cr(NH ₃) ₆] ³⁺ (c) IV > II > I > III	d-electrons 0 1 4 3					
13.	(a) 6 (b) 7 (c) 7 (d) 6 The magnetic momen (I) [Ni(CO) ₄] (a) I>II>III>IV Which is low spin con (a) [Fe(CN ₆)] ³⁻	no. 3 2 1 2 ts of complexes given (II) $[Mn(CN)_6]^{4-}$ (b) $I < II < III < IV$ inplex? (b) $[Co(NO_2)_6]^{3-}$	d-electrons 6 7 6 7 below are in the order (III) [Cr(NH ₃) ₆] ³⁺ (c) IV > II > I > III	d-electrons 0 1 4 3 : (IV) [CoF ₆] ³⁻ (d) IV < II < I < III					
13.	(a) 6 (b) 7 (c) 7 (d) 6 The magnetic moment (I) $[Ni(CO)_4]$ (a) $I > II > III > IV$ Which is low spin contact (a) $[Fe(CN_6)]^{3-}$ Which of the following	ts of complexes given (II) [Mn(CN) ₆] ⁴⁻ (b) I < II < III < IV inplex? (b) [Co(NO ₂) ₆] ³⁻ g are diamagnetic?	d-electrons 6 7 6 7 below are in the order (III) [Cr(NH ₃) ₆] ³⁺ (c) IV > II > I > III	d-electrons 0 1 4 3 : (IV) [CoF ₆] ³⁻					
13.	(a) 6 (b) 7 (c) 7 (d) 6 The magnetic moment (I) $[Ni(CO)_4]$ (a) $I > II > III > IV$ Which is low spin conta) $[Fe(CN_6)]^{3-}$ Which of the following (I) $K_4[Fe(CN)_6]$	no. 3 2 1 2 its of complexes given (II) $[Mn(CN)_6]^{4-}$ (b) $I < II < III < IV$ inplex? (b) $[Co(NO_2)_6]^{3-}$ g are diamagnetic? (II) $K_3[Cr(CN)_6]$	d-electrons 6 7 6 7 below are in the order (III) $[Cr(NH_3)_6]^{3+}$ (c) $IV > II > I > III$ (c) $[Mn(CN)_6]^{3-}$ (III) $K_3[Co(CN)_6]$	d-electrons 0 1 4 3 : (IV) [CoF ₆] ³⁻ (d) IV < II < I < III					
13.	(a) 6 (b) 7 (c) 7 (d) 6 The magnetic moment (I) [Ni(CO) ₄] (a) I>II>III>IV Which is low spin cont (a) [Fe(CN ₆)] ³⁻ Which of the following (I) K ₄ [Fe(CN) ₆] Select the correct answers	ts of complexes given (II) [Mn(CN) ₆] ⁴⁻ (b) I < II < III < IV nplex? (b) [Co(NO ₂) ₆] ³⁻ g are diamagnetic? (II) K ₃ [Cr(CN) ₆] wer using the codes given	d-electrons 6 7 6 7 below are in the order (III) $[Cr(NH_3)_6]^{3+}$ (c) $IV > II > I > III$ (c) $[Mn(CN)_6]^{3-}$ (III) $K_3[Co(CN)_6]$ ven below:	d-electrons 0					
13. 14.	(a) 6 (b) 7 (c) 7 (d) 6 The magnetic moment (I) $[Ni(CO)_4]$ (a) $I > II > III > IV$ Which is low spin cont (a) $[Fe(CN_6)]^{3-}$ Which of the following (I) $K_4[Fe(CN)_6]$ Select the correct answ (a) I, II and IV	ts of complexes given (II) [Mn(CN) ₆] ⁴⁻ (b) I < II < III < IV nplex? (b) [Co(NO ₂) ₆] ³⁻ g are diamagnetic? (II) K ₃ [Cr(CN) ₆] wer using the codes given	d-electrons 6 7 6 7 below are in the order (III) [Cr(NH ₃) ₆] ³⁺ (c) IV > II > I > III (c) [Mn(CN) ₆] ³⁻ (III) K ₃ [Co(CN) ₆] ven below: (c) II and III	d-electrons 0 1 4 3 : (IV) [CoF ₆] ³⁻ (d) IV < II < I < III (d) All of these					
13. 14.	(a) 6 (b) 7 (c) 7 (d) 6 The magnetic moment (I) [Ni(CO) ₄] (a) I>II>III>IV Which is low spin cont (a) [Fe(CN ₆)] ³⁻ Which of the following (I) K ₄ [Fe(CN) ₆] Select the correct answers	ts of complexes given (II) [Mn(CN) ₆] ⁴⁻ (b) I < II < III < IV nplex? (b) [Co(NO ₂) ₆] ³⁻ g are diamagnetic? (II) K ₃ [Cr(CN) ₆] wer using the codes given	d-electrons 6 7 6 7 below are in the order (III) [Cr(NH ₃) ₆] ³⁺ (c) IV > II > I > III (c) [Mn(CN) ₆] ³⁻ (III) K ₃ [Co(CN) ₆] ven below: (c) II and III	d-electrons 0					
13. 14. 15.	(a) 6 (b) 7 (c) 7 (d) 6 The magnetic moment (I) [Ni(CO) ₄] (a) I>II>III>IV Which is low spin cont (a) [Fe(CN ₆)] ³⁻ Which of the following (I) K ₄ [Fe(CN) ₆] Select the correct answard (a) I, II and IV The spin magnetic moment (b)	no. 3 2 1 2 ts of complexes given (II) $[Mn(CN)_6]^{4-}$ (b) $I < II < III < IV$ nplex? (b) $[Co(NO_2)_6]^{3-}$ g are diamagnetic? (II) $K_3[Cr(CN)_6]$ wer using the codes given (b) I, III and IV ment of cobalt in Hg[(b) $\sqrt{8}$	d-electrons 6 7 6 7 below are in the order (III) $[Cr(NH_3)_6]^{3+}$ (c) $IV > II > I > III$ (c) $[Mn(CN)_6]^{3-}$ (III) $K_3[Co(CN)_6]$ ven below: (c) II and III $Co(SCN)_4$] is:	d-electrons 0					

17.	Which one of the following has lowest value of magnetic behaviour?
	(a) $[Cr(CN)_6]^{3-}$ (b) $[Mn(CN)_6]^{3-}$ (c) $[Fe(CN)_6]^{3-}$ (d) $[Co(CN)_6]^{3-}$
18.	Which of the following statements is correct?
10.	(a) $[CoF_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$ both are paramagnetic complexes
	(b) $[CoF_6]^{3-}$ and $[Co(NH_3)_6]^{3+}$ both are high spin complexes
	(c) [CoF ₆] ³⁻ is octahedral while [Co(NH ₃) ₆] ³⁺ has a pentagonal pyramid shape
	(d) $[CoF_6]^{3-}$ is outer orbital complex while $[Co(NH_3)_6]^{3+}$ is inner orbital complex
19.	The magnetic moment of a complex ion is 2.83 BM. The complex ion is:
	(a) $[V(H_2O)_6]^{3+}$ (b) $[Cr(H_2O)_6]^{3+}$ (c) $[Cu(CN)_4]^{2-}$ (d) $[MnCl_4]^{2-}$
20.	Which of the following complex compound(s) is/are paramagnetic and low spin? (I) $K_3[Fe(CN_6)]$ (II) $[Ni(CO)_4]^0$ (III) $[Cr(NH_3)_6]^{3+}$ (IV) $[Mn(CN)_6]^{4-}$
	(I) $K_3[Fe(CN_6)]$ (II) $[Ni(CO)_4]^0$ (III) $[Cr(NH_3)_6]^{3+}$ (IV) $[Mn(CN)_6]^{4-}$ Choose the correct code:
	(a) I only (b) II and III (c) I and IV (d) IV only
21.	
	The diamagnetic species is: (a) $[Co(H_2O)_6]^{2+}$ (b) $[Ni(H_2O)_6]^{2+}$ (c) $[Co(NH_3)_6]^{3+}$ (d) $[Ni(NH_3)_6]^{2+}$
22.	The species which has four unpaired electron is:
	(a) $[Co(CN)_6]^{4-}$ (b) $[Cr(H_2O)_6]^{3+}$ (c) $[FeCl_4]^{2-}$ (d) $[Fe(H_2O)_6]^{3+}$
23.	Which of the following is a low-spin (spin-paired) complex? (a) $[Ni(NH_3)_6]^{2+}$ (b) $[Ti(H_2O)_6]^{3+}$
	(c) $[Cr(NH_3)_6]^{3+}$ (d) $[Fe(NH_3)_6]^{3+}$
24.	Corp. of Co. V. M
	(a) square planar, sp^2d^2 (b) square planar, dsp^2
	(c) tetrahedral, sp^3 (d) octahedral, d^2sp^3
25.	For which of the following types of ions is the number of unpaired electrons in octahedral
	complexes fixed at the same number as in the free ion no matter, how weak or strong the
	crystal field is? (a) d^3 (b) d^4 (c) d^5 (d) d^6
26.	Among the following pairs of complexes, in which case the Δ_0 value is higher for the first one?
	(a) $[Co(NH_3)_6]^{3+}$ and $[Co(CN)_6]^{3-}$ (b) $[CoF_6]^{3-}$ and $[Co(NH_3)_6]^{3-}$
	(c) $[Co(H_2O)_6]^{2+}$ and $[Co(H_2O)_6]^{3+}$ (d) $[Rh(H_2O)_6]^{3+}$ and $[Co(H_2O)_6]^{3+}$
27.	Dimethyl glyoxime forms a square planar complex with Ni ²⁺ . This complex should be:
	(a) diamagnetic (b) paramagnetic having 1 unpaired electron
	(c) paramagnetic having 2 unpaired electrons
	(d) ferromagnetic . What is the magnetic moment (spin only) and hybridisation of the brown ring
28	complex [Fe(H ₂ O) ₅ NO]SO ₄ ?
	(a) $\sqrt{3}$ BM, sp^3d^2 (b) $\sqrt{3}$ BM, d^2sp^3 (c) $\sqrt{15}$ BM, sp^3d^2 (d) $\sqrt{15}$ BM, d^2sp^3
	A Sept. 1995

182	INORGANIC CHEMISTRY
29.	Choose incorrect stability order: (a) $[Cu(NH_3)_4]^{2+} < [Cu(en)_2]^{2+} < [Cu(trien)]^{2+}$
	(b) $[Fe(H_2O)_6]^{3+} < [Fe(NO_2)_6]^{3-} < [Fe(NH_3)_6]^{3+}$
	(c) $[Co(H_2O)_6]^{3+} < [Rh(H_2O)_6]^{3+} < [Ir(H_2O)_6]^{3+}$
	(d) $[Cr(NH_3)_6]^{1+} < [Cr(NH_3)_6]^{2+} < [Cr(NH_3)_6]^{3+}$
20	Aqueous solution of Ni ²⁺ contains [Ni(H_2O) ₆] ²⁺ and its magnetic moment is 2.83 BM. When
30.	ammonia is added in it, comment on the magnetic moment of solution :
	(a) It will remain same
	(b) It increases from 2.83 BM.
	(c) It decreases from 2.83 BM.
	(d) It cannot be predicted theoretically
31.	The correct order of energies of d -orbitals of metal ion in a square planar complex is:
	(a) $d_{xy} = d_{yz} = d_{zx} > d_{x^2 - y^2} = d_{x^2}$ (b) $d_{x^2 - y^2} = d_{z^2} > d_{xy} = d_{yz} = d_{zx}$
	(a) $d_{xy} = d_{yz} = d_{zx} > d_{x^2 - y^2} = d_{x^2}$ (b) $d_{x^2 - y^2} = d_{z^2} > d_{xy} = d_{yz} = d_{zx}$ (c) $d_{x^2 - y^2} > d_{z^2} > d_{xy} = d_{yz} = d_{yz}$ (d) $d_{x^2 - y^2} > d_{xy} > d_{z^2} > d_{zx} = d_{yz}$
32.	Which of the following is true about the complex [PtCl ₂ (H ₂ O)(NH ₃)]?
	(a) It exhibits geometrical isomerism (b) It is paramagnetic complex
	(c) Its geometry is tetrahedron (d) Platinum is sp^3 hybridised
33.	The crystal fieldstabilisation energy of [Co(NH ₃) ₆]Cl ₃ is:
	(a) $-7.2\Delta_0$ (b) $-0.4\Delta_0$ (c) $-2.4\Delta_0$ (d) $-3.6\Delta_0$
34.	The magnitude of crystal field stabilisation energy in octahedral field depends on :
	(I) the nature of the ligand
	(II) the charge on the metal ion
	(III) whether the metal is in the first, second or third row of the transition elements (a) I, II, III only correct (b) I, II only correct
	(c) II, III only correct (d) III only correct
35.	Complex compound [Cr(NCS)(NH ₃) ₅][ZnCl ₄] will be:
	(a) colourless and diamagnetic
	(b) green coloured and diamagnetic
	(c) green coloured and shows coordination isomerism
	(d) diamagnetic and shows linkage isomerism
36.	
	(c) $[Fe(CN)_6]^{4-}$ (d) $[Fe(H_2O)_6]^{3+}$
37.	In the complex K ₂ Fe[Fe(CN) ₆]:
	(a) both Fe atoms are in the same oxidation state
	The most stable ion is: (a) $[Fe(C_2O_4)_3]^{3-}$ (b) $[Fe(CN)_6]^{3-}$ (c) $[Fe(CN)_6]^{4-}$ (d) $[Fe(H_2O)_6]^{3+}$ In the complex $K_2Fe[Fe(CN)_6]$:

- (b) both Fe atoms are in different oxidation state
- (c) the coordination number of ion is 4
- (d) the complex is a high spin complex
- **38.** In Na₂[Fe(CN)₅NO], sodium nitroprusside:
 - (a) oxidation state of Fe is +2
- (b) this has NO+ as ligand

(c) both are correct

(d) none is correct

39.		when subjected to magnetic measurement, he octahedral complex in aqueous solution, the
	formulae of the complex is:	production was seen X steps in the Account
	(a) $[Ti(H_2O)_6]Cl_2$	(b) [Ti(H ₂ O) ₆]Cl ₄
	(c) [TiCl ₃ (H ₂ O) ₃]	(d) [TiCl ₂ (H ₂ O) ₄]
Str	uctural Isomerism 10 0 .50.0 v1)	SOP U.O fea
40.	solutions exhibit different molar conductivities (a) [PtCl ₂ (NH ₃) ₄]Br ₂ and [PtBr ₂ (NH ₃) ₄]Cl (b) [CoCl ₂ (NH ₃) ₄]NO ₂ and [CoCl(NO ₂)(NG ₂)(NG ₂)(NG ₃) ₅]Cl ₂ and [Co(ONO)(NG ₃)(NG ₃) ₅]Cl ₂ and [Co(ONO)(NG ₃)(NG ₃) ₅]Cl ₂ and [Co(ONO)(NG ₃)(NG ₃) ₅]Cl ₂ and [Co(ONO)(NG ₃)(NG ₃) ₅]Cl ₂ and [Co(ONO)(NG ₃)(NG ₃) ₅]Cl ₂ and [Co(ONO)(NG ₃)(NG ₃)(NG ₃) ₅]Cl ₂ and [Co(ONO)(NG ₃)(NG ₃)	2 $H_{3})_{4}$]Cl $H_{3})_{5}$]Cl $_{2}$
41	(d) [CoBr(NH ₃) ₅]SO ₄ and [Co(SO ₄)(NH ₃)	
41.	(a) linkage isomerism (c) ionization isomerism	 Cl₂ H₂O and Cr(H₂O)₄ Cl₂ Cl₂H₂O exhibits : (b) geometrical isomerism (d) hydrate isomerism
49		
42.	Which one of the following pairs of isomers ar (i) [Co(NH ₃) ₅ (NO ₂)]Cl ₂ and [Co(NH ₃) ₅ (Co (ii) [Cu(NH ₃) ₄][PtCl ₄] and [Pt(NH ₃) ₄][Cu	NO)]Cl ₂ (Linkage)
	(iii) [PtCl ₂ (NH ₃) ₄]Br ₂ and [PtBr ₂ (NH ₃) ₄]C	
	Select the correct answer using the codes gi	
	(a) (ii) and (iii) (b) (i), (ii) and (iii)	
43.	The two compounds pentaammi pentaamminesulphatocobalt (III) chloride re	nesulphatocobalt (III) bromide and present:
	(a) Linkage isomerism	(b) Ionization isomerism
TI S.	(c) Coordination isomerism	(d) No isomerism
44.	Select the correct code about complex [Cr(NC	2)(NH ₃) ₅][ZnCl ₄]:
	(I) IUPAC name of compound is pentaammir	enitrito-N-chromium (III) tetrachlorozincate(II)
	(II) It shows geometrical isomerism (III) It shows linkage isomerism	S2. Which is not true about metal carbon is
	(IV) It shows coordination isomerism	(c) II, III and IV (d) I, II, III and IV
	(a) III, IV (b) I, III and IV	(c) II, III and IV (d) I, II, III and IV
	erner's Coordination Theory	opins and happined year of 12 - plant it
45.	A six coordinate complex of formula CrCl ₃ .	6H ₂ O has green colour. A 0.1 M solution of the
	complex when treated with excess of AgNO	gave 28.7g of white precipitate. The formula of
	1 1 Land	to the second se
meter	the complex would be: (a) $[Cr(H_2O)_6)]Cl_3$ (c) $[CrCl_2(H_2O)_4]Cl\cdot 2H_2O$	(b) $[CrCl(H_2O)_5]Cl_2 \cdot H_2O$ (d) $[Cr(H_2O)_3Cl_3]$
16	A complex has a composition correspondi	ng to the formula CoBr ₂ Cl.4NH ₃ . What is the
40	structural formula if conductance measure nitrate solution given an immediate precipita	ments show two ions per formula unit? Silver
	(a) [CoBrCl(NH ₃) ₄]Br (c) [CoBr ₂ Cl(NH ₃) ₄]	(d) $[CoBr_2(NH_3)_4]Cl$

184

47. Mixture X of 0.02 mole of [Co(NH₃)₅SO₄]Br and 0.02 mole of [Co(NH₃)₅Br]SO₄ was prepared in 2 litre of solution:

1 litre of mixture $X + \text{excess of AgNO}_3 \rightarrow Y$

1 litre of mixture $X + \text{excess of BaCl}_2 \rightarrow Z$

Number of moles of Y and Z respectively are :

(a) 0.01, 0.02

(b) 0.02, 0.01

(c) 0.01, 0.01

(d) 0.02, 0.02

48. A Pt complex of ammonia and chlorine produces four ions per molecule in the solution is :

(a) $[Pt(NH_3)_5Cl]Cl_3$

(b) [Pt(NH₃)₆]Cl₄

(c) $[Pt(NH_3)_2Cl_4]$

(d) $[Pt(NH_3)_4Cl_2]Cl_2$

Coordination Number

- 49. The coordination number of a central metal atom in a complex is determined by:
 - (a) the number of only anionic ligands bonded to the metal ion
 - (b) the number of monodentate ligands around a metal ion bonded by pi-bonds
 - (c) the number of monodentate ligands around a metal ion bonded by σ and pi-bonds both
 - (d) the number of monodentate ligands around a metal ion bonded by σ-bonds
- 50. Which statement about coordination number of a cation is true?
 - (a) Most metal ions exhibit only a single characteristic coordination number
 - (b) The coordination number is equal to the number of ligands bonded to the metal atom
 - (c) The coordination number is determined solely by the tendency to surround the metal atom with the same number of electrons as one of the rare gases
 - (d) For most cations, the coordination number depends on the size, and charge of the cation

Synergic Bonding

51. In the isoelectronic series of metal carbonyl, the CO bond strength is expected to increase in the order :

(a) $[Mn(CO)_6]^+ < [Cr(CO)_6] < [V(CO)_6]^-$

(b) $[V(CO)_6]^- < [Cr(CO)_6] < [Mn(CO)_6]^+$

(c) $[V(CO)_6]^- < [Mn(CO)_6]^+ < [Cr(CO)_6]$

(d) $[Cr(CO)_6] < [Mn(CO)_6]^+ < [V(CO)_6]^-$

- 52. Which is not true about metal carbonyls?
 - (a) Here CO acts as a Lewis base as well as Lewis acid
 - (b) Here metal acts as Lewis base as well as Lewis acid
 - (c) Here $d\pi$ - $p\pi$ back bonding takes place
 - (d) Here $p\pi$ - $p\pi$ back bonding takes place

Valence Bond Theory

53. There are four complexes of Ni. Select the complex(es) which will be attracted by magnetic field:

(I) $[Ni(CN)_{4}]^{2-}$

(II) [NiCl₄]²⁻

(III) Ni(CO₄)

(IV) [Ni(H2O)6]2+

(a) I only

(b) IV only

(c) II, III and IV

(d) II and IV

54. Which of the following complex is an outer orbital complex?

(a) $[Ni(NH_3)_6]^{2+}$

(b) $[Mn(CN)_6]^{4-}$

(c) $[Co(NH_3)_6]^{3+}$

(d) $[Fe(CN)_6]^{4-}$

55.	Which of the following complex is an outer (a) [Ni(NH ₃) ₆] ²⁺	orbital complex ?
	(c) [Co(NH ₃) ₆] ³⁺	(d) [Fe(CN) ₆] ⁴⁻
56.	The magnetic moment of $[MnX_4]^{2-}$ is 5.9 B	The state of the s
	(X = monodentate halide ion)	
	(a) tetrahedral (b) square planar	(c) both are possible (d) none of these
57.	The geometry of [Ni(CO) ₄] and [NiCl ₂ (PPh ₃	o)2] are:
	(a) both square planar(b) tetrahedral and square planar respective	
	(c) both are tetrahedral	enmends 201 to a set 4 a
	(d) square planar and tetrahedral respective	ely - shood ong via (b)
58.	$[Fe(H_2O)_6]^{2+}$ and $[Fe(CN)_6]^{4-}$ differ in :	63. in Pithas a still al. pt - Cl band sength w. &
	(a) geometry, magnetic moment	(b) geometry, hybridization
	(c) magnetic moment, colour	(d) hybridization, number of <i>d</i> -electrons
59.	Which of the following order is correct in spec	etrochemical series of ligands? (b) $NO_2^- < C_2O_4^{2-} < Cl^- < F^- < CN^-$
	(a) $Cl^{-} < F^{-} < C_{2}O_{4}^{2-} < NO_{2}^{-} < CN^{-}$	(d) $F^- < Cl^- < NO_2^- < CN^- < C_2O_4^2$
EVO	(c) $C_2O_4^{2-} < F^- < Cl^- < NO_2^- < CN^-$ The species with spin only magnetic momen	(d) F < CI < NO ₂ < CIV < C ₂ O ₄
60.	The species with spin only magnetic momen	it of $\sqrt{24}$ BM is: (a) [Ni(H O)] 1^{2+}
0.1	(a) [CoF ₃ (H ₂ O) ₃] (b) [CoCl ₄] ²⁻	(c) [NiCi ₄] (d) [Ni(H ₂ O) ₆]
61.	For the complexes showing the square pyr	aillidai structure, the u-orbital involved in the
	hybridisation is: $d_{x^2-y^2}$ in sequence (b) d_{z^2} and aniver x .	(c) d representations to (d) d xz (b san 4 4 7
62.	which of the following aquated metal ions	has the highest paramagnetism?
	(a) $[Cr(H_2O)_6]^{3+}$	(b) [Fe(H ₂ O) ₆] ²⁺ (d) [Zn(H ₂ O) ₂] ²⁺
101	(5) [54(2-)0]	그리트 이 사람들이 되었다. 그는 이 사람들이 있다면 사람들이 없는 사람들이 되었다면 하는 그 사람들이 되었다. 그리고 있는 그리고 있다면 그리고 그리고 있다면 그리고
		in the complexes [Fe(CN) ₆] ³⁻ , [Fe(CN) ₆] ⁴⁻ and
	$[Co(NO_2)_6]^{3-}$ are: (a) d^2sp^3 , sp^3d^2 and dsp^2 respectively	(b) $d^2 \operatorname{cn}^3 \operatorname{cn}^3 d^2$ and $\operatorname{cn}^3 d^2$ respectively
	(a) d^2sp^3 , sp^3d^2 and d^2sp^3 respectively	(d) all d^2 cn ³
64.	Which of the following is incorrectly match	umber of unpaired electrons
		.c. Cecuratical Isomerls 7
		_
	(b) [Cr(en) ₃] ²⁺	the section of the se
	(c) [Co(NH ₃) ₆] ³⁺	28. William of the fellowing will section our
	(d) [Mn(H ₂ O) ₆] ²⁺	1
65	. Which of the following complexes have a n	naximum number of unpaired electrons?
		(b) [do(1113)4(1102)21
	(c) [Ag(CN) ₂] ⁻	(d) [CuBr ₄] ²⁻

66.	The degeneracy of d-orbitals is lost under:	as at 1 Cald lineard
	(I) Strong field ligand	(I) Weak field ligand
	(III) Mixed field ligand	(IV) Chelated Lgand field
	Choose the correct code:	
	(a) I, II and IV	(b) I and II
	(c) I, II, III and IV	(d) I, II and III
67.	The complex ion [Fe(CN) ₆] ⁴⁻ contains:	a was
	(a) total of 36 electrons on Fe ²⁺ cation	
	(b) sp^3d^2 hybrid orbitals with octahedral str	ructure
	(c) total of 104 electrons	
	(d) six sigma bonds	age of the second of the
68.	In [Pt(NH _a) _a Cl _a], pt—Cl bond length is 2 Å a	and Cl—Cl distance is 2.88 Å then the compound
	is:	7 19 :
	(a) tetrahedral	(b) square pyramidal
	Service And Annual Annu	(d) trans-square planar
		(u) trans oquato France
Sp	cce/Stereo Isomerism	
69.	Which of the following isomerism, exhibited	by $[CrCl_2(OH)_2(NH_3)_2]^-$?
	(a) Ionization (b) Geometrical	(c) Hydrate (d) Linkage
70.	Which kind of isomerism is exhibited by octa	
, 0.	(a) Geometrical and ionization	(b) Geometrical and optical
	(c) Optical and ionization	(d) Geometrical only
71		having three different types of ligands a , b and c
<i>/</i> 1.		geometrical isomeric forms; the total number of
	such isomers is:	, are total fidiliber of
	(a) 3 (b) 5	(c) 7 (d) 9
72.	How many geometrical isomers	and stereoisomers are possible for
4	[Pt(NO ₂)(NH ₃)(NH ₂ OH)(Py)] ⁺ and [Pt(Br)(Cl)(I)(NO ₂)(NH ₃)(Py)] respectively?
	(a) 3 and 15 (b) 3 and 30	(c) 4 and 15 (d) 4 and 30
73.	Complexes given below show:	the state of the state of
,	Pph ₃ Cl. Pph ₃ 1	Pph ₃ Cl Cl
	Pt Pt	Pt
	CI CI CI	Cl Pph ₃
	(a) Optical isomerism	(b) Coordinate isomerism
	(c) Geometrical isomerism	(d) Bridge isomerism
74.	Fac and Mer isomerism is associated with wh	nich of the following general formula?
	(a) $[M(AA)_2]$ (b) $[M(AA)_3]$	(c) $[MABCD]$ (d) $[MA_3B_3]$
75.	Which of the following will have two stereo	
	(I) $[Cr(NO_3)_3(NH_3)_3]$ (II) $K_3[Fe(C_2O_4)_3]$	[] (III) $[CoCl_2(en)_2]^+$ (IV) $[CoBrCl(ox)_2]^{3-}$
	(a) I only (b) I and II	(c) III and IV (d) All of these
76.	Three arrangements are shown for the comm	olex [CoBr ₂ (NH ₃) ₂ (en)] [⊕] . Which one is wrong
	statement?	which one is wrong
	Description of the second of t	

- (a) I and II are geometrical isomers
- (b) II and III are optically active isomers
- (c) I and III are optically active isomers
- (d) II and III are geometrical isomers
- 77. Which of the following is not optically active?
 - (a) $[Co(en)_3]^{3+}$
 - (c) cis-[CoCl2(en)2]+

- (b) $[Cr(Ox)_3]^{3}$
- (d) trans-[CoCl₂(en)₂]⁺
- 78. Where among the following metal complexes the one which exhibits optical activity is: (AA = bidentate ligand; A, X = monodentate ligand)
 - (a) $cis-[MA_4X_2]$
- (b) trans- $[MA_4X_2]$
- (c) $cis-[M(AA)_2X_2]$ (d) $trans-[M(AA)_2X_2]$

187

- **79.** The optically active species among the following is:
 - (a) $[Cr(NH_3)_6]^{3+}$
- (b) $[Co(CN)_6]^{3-}$
- (c) [Co(gly)₃]
- (d) $[Ru(NH_3)_6]^{3+}$

- 80. Cis-trans isomerism is exhibited by:
 - (a) $[PtCl(NH_3)_3]^+$
- (b) $[Pt(NH_3)_4]^{2+}$
- (c) [PtCl₄]²⁻
- (d) $[PtCl_2(NH_3)_2]$
- 81. Which of the following will show optical isomers?
 - (I) cis-[Co(NH₃)₂(en)₂]³⁺
- (II) trans- $[IrCl_2(C_2O_4)_2]^{3-}$

(III) [Rh(en)₃]³⁺

(IV) cis-[Ir(H2O)3Cl3]

(a) I, III only correct

(b) II, IV only correct

(c) I, III, IV only correct

- (d) III only correct
- 82. The complex with a maximum number of stereoisomers is:
 - (a) $[PtCl_3(C_2H_4)]^{-1}$

(b) [CuBr₂Cl₂]²⁻

(c) $[Co(C_2O_4)_3]^{3-}$

- (d) $[Cr(NH_3)_2(en)_2]^{3+}$
- 83. A complex with the composition $[MA_3B]^{n\pm}$ is found to have no geometrical isomers. The possible structure(s) of the complex is (Where A and B are monodentate ligands)
 - (a) Tetrahedral

(b) Square planar

(c) Both (a) and (b)

- (d) Cannot be predicted
- 84. Which of the following isomerism is not possible for complexes having molecular formulae?
 - (I) $Pt(SCN)_2 \cdot 3PEt_3$,
- (II) CoBr · SO₄ · 5NH₃ (III) FeCl₂ · 6H₂O
- (a) Optical
- (b) Linkage
- (c) Ionisation
- (d) Hydrate

Application of Coordination Compounds

- 85. Coordination compounds have great importance in biological systems. In this context which of the following statements is incorrect?
 - (a) Carboxypeptidase-A is an enzyme and contains zinc
 - (b) Haemoglobin is the red pigment of blood and contains iron
 - (c) Cyanocobalamin is B12 and contains cobalt
 - (d) Chlorophylls are green pigments in plants and contain calcium

86.	Which one of the following (a) cis-[PtCl ₂ (NH ₃) ₂] (c) [Pt(NH ₃) ₄] ²⁺	(b) t	used in cancer chemotherapy? rans-[PtCl ₂ (NH ₃)] Pt(Cl ₄)] ²⁻			
87.	The cyanide complex of silveyanide process is:	ver formed in the silver	extraction in Mac-Arthur's Forrest			
	(a) [Ag(CN) ₂] ⁻	(b) I	$\binom{2}{2}[Ag(CN)_3]$			
	(c) $[Ag(CN)_4]^{2-}$	(d) I	Na ₃ [Ag(CN) ₄]			
88.	Complexes formed in the fol	lowing methods are:				
	(I) Mond's process for purification of nickel					
	(II) Removal of unreacted AgBr from photographic plate					
	(III) Removal of lead poisoning from the body					
	Ī	п	ш			
	(a) Ni(CO)	[Ag(CN)]-	[Ph(EDTA)] ²⁻			

[Ag(S₂O₃)₂]³

 $[Ag(S_2O_3)_2]^{3-}$

 $[Ag(S_2O_3)]^-$

Oxidation State

Ni(CO)₄

Ni(CO)₆

- **89.** What is the oxidation number of Fe in $[Fe(H_2O)_5(NO)]^{2+}$ ion?
 - (a) +2

(d)

(b) +3

(c) +1

- (d) 0
- 90. The oxidation state of iron in Na₄[Fe(CN)₅(NOS)] is:
 - (a) +1

(b) +2

(c) +3

(d) zero

IUPAC Name

- **91.** The correct name for the complex ion [CoCl(ONO)(en)₂]⁺ is:
 - (a) chlorobis(ethylenediamine)nitrito-O-cobaltate (III) ion
 - (b) chlorodiethyldiaminenitrito-O-cobalt (III) ion
 - (c) chloronitrito-O-diethyldiamine cobaltate (III) ion
 - (d) chlorobis(ethylenediamine)nitrito-O-cobalt (III) ion
- **92.** IUPAC name of $[Fe(O_2)(CN)_4Cl]^{4-}$ is:
 - (a) Chlorotetracyano dioxoferrate (II)ion
- (b) Chlorotetracyano peroxoferrate (II)ion

[Pb(EDTA)]²⁻

[Pb(EDTA)]4-

[Pb(EDTA)]2-

- (c) Chlorotetracyano superoxoferrate (II)ion (d) Tetracyanochloro superoxoferrate (II)ion
- **93.** The IUPAC name of the Wilkinson's catalyst [RhCl(P Ph $_3$) $_3$] is :
 - (a) Chlorotris (triphenylphosphine) rhodium (I)
 - (b) Chlorotris (triphenylphosphine) rhodium (IV)
 - (c) Chlorotris (triphenylphosphine) rhodium (0)
 - (d) Chlorotris (triphenylphosphine) rhodium (VI)

101. The hybridised orbitals used by silver in the complex [Ag(NH₃)₂]⁺ are of the type:

(b) sp

(d) dsp^2

COORDINATION COMPOUNDS

(c) dsp2 hybridised

(a) sp^2

94. The carrier annula of the angle of historiary and circumsts (ii) Cr. 1-1.

Clo	assifica	ition of L	igands					. (43)		
1.	Which	of the follo	wing ligar	d does	not as π	acid lig	and?			
	(a) N ₂		(b) C		i.	(c) C ₂		(d) O ₂ ²⁻	
Sic	lwick's	Rule of	EAN						ir s	
2.		l.of central , then the						mplex a	re:	no. of metal
	(a) 5		(b) 4			(c) 6		(d) None o	f these
3.	(a) Mn (b) Mn (c) NO	D) ₄ NO] is dometal is din is in +1 or is present a of the above	amagnetion s xidation s as positive	in free tate in tl	state	plex		Prince		
4.	Choose	the correct	option re				mplex co	mpound	which foll	ows (F) and
	(I) [(Ph	ot follow (N 1 ₃ P) ₂ PdCl ₂ 1 ₄ [Fe(CN) ₅	PdCl ₂]	igwick E	AN TUI	(II) [N	NiBrCl(en) Cr(CO) ₃ (N			
		(I)	(II)	(III)	(IV)		(I)	(II)	(III)	(IV)
	(a)	NF	NF	NF	NF	(b)	F	F	NF	F
	(c)	NF	NF	. (F)	F	(d)	NF	NF	F	NF
	the follo (a) Cr(C (c) Cr(N Which o	owing will in the cool of the following will in the following with the following cool of the following will be considered as the following	not be con	rect for	nula ?	(b) Fe (d) Ni	(CO) ₂ (N((CO) ₂ (N(agent ?	0) ₂		en which of
	(a) [Co((CO) ₄] ⁻	(b) M	n(CO) ₆		(c) Mi	1(CO) ₅	(d) Cr(CO)	6
Cry	stal Fi	eld Theo	ry	,						
7.	configu	s electroning ration, if Δ_0	o < pairin	g energ					•	ex with d4
	(a) $t_{2g}^4 e$	8	(b) e_g^4	t 2g		(c) t_{2g}^3	e_g^1	(d) $e_g^2 t_{2g}^2$	
8.	(a) Bis((b) [Ni((c) [Ni(of the follow (glycinatio): $(Cl_4)^{2-}$ and $(CN)_4$ $(CN)_4$	Zinc(II) is [PtCl ₄] ²⁻ square pl	optically have dif anar cor	y active ferent s nplex	shape	netic mor	nent		

9. Give the correct of initials T or F for following statements. Use T if statement is true and F if it (I) Co(III) is stabilised in presence of weak field ligands, while Co(II) is stabilised in presence of strong field ligand. (II) Four coordinated complexes of Pd(II) and Pt(II) are diamagnetic and square planar. (III)[Ni(CN)4]4- ion and [Ni(CO)4] are diamagnetic tetrahedral and square planar respectively. (IV)Ni²⁺ ion does not form inner orbital octahedral complexes. (a) TFTF (b) TTTF (c) TTFT (d) FTFT 10. Match List-I with List-II and select the correct answer using the codes given below: List-I (I) [FeF₆]³⁻ (A) 1.73 BM (II) [Ti(H₂O)₆]³⁺ (B) 5.93 BM (III) [Cr(NH₃)₆]³⁺ (C) 0.00 BM (IV) [Ni(H2O)6]2+ (D) 2.83 BM In which of the foll and outer decisions is a (E) 3.88 BM (V) $[Fe(CN)_6]^{4-}$ (I) (II) (III) (I) (II) (IV) V C D E (b) В A (a) C E (d) D D A В (c) 11. The value of 'spin only' magnetic moment for one of the following configuration is 2.84 BM. The correct one is: (a) d4 (in strong field ligand) began to not recognize the property of the pro (b) d2 (in weak field ligand) (c) d^3 (in weak as well as in strong field ligand) (d) d^5 (in strong field ligand) 12. The correct order of magnetic moments (spin values in BM) among is: (a) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$ (b) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$ (c) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$ (d) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^4$ 13. Which of the following statements is incorrect? (a) The stability constant of [Co(NH₃)₆]³⁺ is greater than that of [Co(NH₃)₆]²⁺ (b) The cyano complexes are far more stable than those formed by halide ions (c) The stability of halide complexes follows the order I < Br < Cl (d) The stability constant of [Cu(NH₃)₄]²⁺ is greater than that of [Cu(en)₂]²⁺

14. Set of d-orbitals which is used by central metal during formation of MnO- ?

contain number of unpaired electrons:

(a) 4

(b) 5

(a) $d_{x^2-y^2}, d_{z^2}, d_{xy}$ (b) d_{xy}, d_{yz}, d_{xz} (c) $d_{x^2-y^2}, d_{xy}, d_{xz}$ (d) $d_{x^2-y^2}, d_{z^2}, d_{xz}$ 15. FeSO₄ is a very good absorber for NO, the new compound formed by this process is found to

(c) 3

(c) $d_{x^2-y^2}, d_{xy}, d_{xz}$ (d) $d_{x^2-y^2}, d_{z^2}, d_{xz}$

(d) 6

ammonia to form a new complex [M(NH ₃) ₆] ²⁺ that should have absorption at: (a) 800 nm (b) 580 nm (c) 620 nm (d) 320 nm 17. An ion M ²⁺ , forms the complexes [M(H ₂ O) ₆] ²⁺ , [M(en) ₃] ²⁺ and [MBr ₆] ⁴⁻ , mate complex with the appropriate colour: (a) Green, blue and red (b) Blue, red and green (c) Green, red and blue (d) Red, blue and green (c) Green, red and blue (d) Red, blue and green 18. The CFSE for [(CoCl) ₆] ⁴⁻ complex is 18000 cm ⁻¹ . The Δ for [CoCl ₄] ²⁻ will be: (a) 18000 cm ⁻¹ (b) 16000 cm ⁻¹ (c) 8000 cm ⁻¹ (d) 2000 cm ⁻¹ 19. MnO ₄ is of intense pink colour, though Mn is in (+7) oxidation state, it is due to: (a) Oxygen gives colour to it (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √ and outer d-orbitals is used in hybridization: (a) [Fe(NH ₃) ₆] ³⁺ (b) [Mn(CN) ₆] ⁴⁻ (c) [CuCl ₅] ²⁻ (d) [Co(NH ₃) ₆] ² 21. Which of the following order of CFSE is incorrect? (a) [Co(en) ₃] ³⁺ > [Co(NH ₃) ₆] ³⁺ > [Co(H ₂ O) ₆] ³⁺ (b) [PtCl ₄] ²⁻ > [PdCl ₄] ²⁻ > [NiCl ₄] ²⁻ (c) [Ni(DMG) ₂] < [Ni(en) ₂] ²⁺ (d) [Co(ox) ₃] ³⁻ < [Co(en) ₃] ³⁺ 22. For which of the following d ⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms:	1 (+8) 3 B.M.
 17. An ion M²+, forms the complexes [M(H₂O)6]²+, [M(en)₃]²+ and [MBr6]⁴-, mate complex with the appropriate colour: (a) Green, blue and red (b) Blue, red and green (c) Green, red and blue (d) Red, blue and green 18. The CFSE for [(CoCl)6]⁴- complex is 18000 cm⁻¹. The Δ for [CoCl₄]²⁻ will be: (a) 18000 cm⁻¹ (b) 16000 cm⁻¹ (c) 8000 cm⁻¹ (d) 2000 cm⁻¹ 19. MnO¼ is of intense pink colour, though Mn is in (+7) oxidation state, it is due to: (a) Oxygen gives colour to it (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)6]³+ (b) [Mn(CN)6]⁴- (c) [CuCl₅]²- (d) [Co(NH₃)6]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³+ > [Co(H₃0)6]³+ > [Co(H₂O)6]³+ (b) [PtCl₄]²- > [PdCl₄]²- > [NiCl₄]²- (c) [Ni(DMG)₂] < [Ni(en)₂]²+ (d) [Co(ox)₃]³- < [Co(en)₃]³+ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	1 (+8) 3 B.M.
 complex with the appropriate colour: (a) Green, blue and red (b) Blue, red and green (c) Green, red and blue (d) Red, blue and green 18. The CFSE for [(CoCl)₆]⁴⁻ complex is 18000 cm⁻¹. The Δ for [CoCl₄]²⁻ will be: (a) 18000 cm⁻¹ (b) 16000 cm⁻¹ (c) 8000 cm⁻¹ (d) 2000 cm⁻¹ 19. MnO₄ is of intense pink colour, though Mn is in (+7) oxidation state, it is due to: (a) Oxygen gives colour to it (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √ and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)₆]³⁺ (b) [Mn(CN)₆]⁴⁻ (c) [CuCl₅]²⁻ (d) [Co(NH₃)₆]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	1 (+8) 3 B.M.
 complex with the appropriate colour: (a) Green, blue and red (b) Blue, red and green (c) Green, red and blue (d) Red, blue and green 18. The CFSE for [(CoCl)₆]⁴⁻ complex is 18000 cm⁻¹. The Δ for [CoCl₄]²⁻ will be: (a) 18000 cm⁻¹ (b) 16000 cm⁻¹ (c) 8000 cm⁻¹ (d) 2000 cm⁻¹ 19. MnO₄ is of intense pink colour, though Mn is in (+7) oxidation state, it is due to: (a) Oxygen gives colour to it (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √ and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)₆]³⁺ (b) [Mn(CN)₆]⁴⁻ (c) [CuCl₅]²⁻ (d) [Co(NH₃)₆]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	1 (+8) 3 B.M.
 (a) Green, blue and red (b) Blue, red and green (c) Green, red and blue (d) Red, blue and green 18. The CFSE for [(CoCl)₆]⁴⁻ complex is 18000 cm⁻¹. The Δ for [CoCl₄]²⁻ will be: (a) 18000 cm⁻¹ (b) 16000 cm⁻¹ (c) 8000 cm⁻¹ (d) 2000 cm⁻¹ 19. MnO₄ is of intense pink colour, though Mn is in (+7) oxidation state, it is due to: (a) Oxygen gives colour to it (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √ and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)₆]³⁺ (b) [Mn(CN)₆]⁴⁻ (c) [CuCl₅]²⁻ (d) [Co(NH₃)₆]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	3 B.M.
 (c) Green, red and blue (d) Red, blue and green 18. The CFSE for [(CoCl)₆]⁴⁻ complex is 18000 cm⁻¹. The Δ for [CoCl₄]²⁻ will be: (a) 18000 cm⁻¹ (b) 16000 cm⁻¹ (c) 8000 cm⁻¹ (d) 2000 cm⁻¹ 19. MnO₄ is of intense pink colour, though Mn is in (+7) oxidation state, it is due to: (a) Oxygen gives colour to it (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √ and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)₆]³⁺ (b) [Mn(CN)₆]⁴⁻ (c) [CuCl₅]²⁻ (d) [Co(NH₃)₆]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	3 B.M.
 18. The CFSE for [(CoCl)₆]⁴⁻ complex is 18000 cm⁻¹. The Δ for [CoCl₄]²⁻ will be: (a) 18000 cm⁻¹ (b) 16000 cm⁻¹ (c) 8000 cm⁻¹ (d) 2000 cm⁻¹ 19. MnO₄ is of intense pink colour, though Mn is in (+7) oxidation state, it is due to: (a) Oxygen gives colour to it (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √ and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)₆]³⁺ (b) [Mn(CN)₆]⁴⁻ (c) [CuCl₅]²⁻ (d) [Co(NH₃)₆]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	3 B.M.
 (a) 18000 cm⁻¹ (b) 16000 cm⁻¹ (c) 8000 cm⁻¹ (d) 2000 cm⁻¹ 19. MnO₄ is of intense pink colour, though Mn is in (+7) oxidation state, it is due to: (a) Oxygen gives colour to it (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)₆]³⁺ (b) [Mn(CN)₆]⁴⁻ (c) [CuCl₅]²⁻ (d) [Co(NH₃)₆]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	3 B.M.
 (a) Oxygen gives colour to it (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)₆]³⁺ (b) [Mn(CN)₆]⁴⁻ (c) [CuCl₅]²⁻ (d) [Co(NH₃)₆]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms:	3 B.M.
 (a) Oxygen gives colour to it (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)₆]³⁺ (b) [Mn(CN)₆]⁴⁻ (c) [CuCl₅]²⁻ (d) [Co(NH₃)₆]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms:	3 B.M.
 (b) Charge transfer when Mn(+7) gives its electron to oxygen and oxidise to Mn temporarily (c) Charge transfer when oxygen gives its electron to Mn (+7) changing in Mn (+6) (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)₆]³⁺ (b) [Mn(CN)₆]⁴⁻ (c) [CuCl₅]²⁻ (d) [Co(NH₃)₆]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms:	3 B.M.
 (d) None is correct explanation 20. In which of the following complex ion the value of magnetic moment (spin only) is √ and outer d-orbitals is used in hybridization: (a) [Fe(NH₃)₆]³⁺ (b) [Mn(CN)₆]⁴⁻ (c) [CuCl₅]²⁻ (d) [Co(NH₃)₆]² 21. Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	
and outer d-orbitals is used in hybridization: (a) [Fe(NH ₃) ₆] ³⁺ (b) [Mn(CN) ₆] ⁴⁻ (c) [CuCl ₅] ²⁻ (d) [Co(NH ₃) ₆] ² 21. Which of the following order of CFSE is incorrect? (a) [Co(en) ₃] ³⁺ > [Co(NH ₃) ₆] ³⁺ > [Co(H ₂ O) ₆] ³⁺ (b) [PtCl ₄] ²⁻ > [PdCl ₄] ²⁻ > [NiCl ₄] ²⁻ (c) [Ni(DMG) ₂] < [Ni(en) ₂] ²⁺ (d) [Co(ox) ₃] ³⁻ < [Co(en) ₃] ³⁺ 22. For which of the following d ⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms:	
 Which of the following order of CFSE is incorrect? (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	+
 (a) [Co(en)₃]³⁺ > [Co(NH₃)₆]³⁺ > [Co(H₂O)₆]³⁺ (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms : 	
 (b) [PtCl₄]²⁻ > [PdCl₄]²⁻ > [NiCl₄]²⁻ (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	
 (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	
 (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	
 (d) [Co(ox)₃]³⁻ < [Co(en)₃]³⁺ 22. For which of the following dⁿ configuration of octahedral complexes, can not exist in high spin and low spin forms: 	
22. For which of the following d^n configuration of octahedral complexes, can not exist in high spin and low spin forms:	
high spin and low spin forms:	
	1 both
(I) d^3 (II) d^5 (III) d^6 (IV) d^8	
(a) I, II & III (b) II, III & IV	
(c) I & IV (d) None of these	
Coordination Number	
23. Consider the complex [Co(NH ₃) ₄ CO ₃]ClO ₄ , in which coordination number, oxident number and number of d-electrons on the metal are respectively.	lation
(a) 6, 3, 6 (b) 6, 2, 7 (c) 5, 3, 6 (d) 5, 3, 7	
Synergic Bonding	
24. The π -acid ligand which uses its d -orbital during synergic bonding in its complex compound	nd.
(a) CN^- (b) PR_3 (c) NO (d) N_2	
25. The IR stretchin frequencies of free CO, and CO in [V(CO) ₆] ⁻ , [Cr(CO) ₆] ⁻ and [Mn(Co are 2143 cm ⁻¹ , 1860 cm ⁻¹ , 2000 cm ⁻¹ and 2090 cm ⁻¹ , respectively. Then correct state about metal carbonyls is:	O) ₆] ⁻ ement
(a) 'C—O' bond is strongest in the cation and weakest in the anion.	
The state of the s	

193 **COORDINATION COMPOUNDS** (b) 'C—O' bond is weakest in the cation and strongest in the anion. (c) 'C—O' bond is longer in the cation than in the anion. (d) 'M—C' pi bonding is higher in the cation. **26.** The π -acid ligand which uses its *d*-orbital during synergic bonding in its complex compound: (a) NO⁺ (d) CO (b) PR₃ (c) C_6H_6 27. Correct sequence of CO bond order in given compounds is : (P) $Fe(CO)_5$ $(S) [Mn(CO)_5]^-$ (R) $H_3B \leftarrow CO$ (Q) CO (a) P>R>S>Q (b) S>P>R>O (c) Q>S>P>R(d) R>Q>P>SValence Bond Theory 28. Select correct statement(s) regarding [Ni(DMG)₂] complex compound : (a) It acts as oxidising agent because Ni²⁺ cation is having E.A.N. 34. (b) It is extra stabilized by hydrogen bonding (c) It's IUPAC name is Bis(dimethylglyoximato)nickelate (II) (d) It's ligand contains two different donar sites **29.** In which of the following complex ion the value of magnetic moment (spin only) is $\sqrt{3}$ BM and outer d-orbitals is used in hybridization. (d) $[Cu(H_2O)_6]^{2+}$ (a) $[Mn(CN)_6]^{4-}$ (b) $[Fe(NH_3)_6]^{3+}$ (c) $[Co(CO)_4]$ 30. The inner orbital complex which exhibits both geometrical as well as optical isomerism. (a) $[Cr(en)_3]^{3+}$ (b) $[IrF_3(H_2O)_2(NH_3)]$ (d) $[Co(CN)_2(ox)_2]^{3-}$ (c) [NiCl₂(en)₂] **31.** Select correct statement regarding [Ni(DMG)₂] complex compound. (a) It acts as oxidising agent because Ni²⁺ cation is having EAN 34. (b) It is extra-stabilized by hydrogen bonding (c) It's IUPAC name is Bis (dimethylglyoximato) nickelate (II) (d) It's ligand contains two different donar sites 32. Which of the following is correctly matched? (a) $[Fe(CN)_6]^{4-}$ and $[Fe(CN)_6]^{3-}$ — both are octahedral and diamagnetic with d^2sp^3 -(b) Ni(CO) 4 and [Ni(CN) 4] 2- — both are tetrahedral and diamagnetic with sp 3-hybridisation (c) Ni(CO)₄ and [Co(CO)₄] - both are tetrahedral and diamagnetic (d) $[Co(H_2O)_6]^{3+}$ and $[Cr(H_2O)_6]^{3+}$ — both are paramagnetic and metal is d^2sp^3 -hybridised

33. Match List-I with List-II and select the correct answer using the codes given below the lists:

(1) sp^3

(2) sp^3d^2 (3) dsp^2

List-II (of Central atom)

Complex compounds

List-I (Compound)

(A) [Ni(NH₃)₆]²⁺

(B) [PtCl₄]²⁻

(C) [Ni(CO)₄] (D) [Co(ox)₃]³⁻

194		di San San						INORGANIC	CHEMISTRY
	^	В	C	D	\$2.3 September 4.7	Α	В	С	D
(a)	A 2	Б 1	3	4	(b)	2	3	1	4
(c)	4	1	3	2	(d)	4	3	1	2

34. Match List-I (Species) with List-II (Hybrid orbitals used by the central atom in their formation) and select the correct answer:

(A)	Ni(CN) 3-	List-	1		(1)	sp ³	List-I	E and Allen	
	CuCl ₅		Say Ora			dsp ²			
(C)	AuCl ₄	14.4			(3)	$sp^3d_{z^2}$			
(D)	ClO ₄	B. 100 (76)	o valginos) (OMB	(4)	$d_{x^2-y^2}sp^3$		en e	28
	Α	В	C	D		Α	В	С	D
(a)	1	3	2	4	(b)	3	4	2	1
(c)	4	2	1	3	(d)	4	3	2	1

35. Which of the following is correctly matched?

	Column-I	Column-II	Column-III
(a)	[Cr(CO) ₆]	Paramagnetic	Octahedral, sp ³ d ²
(b)	[Fe(CO) ₅]	Paramagnetic	Trigonal bipyramid, sp^3d
(c)	[Co(CO) ₄]	Diamagnetic	Tetrahedral, sp ³
(d)	[Ni(CO) ₄]	Diamagnetic	Square planar, dsp ²

36. The hybridization of the complex $[CrCl_2(NO_2)_2(NH_3)_2]^-$ is:

- (a) sp^3d^2
- (c) sp^3d

- (b) $d^2 sp^3$
- (d) cannot be predicted

37. Which of the following statement is not true for the reaction given below? $[Cu(H_2O)_4]^{2+} + 4NH_3 \rightleftharpoons [Cu(NH_3)_4]^{2+} + 4H_2O$

- (a) It is a ligand substitution reaction
- (b) NH₃ is a relatively strong field ligand while H₂O is a weak field ligand
- (c) During the reaction, there is a change in colour from light blue to dark blue
- (d) [Cu(NH₃)₄]²⁺, has a tetrahedral structure and is paramagnetic

38. Which of the following match is incorrect?

Complex compounds Type of hybridization (a) $[V(NH_3)_6]^{3+}$ d^2sp^3 (b) $[CrCl_3(NMe_3)_3]$ d^2sp^3 (c) [Cu(CN)(NO₂)(NH₃)(py)] dsp² (d) $K_3[Co(ox)_3]$ sp^3d^2

Structural Isomerism

39.	Select the correct code of TRUE and FALSE	for given statements:	
	(a) Peroxide ion as well as dioxygen molecu	le both are paramagnet	ic species
	(b) In set of isomers, [Cr(H ₂ O) ₆]Cl ₃ and [Cr	$Cl(H_2O)_5]Cl_2 \cdot H_2O$, bot	
	loose water molecule on treatment with		
	(c) During transformation NO → NO ⁺ , bo	nd length and magnetic	behaviour decreases
	(d) An ether is more volatile than alcohol be	oth having same molecu	ılar formula
	(a) FFTT (b) FTFT	(c) FTTT	(d) TFFT
40.	The total possible coordination isomers for	the following compound	ls respectively are :
	$[Co(en)_3][Cr(C_2O_4)_3]$		
	[Cu(NH ₃) ₄][CuCl ₄]		
	$[Ni(en)_3][Co(NO_2)_6]$		
	(a) 4, 4, 4 (b) 2, 2, 2	(c) 2, 2, 4	(d) 4, 2, 3
41.	Select the incorrect match:		
	(a) $[Co(NO_2)(H_2O)(en)_2]Cl_2$, $[CoCl(NO_2)$	(en) ₂]Cl·H ₂ O: Hydrate	isomerism
	(b) [Cu(NH ₃) ₄][PtCl ₄], [CuCl(NH ₃) ₃][PtC	l ₃ (NH ₃)]: Co-ordination	isomerism
	(c) [Ni(CN)(H ₂ O)(NH ₃) ₄]Cl, [NiCl(H ₂ O)(N	IH ₃) ₄]CN: Ionization is	omerism
	(d) $[Cr(NO_2)(NH_3)_5][ZnCl_4]$, $[Cr(NO_3)(NG_3)]$	H ₃) ₅][ZnCl ₄]: Linkage	isomerism
42.	Select incorrect statement about complex [C	$(NO_2)(NH_3)_5$ [Zn(SC)	N) ₄]:
	(a) It shows co-ordination isomerism		
	(b) It shows optical activity		
	(c) It shows linkage isomerism		
	(d) IUPAC name of the compor	und is Pentaamin	enitrito-N-chromium(III)
	tetrathiocyanato-S-zincate(II)		
Sn	ace/Stereo Isomerism	11. X 1 1. 1.	
	Complex compound(s) having even number	of space (stereo) isome	ers is/are ·
43.	(where AA-symmetrical bidentate ligand and	d a h c d e-monodentat	e ligands)
		(c) $[Ma_3bcd]^{n\pm}$	(d) [Ma ₂ bcde] ^{n±}
	(4) [() 2 2.	•	-
44.	Which of the following isomersm is not possible to the following isomersm in the following isomers	ole for complexes having	molecular formulae :
	(i) Pt(SCN) ₂ · 3PEt ₃ (ii) CoBr · SO ₄ · 5NH	(iii) FeCl ₂ ·6H ₂ O	(4) ***
	(a) Optical (b) Linkage	(c) Ionisation	(d) Hydrate
45.	Unmatched characteristic of complex [PdCl ₂		
	(a) Diamagnetic	(b) Low spin	
	(c) Geometrical isomerism	(d) Fac. and Mer. for	m
46.	Which of the following has largest number	of isomers?	
	(a) $[Co(en)_2Cl_2]^+$	(b) $[Co(NH_3)_5Cl]^{2+}$	
	(c) $[Ir(PR_3)_2H(CO)]^{2+}$	(d) $[Ru(NH_3)_4Cl_2]^+$	
47	Which one of the following complexes exhib	oit chirality?	
₹/.	(a) $[Cr(ox)_3]^3$	(b) cis-[PtCl ₂ (en)]	
			lien)]
	(c) cis -[RhCl ₂ (NH ₃) ₄] ⁺	(d) mer -[Co(NO ₂) ₃ (d	nen)]

(b) (i), (iii) and (iv) (c) (iv) only

55. A coordination complex of type MX_2Y_2 (M-metal ion; X,Y-monodentate ligands), can have either a tetrahedral or a square planar geometry. The maximum number of possible isomers in

57. [PdCl₂(PMe₃)₂] is a diamagnetic complex of Pd(II). How many total isomers are possible of

(c) 1 and 3

(c) 7:3

(c) 2

(d) All four

(d) 3 and 2

(d) 3

(a) (iii) and (iv)

(a) 1 and 2

(a) 5:3

(a) Zero

these two cases are respectively:

(b) 2 and 1

(b) 2:1

(b) 1

analogous paramagnetic complex of Ni(II)?

56. The ratio of cis and trans-isomers of the complex $[Ma_2bcde]^{n\pm}$ is:

58.	Complex compounds(s) which is the ligands around metal cation	optical activ	e and does	not depen	d upon the	orientation	n of
	(i) [CoCl ₃ (NH ₃) ₃]		(ii) [Co(e	en) ₃]Cl ₃			
	(iii) $[Co(C_2O_4)_2(NH_3)_2]^-$	a State	(iv) [CrCl	2(NH ₃)2(6	en)] ⁺		
	(a) (ii), (iii) and (iv) (b) (i), (i	i) and (iv)	(c) (ii) ar	nd (iv)	(d) only	(ii)	
59.	Choose the correct code regard following complexes:				U. 22 N N N N N N N N N N N N N N N N N N		l by
	(I) $[CrCl_2(NO_2)_2(NH_3)_2]^-$		(II) [Co(N	NO ₂) ₃ (NH	3)3]		
	(III) [PtCl(NO ₂)(NH ₃)(py)]	Harald A	(IV) [PtBi	Cl(en)]		highlight to	1000
	(I) (II) (II	I) (IV)			(II) (II	I) (IV)
	(a) 4 2 3		(b)	5	2 4		
	(c) 3 2 C		(d)	5	2 3	3 0	
60			10	11) 1"± 2		
60.	How many geometrical isomers	are possible		x [Mab(AB			
61	(a) 5 (b) 4	C-CL (NIII.)	(c) 3	f in this re	(d) 6	icomers of	the
61.	$[CoCl_2(NH_3)_4]^+ + Cl^- \longrightarrow $ product are obtained, which is		(37)			isomers or	tile
	(a) compound is in <i>cis</i> -form	rue for the i			trans-form		
	(c) compound is in both (cis an	d trans) form					
62	Select the correct statement abo				.		
02.	C ₆ H ₅	at given oqu	are plants	complem			
	H_C—H ₂ N	NH ₂	-Ç-H				
	C ₆ H ₅ C—H ₂ N	NH ₂	C C H_3	Somethie Mari	II op a la ze		1 4 4 4 4
	H		CH ₃				
	(a) It has no geometrical isome	er			Complex		
	(b) It is optically active because	e it does not	have plane	of symme	trv	111	
	(c) It is optically inactive becau					netry	.51
	(d) It is optically active because	it has symme	etric carbon	0.186	10.11.12		
63.		total numbe	r of space is	somers for	he followin	g compoun	ıds :
00.	(I) $[Ma_3b_2c]^{n\pm}$ (II) $[M(A_1)^{n\pm}]$		(III) [Ma				1,000-0
	100 100 100 100 100 100 100 100 100 100	(III)	n MSG _e	11. The 12.0	(II)	(III)	
			obmid 4,	(I)	100	(III)	
	(a) 4 4	1 6 7 m.		4	3	5	
	(c) 3	1)/15	(d)	3	4 11	6	
64.	How many geometrical isomers	are possible	or [Pd ²⁺ (I	NH ₂ —CH(CH ₃)—CO	2)2]	
	(a) 2 (b) 3	in other ma	(c) 4		(d) 6		
65.	Total number of stereoisomers	of [Co(acac)	₂BrCl)] [⊖] aı	re:		same of	
		er jang-					
66.	Which of the following complex	k compound			somerism ?		
	(a) $[Fe(DMG)_2]$		(b) [Be(g				
	(c) [PdClBr(gly)]		(d) [Cd()	NH ₃)Cl(gly	<i>'</i>)]		

- **67.** In which case racemic mixture is obtained on mixing its mirror images (*d* & *l* form) in 1 : 1 molar ratio?
 - (a) trans [Co(gly)₃]

(b) $[Ni(DMG)_2]$

(c) cis - [Cu(gly)₂]

- (d) [Zn(en)(gly)]⁺
- 68. Which of the following compound show optical isomerism?
 - (a) cis [CrCl₃(NHl₃)₃]

(b) $cis - [Co(NH_3)_4 Cl_2]^+$

(c) [Co(en)₃]³⁺

(d) trans - $[Co(en)_2Cl_2]^+$

Application of Coordination Compounds

69. Match List-I with List-II and select the correct answer using the codes given below :

		List (Ion invo	MARKET STREET,				List (age		
(i)		N	li ²⁺	-U1-36	(A)	Sodium	thiosulph	ate	107
(ii)		A	√g ⁺	10.10			nitroprus		98
(iii)		C	u ²⁺	. (a)	(C)) Ammor	nia		
(iv)	BA OWN DA	2012804 118	S ^{2_}	Y Y LET E	ISSN LITTLE	NO	ylglyoxime	اع (۱۷ آئي)) نيب داد ا در	0001 .10
	(i)	(ii)	(iii)	(iv)		(i)	(ii)	(iii)	(iv)
(a)	C	Α	D	В	(b)	D	C	Α	В
(c)	D	C	В	Α	(d)	D	Α	C	В

IUPAC Name

70. A complex whose IUPAC name is not correctly written is:

Complex

Name

(a) $Fe(\sigma - C_5H_5)_2$

 $Bis(\eta^5\text{-cyclopentadienyl})iron(0)$

(b) $Cr(C_6H_6)_2$

- $Bis(\eta^6$ -benzene)chromium(0)
- (c) [CoCl₂(H₂O)₄]Cl.2H₂O
- Tetraaquadichlorocobalt (III)chloride-2-water

(d) $[Zn(NCS)_4]^{2-}$

- Tetrathiocyanato-N-zincate (II) ion
- 71. Which of the following is correct IUPAC name of any complex compound?
 - (a) Tris(acetylacetonato)iron(III)chloride
 - (b) Hexachloroplatinum(IV)tetraammine dicyano platinate(IV)
 - (c) Ammine bromochloro methylamine platinum(II)
 - (d) cis-dichloro (ethylenediamine) platinum (II)
- 72. Find out correct IUPAC name of complex compound .
 - (a) Triamminetricyanidochromium(III)hexanitrito-N-irridate(III)
 - (b) Pentaamminecyanidochromium(III)hexanitrito-N-irridium(III)
 - (c) Hexanitrito-N-irridium(III)pentaamminecyanidochromate(II)
 - (d) Pentaamminecyanidochromium(III)hexanitrito-n-irridate(III)

Level 3

PASSAGE 1

Magnetic moment, ionic conductance and colligative properties are useful in deciding structure/constitution of a given unknown complex compound.

1. If molar conductivity of complex is almost equal to that of NaCl and it does not exhibits stereoisomerism then the complex will be:

(a) [Co(CO₃)(en)₂]Br

(b) $[Co(CO_3)(H_2O)_2(NH_3)_2]Br$

(c) $[Co(CN)(NH_3)_5]Br_2$

(d) $[Co(CO_3)(NH_3)_4]Br$

2. A metal M having electronic configuration $(n-1)d^8ns^2$ forms complexes with co-ordination No. = 4 and 6, if it forms diamagnetic complexes then permissible oxidation states of metal cation and geometry is:

(a) +2, octahedral

- (b) +4, octahedral
- (c) +2, square planar (d) (b) and (c) both
- 3. The cyano complex that exhibit highest value of paramagnetism is:

(a) $[Mn(CN)_6]^{4-}$

- (b) $[Co(CN)_6]^{3-}$
- (c) $[Fe(CN)_6]^{3-}$
- (d) $[Cr(CN)_6]^{3-}$

PASSAGE 2

The crystal field theory assumes interaction between metal ion and the ligands as a purely electrostatic and ligands are supposed to be point charges.

- 1. Which of the following order of CFSE is incorrect?
 - (a) $[Cr(NO_2)_6]^{3-} > [Cr(NH_3)_6]^{3+} > [Cr(H_2O)_6]^{3+}$
 - (b) $[PtF_4]^{2-} > [PdF_4]^{2-} > [NiF_4]^{2-}$
 - (c) $[Ni(DMG)_2] < [Ni(en)_2]^{2+}$
 - (d) $[Co(EDTA)]^- > [Co(en)_3]^{3+}$
- 2. Which of the following match are incorrect?

Complex Compound	Magnetic Moment
(a) $[VCl_3(NMe_3)_3]$	$\sqrt{8}$ BM
(b) [CrCl ₃ (NMe ₃) ₃]	$\sqrt{15}$ BM
(c) [Cu(CN)(NO ₂)(NH ₃)(Py)]	$\sqrt{3}$ BM
(d) [Co(ox)(H ₂ O) ₄] ⁺	$\sqrt{24}$ BM

- 3. Amongst the following complexes which has square planar geometry?
 - (a) $[RhCl(CO)(PPh_3)_2]$

(b) $K_2[Cu(SCN)_4]$

(c) $K_2[Ni(PH_3)_2Cl_2]$

(d) MnO_4^{2-}

PASSAGE 3

The magnetic property, dipole moment, plane of symmetry, colour and absorption band can be helpful in structure elucidation of complex compounds.

1. Which of the following complex ion is expected to absorb light in 4000 Å to 7800 Å region?

(a) $[Ti(en)_3]^{4+}$

(b) $[Cr(H_2O)_6]^{3+}$

(c) $[Sc(NH_3)_4(H_2O)_2]^{3+}$

(d) $[Zn(en)_2(NH_3)_2]^{2+}$

2. Compound 'X' has molecular formula CrCl₂Br · 6H₂O can show type of isomerism.

(i) hydrate isomerism

(ii) ionization isomerism

(iii) geometrical isomerism

(iv) optical isomerism

(a) (i), (ii) and (iii) only

(b) (i) and (ii) only

(c) (i), (ii), (iii) and (iv)

(d) (i) and (iii) only

3. Complex compound(s) having even number of space (stereo) isomers is/are:
(Where AA-symmetrical bidentate ligand and a, b, c, d e-monodentate ligands)

(a) $[M(AA)_2b_2]^{n\pm}$

(b) $[Ma_3b_3]^{n\pm}$

(c) $[Ma_3bcd]^{n\pm}$

(d) $[Ma_2bcde]^{n\pm}$

PASSAGE 4

Ligands are broadly classified into two classes classical and non-classical ligands, depending on their donor and acceptor ability. Classical ligands form classical complexes while non-classical ligands form non-classical complexes. Bonding mechanism in non-classical is called synergic bonding.

1. Synergic bonding is absent in :

(a) [Mo(CO)₆]

(b) $[Cr(CO)_3(B_3N_3H_6]$

(c) [Sc(CO)₆]³⁺

(d) $[Ni(CN)_4]^{4-}$

2. Which is not π -acceptor ligand ?

H₂C — CH₂

(b) $\sigma - C_5 H_5^-$

(c) PH_3

(d) $B_3 N_3 H_6$

3. In compound $[M(CO)_n]^z$, the correct match for highest 'M—C' bond length for given M, n and z respectively:

M n Z 0 Cr 6 (a) V 6 -1(b) Ti -2 (c) +1(d) Mn

PASSAGE 5

An isomer of the complex CoBrCl₂(en)₂(H₂O), on reaction with concentrated H₂SO₄ (dehydrating agent), suffers no loss in weight and on reaction with AgNO₃ solution it gives

1. The incorrect statement about complex is:

- (a) It can show geometrical isomerism
- (c) Trans isomer is optically active
- 2. The correct formula of the complex is:
 - (a) [CoBrH₂O(en)₂]Cl₂
 - (c) [CoBrCl(en)₂]Cl·H₂O

- (b) cis isomer is optically active
- (d) It can exhibit solvate isomerism
- (b) [CoCl(en) 2H2O]BrCl
- (d) [CoCl₂(en)₂]Br ·H₂O

PASSAGE 6

Crystal field theory provides correct electronic distribution of central metal under surrounding ligand field, hence it clearly explains magnetic moment, colour of a complex.

1. Which of the following complex is high spin?

- (a) $K_4[Fe(CN)_6]$
- (b) [PtCl₄]²⁻
- (c) $[CoF_6]^{3-}$
- (d) $[Ni(NH_3)_6]^{2+}$

2. In which of the following complex transition of electron occurs from one shell to other shell of central metal.

(a) $[Fe(H_2O)_5(NO)]^{2+}$

(b) $[Co(H_2O)_6]^{2+}$

(c) $[Rh(NH_3)_6]^{2+}$

(d) $[Ni(CN)_6]^{4-}$

3. Which of the following hydrated complex ion has high intensity colour in aqueous solution.

(a) $[Mn(H_2O)_6]^{3+}$

(b) $[Co(H_2O)_6]^{2+}$

(c) $[Ni(H_2O)_6]^{2+}$

(d) $[Mn(H_2O)_6]^{2+}$

PASSAGE 7

Two important physical evidences supporting the synergic bonding in non-classical complexes are bond lengths and vibrational spectra. Vibrational spectra is based on the fact that the compression and extension of a bond may be analogous to the behavior of a spring and obeys Hook's law.

$$\overline{v} = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}} \text{ cm}^{-1}$$

where, k = force constant of the bond which is directly proportional to bond strength of CO

 μ = reduced mass of ligand

 \bar{v} = stretching frequency of the CO bond

c =velocity of light

1. In which of the following complex stretching frequency for CO ligand is least as well as bond energy of *M*—C bond is higher.

(a) (dien) Mo(CO)₃

(b) $(Et_3P)_3Mo(CO)_3$

(c) $(F_3P)_3Mo(CO)_3$

(d) $(Cl_3P)_3Mo(CO)_3$

2. In $Mn_2(CO)_{10}$ carbonyl complex, the *d*-orbital of Mn-atom which can not be involved in synergic bonding between Mn and CO ligands:

- (a) d_{xz}
- (b) d_{xy}
- (c) d_{yz}
- (d) None of these

- 3. In which of the following ligand, σ -bond order does not change during synergic bonding in their respective complexes:
 - (a) CO

(b) N₂

(c) $CH_2 = CH_2$

(d) PEt₃

PASSAGE 8

Complex compounds that have the same molecular formula but have different structural/space arrangements of ligands around central metal atom/ion are called isomers, these are of two types namely structural and stereoisomers.

- 1. Which of the following is different among structural isomers?
 - (a) Oxidisation state

(b) Co-ordination number

(c) IUPAC name

(d) None of these

- 2. Types of isomerism exhibited by [CrCl₂(NO₂)₂(NH₃)₂] complex ion are:
 - (a) ionisation, optical

(b) hydrate, optical

(2) geometrical, optical

(d) co-ordinate, geometrical

3. Complex species that exhibits isomerism is:

(a) $[Ag(NH_3)_2]^+$

(b) $[Co(NO_2)(NH_3)_5]^{2+}$ (c) $[PtCl_2(en)]$

(d) $[CoCl(NH_3)_5]^{2+}$

PASSAGE 9

A complex compound of chromium contains five NH₃ molecules, one nitro group and two chloride ions for one Cr³⁺ cation. One molecule of this compound produces three ions in aqsolution, on reacting with excess of AgNO₃ solution, two moles of AgCl get precipitated.

- 1. The formula of the complex compound is:
 - (a) $[CrCl(NO_2)(NH_3)_4]NH_3 \cdot Cl$

(b) $[CrCl(NH_3)_5]Cl \cdot NO_2$

(c) $[Cr(NO_2)(NH_3)_5]Cl_2$

(d) $[Cr(NH_3)_5]NO_2 \cdot Cl_2$

- 2. The types of isomerism shown by the complex compound is:
 - (a) geometrical, ionization

(b) ionization, linkage

(c) linkage, optical

(d) geometrical, optical

3. Magnetic moment of complex compound is:

(a) 0 BM

(b) $\sqrt{24} \text{ BM}$

(c) $\sqrt{15}$ BM

(d) $\sqrt{3}$ RM

PASSAGE 10

According to C.F.T., attraction between the central metal ion and ligands in a complex is purely electrostatic. The transition metal which forms the central atom cation in the complex is regarded as a positive ion. It is surrounded by negative ligands or neutral molecules which have a lone pair of electrons, if the ligand is a neutral molecule such as NH_3 , the negative end of the dipole in the molecule is directed towards the metal cation. The electrons on the central metal ion are under repulsive forces from those on the ligands. Thus the electrons occupy the d-orbitals remain away from the direction of approach of ligands.

1. Correct relationship between pairing energy (*P*) and C.F.S.E (Δ_o) in complex ion $[Ir(H_2O)_6]^{3+}$ is:

(a) $\Delta_o < P$

(b) $\Delta_o > P$

(c) $\Delta_o = P$

(d) cannot comment

2. The crystal field-spliting order for Cr ³⁺ cation is octahedral field for ligands CH₃COO⁻, NH₃ H₂O, CN⁻ is:

(a) $CH_3COO^- < H_2O < NH_3 < CN^-$

(b) $CH_3COO^- < NH_3 < H_2O < CN^-$

(c) $H_2O < CH_3COO^- < NH_3 < CN^-$

(d) $NH_3 < CH_3COO^- < H_2O < CN^-$

3. The value of 'x' in the complex H_x [Co(CO)₄] (on the basis of EAN rule); and geometry arround Co ion respectively is:

(a) 1, square planar

(b) 2, tetrahedral

(c) 1, tetrahedral

(d) 2, square planar

PASSAGE 11

An isomer of the complex $Co(en)_2$ ($H_2O)ICl_2$, on reaction with concentrated H_2SO_4 it suffers loss in weight and on reaction with $AgNO_3$ solution gives a yellow precipitate, which is insoluble in NH_3 solution .

1. If all the ligands in the co-ordination sphere of the above complex are replaced by CN ion, then the magnetic moment of the complex ion will be:

(a) 0.0 BM

(b) 5.9 BM

(c) 4.9 BM

(d) 1.73 BM

2. If one mole of original complex is treated with excess Pb(NO₃)₂ solution, then the number of moles of white precipitate formed will be:

(a) 2.0

(b) 1.0

(c) 0.0

(d) 3.0

3. Total number of space isomers of the formula of the above complex is :

(a) 2

(b) 3

(c) 4

(d) 1

PASSAGE 12

In complexes of weak field ligands, $\Delta_O < P$ (Pairing energy), the energy difference between t_{2g} and e_g sets is relatively less. Under the influence of strong field ligands, $\Delta_O > P$ (Pairing energy), the energy difference between t_{2g} and e_g sets is relatively high.

1. Which of the following is correct statement?

(a) Complex $[Co(H_2O)_6]^{2+}$ is more stable than $[Co(H_2O)_6]^{3+}$

(b) All complexes of Ni (II) are bound to be outer d-orbital complexes.

(c) Stability constant for [Ni(en)₃]²⁺ is greater than stability constant for [Ni(NH₃)₆]²⁺

(d) Δ_{oct} for $[\text{Cr}(\text{H}_2\text{O})_6]^{3+}$ is greater than Δ_{oct} for $[\text{Cr}(\text{NH}_3)_6]^{3+}$

2. Select the correct increasing order of 10 Dq. value for chromium complexes:

(1) $[Cr(en)_3]^{3+}$

(2) $[Cr(ox)_3]^{3-}$

(3) $[CrF_6]^{3-}$

 $(4) [Cr(H_2O)_6]^{3+}$

(a) 4< 3< 1< 2

(b) 3< 4< 2< 1

(c) 4< 3< 2< 1

(d) 3< 4< 1< 2

- 3. Select the correct statement regarding [Cr(en)₂Cl₂]⁺ and [Co(C₂O₄)₂(NH₃)₂]⁻ complex ions:
 - (a) Both are equally stable complexes
- (b) Both have equal number of stereoisomers

INORGANIC CHEMISTRY

- (c) Both are diamagnetic complexes
- (d) (a) and (c) both

PASSAGE 13

Complex compounds are molecular compounds which retain their identities even when dissolved in water. They do not give all the simple ions in solution but instead furnish complex ions. The complex compounds are often called coordination compounds because certain groups called ligands are attached to the central metal ion by coordinate or dative bonds. Coordination compounds exhibit isomerism, both structural and stereoisomerism. The structure, magnetic property, colour and electrical properties of complexes are explained by various theories.

- 1. Arrange the following compounds in order of their molar conductance:
 - (i) $K[Co(NO_2)_4(NH_3)_2]$

(ii) [Cr(ONO)₃(NH₃)₃]

(iii) $[Cr(NO_2)(NH_3)_5]_3[Co(NO_2)_6]_2$

(iv) $Mg[Cr(NO_2)_5(NH_3)]$

(a) (ii) < (i) < (iv) < (iii)

(b) (i) < (ii) < (iii) < (iv)

(c) (ii) < (i) < (iii) < (iv)(d) (iv) < (iii) < (i) < (i)

2. The oxidation number, coordination number and magnetic moment in the following complex is:

$$[Cr(C_2O_4)_2(NH_3)_2]^-$$

(a) O.N. = +3, C.N. = 6, M.M. = $\sqrt{15}$ BM

(b) O.N. = -1, C.N. = 6, M.M. = $\sqrt{15}$ BM

(c) O.N. = +3, C.N. = 6, M.M. = $\sqrt{3}$ BM

(d) O.N. = +3, C.N. = 6, M.M. = $\sqrt{12}$ BM

- 3. In which of the following pairs, both the complexes have the same geometry?
 - (a) $[NiCl_4]^{2-}$, $[Ni(CN)_4]^{2-}$

(b) $[CoF_6]^{3-}$, $[Co(NH_3)_6]^{3+}$

(c) [Ni(CO)₄],[Ni(CN)₄]²⁻

(d) $[Cu(NH_3)_4]^+$, $[Ni(NH_3)_4]^{2+}$

PASSAGE 14

Recent X-ray work, IR and other spectroscopic methods have proved that Turnbull's blue is identical to Prussian blue.

- 1. What is the common formula of Turnbull's blue and Prussian blue?
 - (a) $Fe_3[Fe(CN)_6]_2$

(b) $Fe_4[Fe(CN)_6]_3$

(c) KFe[Fe(CN)₆]

- (d) $KFe_2[Fe(CN)_6]$
- 2. Intense blue colour arises as a result of:
 - (a) electron transfer between Fe(II) and Fe(I)
 - (b) electron transfer between Fe(II) and Fe(III)
 - (c) d-d transition
 - (d) spin magnetic moment

On the basis of stability of complex ion in the solution, complexes may be of two types, perfect and imperfect complexes. The stability depends upon the extent of dissociation which in turn depends upon the strength of metal-ligand bond. The stability of complex also depends upon charge on central metal atom, basic nature of ligand, chelation, and nature of metal ion and ligand according to HSAB principle.

- 1. Which one of the following does not follow EAN rule?
 - (a) Fe(CO)₅
- (b) V(CO)₆
- (c) $K_4[Fe(CN)_6]$
- (d) $Mn_2(CO)_{10}$

- 2. Which complex is most stable?
 - (a) $[Cu(CN)_2]^- K_d = 1 \times 10^{-16}$
- (b) $[Fe(CN)_6]^{4-} K_d = 1 \times 10^{-37}$
- (c) $[Fe(CN)_6]^{3-} K_d = 1 \times 10^{-44}$
- (d) $[Ag(CN)_2]^- K_d = 1 \times 10^{-20}$

Which of the following is correct virgulations. Choi Acada Las Cardenas sa was niba za caración

When degenerate d-orbitals of an isolated atom/ion come under influence of magnetic field of ligands, the degeneracy is lost. The two set $t_{2g}(d_{xy}, d_{yz}, d_{xz})$ and $e_g(d_{z^2}, d_{x^2-y^2})$ are either stabilized or destabilized depending upon the nature of magnetic field. It can be expressed diagrammatically as:

Value of CFSE depends upon nature of ligand and a spectrochemical series has been made experimentally, for tetrahedral complexes, Δ is about 4/9 times to Δ_0 (CFSE for octahedral complex). This energy lies in visible region and i.e., why electronic transition are responsible for colour. Such transitions are not possible with d^0 and d^{10} configuration.

- 1. The value of CFSE (Δ_0) for complexes given below follow the order :
 - (I) $[Co(NH_3)_6]^{3+}$ (II) $[Rh(NH_3)_6]^{3+}$ (III) $[Ir(NH_3)_6]^{3+}$

(a) I < II < III

(b) I > II > III

(c) I < II > III

- (d) I = II = III
- 2. Cr 3+ form four complexes with four different ligands which are [Cr(Cl)₆]³⁻, [Cr(H₂O)₆]³⁺, $[Cr(NH_3)_6]^{3+}$ and $[Cr(CN)_6]^{3-}$. The order of CFSE (Δ_0) in these complexes is in the order :
 - (a) $[CrCl_6]^{3-} = [Cr(H_2O)_6]^{3+} = [Cr(NH_3)_6]^{3+} = [Cr(CN)_6]^{3-}$
 - (b) $[CrCl_6]^{3-} < [Cr(H_2O)_6]^{3+} < [Cr(NH_3)_6]^{3+} < [Cr(CN)_6]^{3-}$
 - (c) $[CrCl_6]^{3-} > [Cr(H_2O)_6]^{3+} > [Cr(NH_3)_6]^{3+} > [Cr(CN)_6]^{3-}$
 - (d) $[CrCl_6]^{3-} < [Cr(H_2O)_6]^{3+} = [Cr(NH_3)_6]^{3+} < [Cr(CN)_6]^{3-}$

(a) $K[Co(CO)_4]$

(c) [Co(NH₃)₆]Cl₂

3. The d-orbitals, which are stabilized in an octahedral magnetic field, are: (a) d_{xy} and d_{-2} (b) $d_{x^2-y^2}$ and d_{z^2} (c) d_{xy} , d_{xz} and d_{yx} (d) d_{2} only 4. For an octahedral complex, which of the following d-electron configuration will give maximum CFSE? (d) High spin d^7 (a) High spin d⁶ (c) Low spin d^5 (b) Low spin d4 $-0.8\Delta_{\odot}$ $-0.4\Delta_{\Omega}$ $-1.6\Delta_{\odot}$ $-2.0\Delta_{O}$ **5.** $\text{Ti}^{3+}(aq.)$ is purple while $\text{Ti}^{4+}(aq.)$ is colourless because : (a) There is no crystal field effect in Ti4+ (b) The energy difference between t_{2g} and e_g Ti⁴⁺ is quite high and does not fall in the visible region (c) Ti4+ has d0 configuration (d) Ti⁴⁺ is very small in comparison to Ti³⁺ and hence does not absorb any radiation 6. Which of the following is correct arrangement of ligand in terms of the Dq values of their complexes with any particular 'hard' metal ion : (a) $Cl^- < F^- < NCS^- < NH_3 < CN^-$ (b) $NH_3 < F^- < Cl^- < NCS^- < CN^-$ (c) $Cl^- < F^- < NCS^- < CN^- < NH_3$ (d) $NH_3 < CN^- < NCS^- < Cl^- < F^-$ 7. The extent of crystal field splitting in octahedral complexes of the given metal with particular weak field ligand are: (a) Fe(III) < Cr(III) < Rh(III) < Ir(III)(b) Cr(III) < Fe(III) < Rh(III) < Ir(III)(c) Ir(III) < Rh(III) < Fe(III) < Cr(III)(d) Fe(III) = Cr(III) < Rh(III) < Ir(III)ONE OR MORE ANSWERS IS/ARE CORRECT 1. Consider the following two reactions: $Cd^{2+}(aq.) + 4CH_3NH_2 \xrightarrow{K_1} {}^{\iota}A', \Delta G_1^{\circ}$ $Cd^{2+}(aq.) + 2H_2NCH_2CH_2NH_2 \xrightarrow{K_2} B', \Delta G_2$ According to given information the correct statement(s) is/are: (a) ΔG_2° is more negative than ΔG_1° (b) Compound 'A' is optically inactive (c) Compound 'B' is optically active (d) Formation constant K_2 is greater than formation constant K_1 2. Complex compound [Co(SCN)₂(NH₃)₄]Cl exhibits: (b) Geometrical isomerism (a) Ionization isomerism (c) Optical isomerism (d) Linkage isomerism 3. Which of the following compound has/have effective atomic number equal to the atomic

(b) K₂[Fe(CO)₄]

(d) $[CoCl_3(H_2O)_3]$

4.	Select correct statement(s) regarding octahedron complex having CFSE = $-1.2\Delta_0$. (a) Compound is neither low spin nor high spin complex
	(b) Type of hybridisation complex does not depend upon nature of ligands
	(c) Magnetic moment of complex compounds is either $\sqrt{15}$ B.M. or $\sqrt{8}$ B.M.
	(d) All are incorrect statements
5.	Consider the following two carbonyl compounds (i) [Tc(CO) ₆] ⁺ and (ii) [Nb(CO) ₆] ⁻
	Select incorrect statement(s) for given carbonyl compounds. (a) [Tc(CO) ₆] ⁺ acts as reducing agent and [Nb(CO) ₆] ⁻ acts as oxidizing agent
	(b) [Nb(CO) ₆] ⁻ acts as reducing agent and [Tc(CO) ₆] ⁺ acts as oxidizing agent
	(c) "Nb—C" bond order in [Nb(CO) ₆] is greater than "Tc—C" bond order in [Tc(CO) ₆] (c)
	(d) "CO" bond order is greater in [Nb(CO) ₆] than in [Tc(CO) ₆] ⁺
6.	Which of the following ligand(s) can act as π -acid ligand. ? (a) σ -cyclopentadienyl (b) π -Allyl (c) $B_3N_3H_6$ (d) π -cyclopentadienyl
7.	Find out correct I.U.P.A.C. name of complex compound. (a) Pentaamminecyanidochromium(II) hexanitrito-N-irridate(III) (b) Triamminetricyanidochromium(III)hexanitrito-N-irridate(III) (c) Hexanitrito-N-irridium(III)pentaamminecyanidochromate(II) (d) Pentaamminecyanidochromium(III) hexanitrito-N-irridate(III)
8.	Consider the following reactions of complex compounds A, B and C (i) $CoCl_2Br \cdot 5NH_3 + excess Ag^+(aq.) \longrightarrow 1AgCl(s)$
	(Compound A)
	(ii) $CoCl_2Br \cdot 5NH_3 + excess Ag^+(aq.) \longrightarrow 2AgCl(s)$
	(Compound B)
	(iii) $CoCl_2Br \cdot 4NH_3 + excess Ag^+(aq.) \longrightarrow 1AgCl(s)$
	(Compound C)
	Then according to the given information the correct statement(s) is/are:
	(a) Compounds (A) and (B) are ionisation isomers
	(b) Molar conductivity of compounds (A) and (B) are almost same(c) Compounds (A), (B) and (C) do not exhibit geometrical isomerism
	(c) Compounds (A), (B) and (C) do not exhibit geometrical isometrism (d) Order of CFSE values : $\Delta_0(A) > \Delta_0(B) > \Delta_0(C)$
•	Which complex species does/do not exhibit geometrical isomerism and only have two
۶.	stereoisomers.
	(a) [Co(EDTA)] (b) [PtBrCl(gly)]
	(c) $[Co(acac)_2(en)]^+$ (d) $[Pd(NO_2)(ox)(gly)]$
10	Which of the following complex(s) can not exhibit both geometrical and optical isomerism?
	(a) $[Ru(en)_3]^{3+}$ (b) $[Co(H_2O)Cl_3]_{100}$ (c) $[PtBrCl(H_2O)NH_3]$ (d) $[FeBr_2(en)_2]^{3+}$
11.	Complex ions [NiCl ₆] ⁴⁻ , [Ni(CN) ₆] ⁴⁻ similar in their given properties:
	(a) oxidation state, geometry (b) co-ordination number, EAN
	(c) magnetic moment, geometry (d) stability, colour

12. Select correct statement(s) regarding given complexes:

- (a) [Fe(CO)₅], the orbitals used for hybridization in Fe atom are s, p_x , p_y , p_z , d_{z^2} and it is high spin complex
- (b) $[Pt(NH_3)_2Cl_2]$, the orbitals used for hybridization on Pt atom are s, p_x , p_y , $d_{x^2-y^2}$ and it is low spin complex
- (c) $[Cr(H_2O)_6]^{3+}$, the orbitals used for hybridization in Cr atom are s, $p_x, p_y, p_z, p_{z^2}, d_{x^2-y^2}$ and it is high spin complex
- (d) Ni(CO)₄, the orbitals used for hybridization in Ni atom are, s, p_x , p_y , p_z , and it is low spin complex
- **13.** Complex compound [Co(SCN)₂(NH₃)₄]Cl exhibits:
 - (a) ionization isomerism

(b) geometrical isomerism

(c) optical isomerism

- (d) linkage isomerism
- 14. Which of the following compound has/have effective atomic number equal to the atomic number of a noble gas?

- (c) $[Co(NH_3)_6]Cl_2$ (d) $[CoCl_3(H_2O)_3]$

(a) $K[Co(CO)_4]$ (b) $K_2[Fe(CO)_4]$ 15. $K_2[Ni(CN)_4] \xrightarrow{K \text{ in liq.}} 'X'$

Regarding this reaction correct statement is/are:

- (a) 'X' is $K_4[Ni(CN)_4]$
- (b) The oxidation state of Ni changed +2 to zero
- (c) The structure of 'X' is tetrahedral
- (d) [Ni(CN)₄]²⁻ is square planar complex
- 16. Which of the following statement(s) is/are correct?
 - (a) The oxidation state of iron in sodium nitro prusside Na₂[Fe(CN)₅(NO)] is +II
 - (b) [Ag(NH₃)₂]⁺ is linear in shape
 - (c) In $[Fe(H_2O)_6]^{3+}$, Fe is d^2sp^3 hybridized
 - (d) In $[Co(H_2O)_6]^{3+}$ complex ion, Co is d^2sp^3 hybridized
- 17. Which one of the following statement(s) is/are false?
 - (a) Weak ligands like F-, Cl- and OH- usually form low spin complexes
 - (b) Strong ligand like CN and NO , generally form high spin complexes
 - (c) [FeF₆]³⁻ is high spin complex
 - (d) [Ni(CO)₄] is high spin complex
- 18. A d-block element forms octahedral complex but its magnetic moment remains same either in strong field or in weak field ligand. Which of the following is/are correct?
 - (a) Element always forms colourless compound
 - (b) Number of electrons in t_{2g} orbitals are higher than in e_g orbitals
 - (c) It can have either d^3 or d^8 configuration
 - (d) It can have either d^7 or d^8 configuration

19. For which of the following d^n configuration of octahedral complex(es), cannot exist in both high spin and low spin forms?

(b) d^{5} 20. Which of the following pairs show coordination isomerism?

(c) d^6

(d) d^{8}

	(a) $[Co(NH_3)_6][Cr(CN)_6]$ and $[Cr(NH_3)_6][Co(CN)_6]$
	(b) $[Co(NH_3)_3(H_2O)_2Cl]Br_2$ and $[Co(NH_3)_3(H_2O)Cl\cdot Br]Br\cdot H_2O$
	(c) $[Pt(NH_3)_4Cl_2]Br_2$ and $[Pt(NH_3)_3B_2]Cl_2$
	(d) $[Co(NH_3)_6][Cr(C_2O_4)_3]$ and $[Cr(NH_3)_6][Co(C_2O_4)_3]$
21.	Which of the following are coordination isomers of [Co(NH ₃) ₆][Cr(CN) ₆]?
	(a) $[Cr(NH_3)_6][Co(CN)_6]$ (b) $[Cr(NH_3)_4(CN)_2][Co(CN)_4(NH_3)_2]$
	(c) $[Cr(NH_3)_3(CN)_3][Co(NH_3)_3(CN)_3]$ (d) None of these
22.	Which of the following statements is not true about the complex ion [CrCl(NO ₂)(en) ₂] ⁺ ?
	(a) It has two geometrical isomers cis and trans
	(b) cis and trans forms are not diastereomers to each other
	(c) Only the cis isomer displays optical activity
	(d) It has three optically active isomers: d,l and trans forms
23.	Which of the following statement(s) is/are incorrect?
	(a) In [CoBrCl(en) ₂] ⁺ geometrical isomerism exists, while optical isomerism does not exist
	(b) Potassium aquadicyanosuperoxoperoxoperoxoch-romate(III) is IUPAC name
	$K_2[Cr(N)_2O_2(O_2)(H_2O)]$
	(c) There are 3 geometrical and 15 stereoisomers possible for $[Pt(NO_2)(NH_3)(NH_2OH)(py)]^+$ and $[PtBrCll(NO_2)(NH_3)(py)]$ respectively
	(d) cis and trans forms are not diastereomers to each other
24.	7 3(0)2(1-13)1 1011.
	(a) It has three geometrical isomers
	(b) Only one space isomers is optically active and remaining are inactive
	(c) There are total four space isomers(d) The magnetic moment of complex ion is 3.89 BM
25	Which of the following is correct about
20.	Tetraamminedithiocyanato-s cobalt (III) tris(oxalato)cobaltate(III)?
	(a) Formula of the complex is [Co(SCN) ₂ (NH ₃) ₄][Co(ox) ₃]
	(b) It is a chelating complex and show linkage isomerism
	(c) It shows optical isomerism
	(d) It shows geometrical isomerism
26.	Which of the following statement(s) is/are false?
	(a) In [PtCl ₂ (NH ₃) ₄] ²⁺ complex ion, the cis-form is optically active, while trans-form is
	optically inactive
	(b) In [Fe(C ₂ O ₄) ₃] ³⁻ , geometrical isomerism does not exist, while optical isomerism exists
	(c) In [Mabcd] ^{n±} tetrahedral complexes, optical isomerism cannot be observed
	(d) In [Mabcd] ^{n±} square planar complexes, optical isomerism can be observed

- 27. Which of the following statement(s) is/are true?
 - (a) In metal carbonyl complexes d_{C-O} increases compared to that in CO molecule
 - (b) The pair of compounds $[Cr(H_2O)_6]Cl_3$ and $[CrCl_3(H_2O)_3]\cdot 3H_2O$ show hydrate isomerism
 - (c) d_{z^2} orbital of central metal atom/ion is used in dsp^2 hybridisation
 - (d) Facid and Meridional isomers associated with $[Ma_3b_3]^{n\pm}$ type complex compound, both are optically inactive
- 28. Select the correct statement:
 - (a) Chelation effect is maximum for five and six membered rings
 - (b) Greater the charge on the central metal cation, greater the value of Δ (CFSE)
 - (c) In complex ion $[CoF_6]^{3-}$, F^- is a weak field ligand, so that $\Delta_{oct} < P$ (Pairing energy) and it is low spin complex
 - (d) [CoCl₂(NH₃)₂(en)][⊕] complex ion will have four different isomers
- 29. Which of the following statement(s) is/are true?
 - (a) In ferrocyanide ion, the effective atomic number is 36
 - (b) Chelating ligands are atleast bidentate ligand
 - (c) $[CrCl_2(CN)_2(NH_3)_2]^{\Theta}$ and $[CrCl_3(NH_3)_3]$ both have d^2sp^3 hybridisation
 - (d) As the number of rings in complex increases, stability of complex (chelate) also increases
- **30.** In test of NO₃ ion, the dark brown ring complex is formed, which is true of this complex?
 - (a) The colour is due to charge transfer spectra
 - (b) Iron and NO both have +1 charge
 - (c) The complex species can be represented as [Fe^I(H₂O)₅NO]²⁺
 - (d) Iron has +2 oxidation state and NO is neutral
- 31. The complex(es) which is/are blue in colour:
 - (a) $Fe_4[Fe(CN)_6]_3$

(b) $Zn_2[Fe(CN)_6]$

(c) $Cu_2[Fe(CN)_6]$

- (d) $\operatorname{Fe}_{3}[\operatorname{Fe}(\operatorname{CN})_{6}]_{2}$
- 32. What is/are the coordination number(s) of Au in the complexes formed by Au?
 - (a) 6

- **33.** The *d*-orbitals involved in sp^3d^2 or d^2sp^3 hybridisation of the central metal ion are:
 - (a) $d_{x^2-y^2}$

(b) d_{xy}

(c) d_{yz}

- (d) d_{x^2}
- 34. Which is not correctly matched?

Complex compounds

- (a) K[CrF₄O]
- (b) Na[BH(OCH₃)₃]
- (c) $[Be(CH_3 CO CH CO C_6H_5)_2]^0$
- (d) H[AuCl₄]

IUPAC name

Potassium tetrafluorooxo chromate (v)

Sodium hydido trimethoxy borate (III)

Bis (Benzoylacetonato beryllium (III)

Hydrogen tetrachloro aurate (III)

- 35. Which of the following statement(s) is(are) correct?
 - (a) The complexes [NiCl₄]²⁻ and [NiCN₄]²⁻ differ in the magnetic properties
 - (b) The complexes $[NiCl_4]^{2-}$ and $[NiCN_4]^{2-}$ differ in the geometry
 - (c) The complexes [NiCl₄]²⁻ and [NiCN₄]²⁻ differ in primary valencies of nickel
 - (d) The complexes [NiCl₄]²⁻ and [NiCN₄]²⁻ differ in the state of hybridization of nickel
- **36.** Which is correct statement(s)?
 - (a) [Ag(NH₃)₂]⁺ is linear with sp hybridised Ag⁺ions
 - (b) NiCl₄²⁻, CrO₄²⁻ and MnO₄ have tetrahedral geometry
 - (c) $[Cu(NH_3)_4]^{2+}$, $[Pt(NH_3)_4]^{2+}$ and $[Ni(CN)_4]^{2-}$ have dsp^2 hybridisation of the metal ion
 - (d) $Fe(CO)_5$ has trigonal bipyramidal structure with d_{2} sp³ hybridised ion

MATCH THE COLUMN

Column-I and **Column-II** contains four entries each. Entries of Column-I are to be matched with one or more than one entries of Column-II. Each entry of Column-I may have the matching with one or more than one entries of Column-II.

1.	Column-I	Column-II			
	(A) Co ²⁺ (aq.)	(P) Pink/Light Pink			
	(B) Mn ²⁺ (aq.)	(Q) Purple			
	(C) V ²⁺ (aq.)	(R) Outer orbital complex and M.M. = $\sqrt{15}$ B.M.			
	(D) Ti ³⁺ (aq.)	(S) Iinner orbital complex and M.M. = $\sqrt{3}$ B.M.			
		(T) Paramagnetic			
2.	Column-I	Column-II (Characteristics of complexion compound)			
	(A) [Pt(NO ₂) ₂ (en)] ²⁺	(P) Stable according to E.A.N. rule			
	(B) [Cr(π-C ₆ H ₆)(NO) ₂]	(Q) Ligand acts as ambidentate			
	(C) [Ir(SCN)(SO ₄)(NH ₃) ₄]	(R) Bond order of M — L bond > 1.0			
	(D) $[Cr(C_2H_4)(CO)_5]$	(S) Bond order of ligand decreases			
	(-) [-:(-2-:4)()3:				

3. Column-I (Complex compounds)

- (A) [PtBrCl(acac)(H₂O)₂]NO₃
- (B) $[IrBr_2(en)(H_2O)(NH_3)]Br$
- (C) [CrCl₂(acac)(H₂O)₂]
- (D) $[Pt(ox)_2(NH_3)_2]$

4. Column-I

- (A) $[Cr(CN)_3(NO_2)_3]^{4-}$
- (B) $[Co(C_2O_4)_3]^{3-}$
- (C) [Fe(EDTA)]
- (D) [Ni(en)₃](NO₃)₂

5. Column-I (complex ion)

- (A) $[Cr(NH_3)_6]^{3+}$
- (B) $[Cu(NH_3)_6]^{2+}$
- (C) $[Fe(H_2O)_6]^{3+}$
- (D) [IrF₆]³⁻

6. Column-I

- (A) [MnCl₄]²⁻
- (B) [Ni(CN)₄]²⁻
- (C) [Ni(CO)₄]
- (D) $[Cu(NH_3)_4]^{2+}$

Column-II (Characteristics of complex)

- (P) Difference between optical isomers and optically active isomers is two
- (Q) Only cis configurations are optically active.
- (R) Exhibit structural isomerism.
- (S) Two trans are optically inactive.
- (T) Optically active when both monodentate neutral ligands are at adjacent sites in cis configuration.

Column-II

- (P) Outer orbital complex
- (Q) Inner orbital complex
- (R) $\mu = 2.83 \text{ BM}$
- (S) Shows optical activity
- (T) $\mu = 0$

Column-II (CFSE and hybridisation)

- (P) $0.0 \, \Delta_o$, $sp^3 d^2$ -hybridisation
- (Q) $-0.6 \Delta_o$, sp^3d^2 -hybridisation
- (R) $-1.2 \Delta_o$, d^2sp^3 -hybridisation
- (S) Diamagnetic
- (T) Paramagnetic

Column-II

- (P) sp³hybridisation
- (Q) Diamagnetic
- (R) Paramagnetic
- (S) dsp2 hybridisation

7.

Column-I Column-II (A) $[Fe(CN)_6]^{4-}$ (P) Paramagnetic (B) [Fe(H₂O)₆]²⁺ (Q) Diamagnetic (C) $[Cu(NH_3)_6]^{2+}$ (R) Inner orbital complex (D) [Ni(CN)₆]⁴⁻ (S) Outer orbital complex Column-I Column-II (A) $[Ni(H_2O)_6]Cl_2$ (P) d^2sp^3 hybridisation (B) $[Co(CN)_2(NH_3)_4]OC_2H_5$ (Q) Ionisation isomerism (C) [IrCl₆]³⁻ (R) $\mu = 2.83 \text{ BM}$ (D) $[PtCl_2(NH_3)_4]Br_2$ (S) $\Delta_Q < P$ Column-I Column-II (A) $[Cr(gly)_3]^0$ (P) Low spin complex (B) $[CoBr_2Cl_2(SCN)_2]^{3-}$ (Q) High spin complex (C) $[Fe(NH_3)_6]^{3+}$ (R) Optical isomerism (D) Na[PtBrCl(NO₂)(NH₃)] (S) Geometrical isomerism Column-I Column-II (A) Sodium nitroprusside (P) $\mu = 0 BM$ (Q) Octahedral (B) Brown ring complex (C) Complex of Ag formed during its (R) $\mu = \sqrt{15} BM$ extraction (D) Potassium ferrocyanide (S) NO+ ligand Column-I 11. Column-II (Pair of complex compounds) (Property which is different in given pair) (A) [Ni(CO)₄] and K₂[Ni(CN)₄] (P) Magnetic moment (B) $[Cu(NH_3)_4]SO_4$ and $K_3[Cu(CN)_4]$ (Q) Oxidation no. of central metal (C) K₂[NiCl₄] and K₄[Ni(CN)₄] (R) Geometry (D) K₂[NiCl₄] and K₂[PtCl₄] (S) EAN of central metal

214 INORGANIC CHEMISTRY

12. Column-I (Pair of complexes)

- (A) $[Fe(CN)_6]^{3-}$ and $[Co(NH_3)_6]^{2+}$
- (B) $[Fe(H_2O)_6]^{2+}$ and $[Fe(CN)_6]^{4-}$
- (C) $[Ni(CN)_4]^{4-}$ and $[Ni(CO)_4]$
- (D) [Ni(H2O)6]2+ and [NiCl4]2-

13.

Column-I (Coordination compound)

- (A) $Na_2[Pt(SCN)_2(ox)_2]$
- (B) $[CrCl_2(NH_3)_4]NO_3$
- (C) [Pt(NO₂)(Gly)(NH₃)]
- (D) $K_3[Fe(OH)_2(C_2O_4)_2]$

14.

Column-I

- (A) $K_3[Fe(CN)_5(CO)]$
- (B) $K[PtCl_3(C_2H_4)]$
- (C) Na[Co(CO)₄]
- (D) V(CO)₆

15.

Column-I (Molar conductance at infinite dilution)

- (A) 229
- (B) 0
- (C) 404
- (D) 523

Column-II (Property which is similar in given pair)

- (P) Magnetic moment
- (Q) Geometry
- (R) Hybridisation
- (S) Number of d-electrons

Column-II (Type of isomerism shown)

- (P) Ionization isomerism
- (Q) Linkage isomerism
- (R) Geometrical isomerism
- (S) Optical isomerism

Column-II

- (P) Complex having lowest bond length of CO ligand
- (Q) Follow rule of EAN
- (R) Complex involved in synergic bonding
- (S) Complex having highest bond length of CO ligand

Column-II (Complex compound)

- (P) [Pt(NH₃)₅Cl]Cl₃
- (Q) [Pt(NH₃)₂Cl₄]
- (R) [Pt(NH₃)₄Cl₂]Cl₂
- (S) [Pt(NH₃)₆]Cl₄

COORDINATION COMPOUNDS 215

16.

Column-I (Complex ions)	Column-II (Number of unpaired electrons)
(A) [CrF ₆] ⁴⁻	(P) One
(B) [MnF ₆] ⁴⁻	(Q) Two
(C) [Cr(CN) ₆] ⁴⁻	(R) Three
(D) [Mn(CN) ₆] ⁴⁻	(S) Four
L. Code our access to the control of	(T) Five more and real a suspen

17.

Column-I (Complexes)	Column-II (Hybridization of central atom)
(A) Ni(CO) ₄	AND THE RESERVE OF THE PROPERTY OF THE PROPERT
(B) [Ni(CN) ₄] ²⁻	
(C) [Fe(CN) ₆] ⁴⁻	(R) sp^3d^2
(D) [MnF ₆] ⁴ - on the state of the same are sent when the same of the same o	

18.

Column-I (Coordination compounds)	(Type of isomerism)
(A) [Co(NH ₃) ₄ Cl ₂]	(P) Optical isomerism
(B) [Co(en) ₃]Cl ₂	(Q) Ionization isomerism
(C) [Co(en) ₂ (NO ₂)Cl]SCN	(R) Coordination isomerism
(D) [Co(NH ₃) ₆][Cr(CN) ₆]	(S) Geometrical isomerism

ASSERTION-REASON TYPE QUESTIONS

These questions consist of two statements each, printed as assertion and reason, while answering these questions you are required to choose any one of the following responses:

viels their regular

- (A) If assertion is true but the reason is false
- (B) If assertion is false but reason is true
- (C) If both assertion and reason are true and the reason is the correct explanation of assertion
- (D) If both assertion and reason are true but reason is not the correct explanation of assertion
- 1. Assertion: In N2 molecule, any N-atom can coordinate with central atom/ion.
 - **Reason:** N₂ molecule can also act as ambidentate ligand.
- 2. Assertion: In N₂H₄, any one N-atom can coordination with central metal cation in a coordination compound.

Reason:

Reason: N_2H_4 can also act as ambidentate ligand. **3. Assertion:** $[Ti(H_2O)_6]^{4+}$ is coloured while $[Sc(H_2O)_6]^{3+}$ is colourless.

: $d \cdot d$ transition is not possible in $[Sc(H_2O)_6]^{3+}$.

Assertion: Acidified $[Cu(NH_3)_4]^{2+}$ and $[Cu(H_2O)_4]^{2+}$ both react with $K_4[Fe(CN)_6]$ to

give brown ppt.

Reason : Both complexes are blue in colour of little different shade.

5. Assertion : [Fe(EDTA)] complex is octahedral in shape.

Reason : EDTA is a hexadentate ligand and undergoing sp^3d^2 hybridisation. 6. Assertion: Tetrahedral complexes with chiral structure exhibit optical isomerism.

Reason : They lack plane of symmetry.

7. Assertion: Oxidation state of Fe in Fe(CO)₅ is zero.

Reason : Synergic bonding takes place in this metal carbonyl complex.

8. Assertion: Zeise's salt is a π -bonded organometallic compound. Reason : Zeise's salt contain C₂H₄ molecules as one of the ligand.

9. Assertion: [CoCl₃(NH₃)₃] does not give white precipitate with AgNO₃ solution.

Reason : [CoCl₃(NH₃)₃] complex is optically inactive.

10. Assertion: Transition metal ion forming octahedral complexes undergo sp^3d^2 or d^2sp^3

Reason : Strong field ligands force the unpaired electrons of central metal ion to pair up

causing d²sp³ hybridisation whereas weak field ligands do not affect electronic

configuration of the metal ion undergoes in sp^3d^2 hybridisation.

11. Assertion: Complex ion $[Co(NH_3)_6]^{2+}$ is readily oxidized to $[Co(NH_3)_6]^{3+}$.

: Unpaired electron in complex ion $[Co(NH_3)_6]^{2+}$ is present in 4p orbital. Reason

12. Assertion: Hydrazine is a neutral ligand.

: It has two N as donor atoms and behaves as a chelating ligand. Reason

13. Assertion : Complex anion $[Re_2Cl_8]^{2-}$ has one δ -bond, one sigma and one π -bond.

: d_{x^2} orbital can never form δ -bond. Reason

SUBJECTIVE PROBLEMS

1. Consider the following compounds with their regular geometries.

•
Geometry
Square planar
Trigonal bipyramidal
Square pyramidal
Octahedral
Pentagonal bipyramidal

Calculate value of $(x + y - z)^2$, where x is total number of axial d-orbitals having zero nodal plane, y and z are total no. of non-axial and axial d-orbitals respectively each one having two nodal planes used in hybridization of central atoms of compounds A to E.

- **2.** How many π -bonds are present in ferrocene?
- 3. Consider the following complex compounds

(i) [Cu(NH₃)₄][Cu(NO₂)₄]

(ii) [Cr(py)6][Cr(SCN)6]

(iii) [Co(NH₃)₅(NO₂)][Pt(SCN)₄]

If x_1, x_2, x_3 are more possible coordination isomers of given complex compounds respectively then calculate value of $x_1^2 + x_2^2 + x_3^2$.

4. Consider the following carbonyl complex compounds.

(i) $Mo(CO)_x$

(ii) H_v[Cr(CO)₅] and (iii)

(iii) $Ru_3(CO)_z$

Then calculate value of |z + y - x|.

- 5. If x and y are total number of electrons which are present in non-axial and axial set of d-orbitals respectively in Ni cation of [Ni(DMG)₂], then calculate value of $\frac{2x^2}{v}$.
- 6. Consider the following complex compounds:

(i) [Pt(NH₃)₂(SCN)₂]

(ii) [Co(NH₃)₃(NO₂)₃]

(iii) [Pt(en)Cl₂]

(iv) [Cr(en) 2Br2]+

(v) $[Rh(en)_3]^{3+}$

(vi) [CoCl₂Br₂]²⁻

Then calculate sum of total number of geometrical isomers in all above complex compounds.

7. Consider the following transformation

$$Cr(CO)_x \longrightarrow Cr(CO)_y(NO)_z$$

If both reactant and product follow EAN rule, then calculate value of x + z - y (where x, y and z are natural numbers).

- 8. Brown colour of the complex [Fe(H₂O)₅(NO)]SO₄ is due to C.T. spectrum which causes momentary change in oxidation state. Find out oxidation state of Fe in this complex.
- 9. Calculate | C.F.S.E. | (mod value) is term of Dq. for complex ion [MnF₆]³⁻.
- 10. Total number of geometrical isomers of [CoBrClI(CN)(H₂O)(NH₃)] complex ion, in which all halides are in cis-position.
- 11. What is CFSE of complex ion $[FeF_6]^{4-}$ in terms of Dq?
- 12. How many more co-ordination isomers are possible of the compound [Cu(NH₃)₄][PtCl₄]?
- 13. Total number of space (stereo) isomers of complex ion [Cr(gly)(en)₂]²⁺ are.....
- 14. Calculate CFSE of light pink compound formed, when KMnO₄ is reduced by acidified H₂S.
- 15. How many electrons are present in t_{2g} set of d-orbitals of central metal cation in $[Fe(H_2O)_5(NO)]SO_4$ brown ring complex?
- 16. A (Light pink colour complex) $\xrightarrow{\text{Pb}_3\text{O}_4/\text{dil.HNO}_3}$ HMnO₄ $\xrightarrow{\text{H}_2\text{S}/\text{H}^+}$ A (Light pink colour complex).

Calculate CFSE value in light pink colour complex.

17. Calculate value of "x + y" if x is the total number of σ bonds and y is total number of π bonds in ligand EDTA and phenanthrolene.

{EDTA = Ethylene diamine tetraacetate, phen = 1, 10 - N, N-Phenanthrolene}

- 18. Consider the following complex compounds.
 - (i) [Pt(NH₃)₂(SCN)₂]

(ii) $[Co(NH_3)_3(NO_2)_3]$

(iii) [Pt(en)Cl₂]

(iv) [Cr(en) 2Br2]+

(v) $[Rh(en)_3]^{3+}$

(vi) [Co Cl₂ Br₂]²⁻

Then calculate sum of total number of geometrical isomers in all above complex compounds.

- 19. Total number of complexes among the following which are optically active?
 - (i) $[Cr(Ox)_3]^{3-}$

- (ii) cis-[Pt(Cl₂)(en)]
- (iii) cis-[Rh(Cl₂)(NH₃)₄]+
- (iv) [Ru(dipy)₃]³⁺

(v) cis-[Co(NO₂)₃(dien)]

- (vi) Trans-[Co(NO₂)₃(dien)]
- (vii) $\operatorname{cis-[Co(NO_2)_3(NH_3)_3]}$
- 20. Consider the following complexes.
 - (i) [Fe IF(CN)(H₂O)(en)]
- (ii) [Mo Cl₂F₂(gly)]²⁻

Then, calculate value of |x - y| (where x and y are total number of possible optically active isomers in (i) and (ii) complex respectively).

21. Consider the following ligands NH_2^- , acac, OH_3^- , OI_2^- , OI_2^- , OI_3^- , O

Here

- P: Total number of ligands which act as bridging as well as monodentate only.
- Q: Total number of flexidentate ligands
- R: Total number of bidentate ligands only
- S: Total number of unsymmetrical bidentate ligands
- 22. $M(CO)_x(NO)_y \xrightarrow{+NO} M(NO)_x$

Where EAN of metal (M) in both product and reactant is same and it is 54. Then calculate value of (x + y - z). (where x, y and z are natural numbers and M belong to 6^{th} group

ANSWERS

Maleir for Columns

Don't

Level

1. (a)	2.	(d)	3.	(d)	4.	(c)	5.	(a)	6.	(d)	7.	(d)	8.	(c)	9.	(c)	10.	(d
11. (a)	12.	(b)	13.	(d)	14.	(b)	15.	(c)	16.	(d)	17.	(d)	18.	(d)	19.	(a)	20.	(c)
21 . (c)	22.	(c)	23.	(d)	24.	(b)	25.	(a)	26.	(d)	· 27.	(a)	28.	(c)	29.	(b)	30.	(a
31. (d)	32.	(a)	33.	(c)	34.	(a)	35.	(c)	36.	(b)	37.	(a)	38.	(c)	39.	(b)	40.	(d
41. (d)	42.	(b)	43.	(d)	44.	(b)	45.	(b)	46.	(d)	47.	(c)	48.	(a)	49.	(d)	50.	(d)
51. (b)	52.	(d)	53.	(d)	54.	(a)	55.	(a)	56.	(a)	57.	(c)	58.	(c)	59.	(a)	60.	(a
61. (a)	62.	(b)	63.	(d)	64.	(c)	65.	(d)	66.	(c)	67.	(a)	68.	(c)	69.	(b)	70.	(a)
71. (b)	72.	(b)	73.	(c)	74.	(d)	75.	(b)	76.	(b)	77.	(d)	78.	(c)	79.	(c)	80.	(d)
81 . (a)	82.	(d)	83.	(c)	84.	(a)	85.	(d)	86.	(a)	187.	(a)	88.	(b)	89.	(c)	90.	(b)
91 . (d)	92.	(c)	93.	(a)	94.	(d)	95.	(d)	96.	(d)	97.	(a)	98.	(c)	99.	(b)	100.	(c)
101 . (b)	12 3	,o,d,s	LE STE	ib.		4	(A.E)	35	(0	(ii.	20,	0.0)	Set Sec			84	133.61	, V3

Level 2

1. (c)	2.	(a)	3.	(d)	4.	(d)	5.	(d)	6.	(d)	7.	(a)	8.	(d)	9.	(d)	10.	(d)
11. (b)	12.	(d)	13.	(b)	14.	(b)	15.	(d)	16.	(a)	17.	(d)	18.	(d)	19.	(c)	20.	(a)
21. (b)	22.	(b)	23.	(a)	24.	(c)	25.	(b)	26.	(a)	27.	(b)	28.	(c)	29.	(d)	30.	(d)
31. (d)	32.	(c)	33.	(a)	34.	(a)	35.	(c)	36.	(c)	37.	(b)	38.	(b)	39.	(d)	40.	(d)
41. (a)	42.	()					Control State of the		to the second		DESTRUCTION OF THE		SCHOOL STATE		49.			
51. (d)	52.	(a)	53.	(c)	54.	(c)	55.	(a)	56.	(c)	57.	(b)	58.	(a)	59.	(c)	60.	(a)
61. ((b)	62.	(d)	63.	(d)	64.	(c)	65.	(b)	66.	(c)	67.	(d)	68.	(b)	69.	(a)	70.	(d)
71. ((d)	72.	(a)				d e				Z III		1		and the		0.	4	

220

Level 3

															-	
Passage-1	1.	(d)	2.	(d)	3.	(d)										
Passage-2	1.	(c)	2.	(d)	3.	-				-					-	
Passage-3	1.	(b)	2.	(a)	3.	(b)								1		
Passage 4	1.	(c)	2.	(a)	3.											
Passage-5	1.	(c)	2.	(a)		(0)										
Passage-6	1.	(c)	2.	(c)	3.	(a)										
Passage-7	1.	(a)	2.	(b)	3.	(d)										
Passage-8	1.	(c)	2.	(c)	3.	(b)										
Passage-9	1.	(c)	2.	(b)	3.	(c)										
Passage-10	1.	(b)	2.	(a)	3.	(c)										
Passage-11	1.	(a)	2.	(c)	3.	(b)										
Passage-12	1.	(c)	2.	(b)	3.	(b)										
Passage-13	1.	(a)	2.	(a)	3.	(b)										
Passage-14	1.	(c)	2.	(b)		(0)										
Passage-15	1.	(b)	2.	(c)												
Passage-16	1.	(a)	2.	(b)	3.	(c)	4.	(c)	5.	(c)	6.	(a)	7.	(a)		

One or More Answers is/are correct

```
1. (a,b,d) 2. (a,b,d) 3. (a,b,d) 4. (a,b,c) 5. (a,b,d) 6. (a,b,c,d) 7. (a,d) 8. (a,b,d) 9. (a,c) 10. (b) 11. (a,b,c) 12. (b,d) 13. (a,b,d) 14. (a,b,d) 15. (a,b,c,d) 16. (a,b,d) 17. (a,b,d) 18. (b,c) 19. (a,d) 20. (a,d) 21. (a,b) 22. (b,d) 23. (a,b,c,d) 24. (a,d) 25. (b,c,d) 26. (a,c,d) 27. (a,d) 28. (a,b,d) 29. (a,b,c,d) 30. (a,b,c) 31. (a,d) 32. (b,d) 33. (a,d) 34. (b,c,d) 35. (a,b,d) 36. (a,b,c,d)
```

Match the Column

11. $A \to Q$, R , S ; $B \to P$, Q , R , S ; $C \to P$, Q , S ; $D \to P$, Q 12. $A \to P$, Q , R ; $B \to Q$, S ; $C \to P$, Q , R , S ; $D \to P$, R , S 13. $A \to Q$, R , S ; $B \to P$, R ; $C \to Q$, R ; $D \to P$, S 14. $A \to P$, Q , R ; $B \to R$; $C \to Q$, R , S ; $D \to R$, S 15. $A \to R$; $B \to Q$; $C \to P$; $D \to S$ 16. $A \to S$; $B \to T$; $C \to Q$; $D \to P$ 17. $A \to P$; $B \to Q$; $C \to S$; $D \to R$ 18. $A \to S$; $B \to P$; $C \to P$, Q , S ; $D \to R$	12. A → P, Q, R; 13. A → Q, R, S; 14. A → P, Q, R; 15. A → R; 16. A → S; 17. A → P;	$B \rightarrow Q, S, T;$ $B \rightarrow Q, T;$ $B \rightarrow Q, S;$ $B \rightarrow P, S;$ $B \rightarrow P, S;$ $B \rightarrow P, Q$ $B \rightarrow Q, R, S;$ $B \rightarrow Q, R, S;$ $B \rightarrow P, R, S;$ $B \rightarrow P, R;$ $B \rightarrow R;$ $B \rightarrow R;$ $B \rightarrow Q;$ $B \rightarrow T;$ $B \rightarrow Q;$	$C \rightarrow P$, Q , R , S ; $C \rightarrow Q$, R ; $C \rightarrow Q$, R , S ; $C \rightarrow P$; $C \rightarrow Q$; $C \rightarrow S$;	$D \rightarrow P, S$ $D \rightarrow R, S$ $D \rightarrow R$ $D \rightarrow S$ $D \rightarrow P$ $D \rightarrow R$
--	--	---	--	---

Assertion-Reason Type Questions

1. (A) 2. (A) 3. (B) 4. (D) 5. (A) 6. (C) 7. (D) 8. (C)

9. (D) 10. (C) 11. (A) 12. (A) 13. (B)

Subjective Problems

 1. 0
 2. 6
 3. 41
 4. 8
 5. 36
 6. 6
 7. 5

 8. 1
 9. 6
 10. 6
 11. 4
 12. 3
 13. 2
 14. 0

15. 5 **16.** 0 **17.** 5 **18.** 6 **19.** 2 **20.** 8 **21.** 1

22. 1

Hints and Solutions

Level 1

3. (d)
$$Cu^{2+}(aq) + 4NH_3 \stackrel{OH^-}{\rightleftharpoons} [Cu(NH_3)_4]^{2+}$$

$$Cu^{2+}(aq) + 4NH_3 \stackrel{OH^+}{\rightleftharpoons} Cu^{2+} + 4NH_4^+$$
 (No complex formation)]

As NH₃ combines with H⁺ of acid and changes to NH₄⁺ which have no donor site.

5. (a)
$$Mn(CO)_5 + \overline{e} \longrightarrow [Mn(CO)_5]^{-1}$$

less stable

more stable, as EAN of Mn = 36 (Kr)

(O.A.)

19. (a) V^{3+} in $[V(H_2O)_6]^{3+}$

$$\mu_{\text{Exp}} = \sqrt{2(2+2)} = 2.83 \text{ BM}$$
 3d 4s 4p

 \Rightarrow low spin complex $\mu = 1.732$ BM

 \Rightarrow low and high spin complex is applicable for d^4 to d^7 configuration.

- \Rightarrow low spin complex $\mu = 1.732$ BM
- 26. (d) In complexes $[Rh(H_2O)_6]^{3+}$ and $[Co(H_2O)_6]^{3+}$, central metal cations have same oxidation state as well as same ligands and they fall in same group, but Δ_0 of $[Rh(H_2O)_6]^{3+} > \Delta_0$ of $[Co(H_2O)_6]^{3+}$ because

 $[CrCl(NH_3)_5][ZnCl_3(NO_2)], \\ [CrCl_2(NH_3)_4][ZnCl_2(NO_2)NH_3] \\ [Zn(NO_2)(NH_3)_3][CrCl_4(NH_3)_2] \\ \\ \mathbf{51.} \ \ (b) \ \, CO \ \, bond \ \, strength \ \, is \ \, reciprocal \ \, to \ \, the \ \, extent \ \, of \ \, back \ \, donation \ \, involved \ \, in \ \, synergic \ \, bonding$

i.e. $M \rightleftharpoons CO$

- 52. (d) CO is called π-acid ligand. In metal carbonyl complexes, there is donation of an electron pair from carbon to the empty orbital of metal and then simultaneously a back π-bonding is formed by sideways overlap of a filled orbital on the metal with empty antibonding π^{*}_{2py} orbital of CO.
- **58.** (c) Fe²⁺ in [Fe(H₂O)₆]²⁺ 11 11 11 11 11 Hyb. : sp^3d^2

Colour : Yellow; $\mu = 0$; octahedral

65. (d) $\begin{aligned} \text{Ni(CO)}_4; \, \mu_{eff} &= 0 \\ [\text{Co(NH}_3)_4(\text{NO}_2)_2]^+; \, \mu_{eff} &= 0 \\ [\text{Ag(CN)}_2]; \, \mu_{eff} &= 0 \\ [\text{CuBr}_4]^{2^-}; \, \mu_{eff} &= 1.732 \text{ BM} \end{aligned}$

- 66. (c) Degenerate d-orbitals undergo splitting under ligand field created by strong, weak or mixed ligands.
- 69. (b) [CrCl₂(OH)₂(NH₃)₂] show cis and trans isomerism, cis isomer is optically active.
- 72. (b) No. of geometrical isomers

 $[Pt(NO_2)(NH_3)(NH_2OH)(Py)]^+ = 3$ and No. of stereoisomers for $[Pt(Br)(Cl)(I)(NO_2)(NH_3)(Py)] = 15 + 15$

⇒ Two stereoisomers

⇒ Two stereoisomers

⇒ Three stereoisomers

should be to

IV) Ni2 in the occanedral field.

(IV)
$$\begin{bmatrix} Cl^{-} & Br^{-} \\ Ox & CO^{3+} \\ Ox & Co^{3+} \end{bmatrix}^{3-} \begin{bmatrix} Br^{-} & Br^{-} \\ Ox & CO^{3+} \\ Ox & CO^{3+} \end{bmatrix}^{3-} \begin{bmatrix} Br^{-} & Br^{-} \\ Ox & CO^{3+} \\ Cl^{-} & trans-form \\ (meso-form) \end{bmatrix}^{3-}$$

- ⇒ Three stereoisomers
- **76.** (b) II and III are geometrical isomers as II is trans while III is cis of the given complex.
- 77. (d) Trans complex is optically inactive.

⇒ In this square planar complex, only one configuration is possible. Hence, geometrical isomerism is not observed.

are stabilized in the presence of strong fiel-

- ⇒ Tetrahedral complexes never show geometrical isomerism.
- 84. (a) (I) [Pt(SCN)(3PEt₃)](SCN): Exhibits only linkage isomerism.
 - (II) [CoBr(NH₃)₅]SO₄: Exhibit only ionization isomerism.
 - (III) [Fe(H₂O)₆]Cl₂: Exhibits only hydrate isomerism.
- 88. (b) (I) Mond's process for purification of Ni [Ni(CO)₄]
 - (II) Removal of unreacted AgBr from photographic plate—[Ag(S2O3)2]3-
 - (III) Removal of lead poisoning from body—[Pb(EDTA)]2-
- 91. (d) The correct name is chlorobis(ethylenediamine)nitritocobalt (III).
- 96. (d) H₂[PtCl₆] is an acid, not salt hence its name: Hexachloroplatinic(IV)acid.

Level 2

- 1. (d) Due to absence of vacant atomic orbital as well as π * molecular orbital, O_2^{2-} does not as π acid ligand.
- 3. (c) $[Mn(CO)_4(NO^-)]$: Paramagnetic due to presence of unpaired e's in NO^-

[Mn(CO)₄(NO⁺)]: No unpaired e⁻ either on ligands or on Mn hence it is diamagnetic

- **4.** (c) (I) $[(Ph_3P)_2PdCl_2PdCl_2]$; EAN of Pd = $46 2 + 4 \times 2 = 52$
 - (II) [NiBrCl(en)]; EAN of Ni = 28 2 + 8 = 34
 - (III) Na₄[Fe(CN)₅NOS]; EAN of Fe = $26 - 2 + 5 \times 2 + 2 = 36$ [Kr]
 - (IV) $Cr(CO)_3(NO)_2$; EAN of $Cr = 24 - 0 + 3 \times 2 + 3 \times 2 = 36[Kr]$
- 5. (d) Ligand NO is $3e^-$ donar hence three CO ligands can be substituted by two NO ligands.
- **6.** (b) Mn(CO)₆ can act as reducing agent because the metal corbonyl is stable when EAN is equal to nearest noble gas configuration.

- **8.** (c) $[Ni(CN)_4]^{4-}$; sp^3 ; Tetrahedral complex.
- 9. (d) (I) Both CO²⁺ and Co³⁺ are stabilized in the presence of strong field ligands due to higher CFSE values.
 - (II) Because of higher Z_{eff} value on the valence shell of Pd²⁺ and Pt²⁺ cations they, always from inner orbital complex.
 - (III) [Ni(CO)₄] ; sp^3 , tetrahedral, $\mu = 0$ BM [Ni(CN)₄]⁴⁻ ; sp^3 , tetrahedral, $\mu = 0$ BM
 - (IV) Ni2+ in the octahedral field.

⇒ i.e., electronic distribution remains unaffected.

(V)
$$\operatorname{Fe}^{2+}\operatorname{in}[\operatorname{Fe}(\operatorname{CN})_{6}]^{4-}$$
 $\operatorname{fil}\operatorname{fil}\operatorname{fil}\operatorname{fil}$ $\operatorname{d}^{2}\operatorname{sp}^{3}$

14. (b) Hybridisation of Mn in MnO $\frac{1}{4}$: d^3s

- 15. (c) $Fe^{2+}(aq) + NO + SO_4^{2-}(aq) \rightarrow [Fe(H_2O)_5(NO)]^{2+} + SO_4^{2-}$ $\mu_{eff} = 3.89 \text{ BM}$ Hence, no. of unpaired electrons = 3
- 16. (b) As NH₃ is stronger ligand than H₂O, hence CFSE value for $[M(NH_3)_6]^{2+} > CFSE$ of $[M(H_2O)_6]^{2+}$ therefore, absorption shifts to smaller wavelength. Also difference between splitting power of NH₃ and H₂O is not very high.
- **18.** (c) $\Delta_t = \frac{4}{9} \Delta_0$ Δ_t for $[CoCl_4]^{2^-} = \frac{4}{9} \times 18000 \text{ cm}^{-1} = 8000 \text{ cm}^{-1}$
- 20. (c) $[CuCl_5]^{2-}$; sp^3d -hybridisation (outer orbital complex) (Magnetic moment = $\sqrt{3}$ B.M.) $[Fe(NH_3)_6]^{3+}$, $[Mn(CN)_6]^{4-}$ and $[Co(NH_3)_6]^{2+}$ are inner orbital complexes and are also paramagnetic in nature having magnetic moment of $\sqrt{3}$ B.M.
- 21. (c) [Ni(DMG)₂] < [Ni(en)₂]²⁺ is incorrect order of C.F.S.E. because stability of chelated complex is directly related to number of stable rings.
- 22. (c) Octahedral complexes having metal cation with d³ and d⁸ configuration can not be defined in terms of high and low spin complex.
- 23. (a) $[Co(NH_3)_4CO_3]^+ ClO_4^-$, CO_3^- is working as bidentate ligand, have coordination number of Co = 6.
- **24.** (b) Vaccant non-axial d-orbital participate in $M \xrightarrow{\pi} PR_3$ back bonding in its complexes.
- 25. (a) In metal carbonyls:

26. (b) In PR₃ there is vacant atomic d-orbital on P-atom, which can be involved in Synergic bonding.

27. (d) CO bond order $\propto \frac{1}{\text{Extent of back bonding } (M \to \text{CO})}$

Correct sequence of CO bond order:

$${
m H_{3}B \leftarrow CO}$$
 > ${
m CO}$ > ${
m Fe(CO)_{5}}$ > ${
m [Mn(CO)_{5}]}^{-}$ (CO bond order < 3.0) (CO bond order < 3.0)

29. (d) $[Mn(CN)_6]^4$: Hyb. : d^2sp^3 , $\mu_{eff} = \sqrt{3}$ B.M.

[Fe(NH₃)₆]³⁺: Hyb. :
$$d^2sp^3$$
, $\mu_{eff} = \sqrt{3}$ B.M.

$$[Co(CO)_4]$$
: Hyb : dsp^2 , $\mu_{eff} = \sqrt{3} B.M$

$$[Cu(H_2O)_6]^{2+}$$
: Hyb. : sp^3d^2 , $\mu_{eff} = \sqrt{3}$ B. M

30. (d) $[Cr(en)_3]^{3+}$; Hyb. : d^2sp^3 ; does not exhibit geometrical isomerism but exhibits optical isomerism. $[IrF_3(H_2O)_2(NH_3)]$; Hyb. : d^2sp^3 ; exhibits geometrical isomerism but does not exhibit optical isomerism.

[NiCl₂(en)₂]; Hyb. : sp^3d^2 ; exhibits both geometrical isomerism and optical isomerism.

 $[Co(CN)_2(ox)_2]^{3-}$; Hyb. : d^2sp^3 ; exhibits both geometrical isomerism and optical isomerism.

33. (b) $C_2O_4^{2-}$ is a bidentate ligand, hence due to chelation Δ_0 is high, and $[Co(ox)_3]^{3-}$ is an inner-orbital complex having d^2sp^3 -hybridization.

Hence, hybridization : d^2sp^3

- 37. (d) In [Cu(NH₃)₄]²⁺, Cu²⁺ is dsp² hybridized, hence structure is square planar and complex is paramagnetic.
- **38.** (d) $K_3[Co(ox)_3]$ is inner orbital complex with d^2sp^3 -hybridisation.
- 39. (a) Peroxide ion is diamagnetic while dioxygen is paramagnetic.

Conc. H₂SO₄ can dehydrate water of crystallization from [CrCl(H₂O)₅]Cl₂·H₂O but it can not remove those water molecules which are working as ligands.

40. (d) $[Co(en)_3][Cr(C_2O_4)_3], [Co(C_2O_4)(en)_2][Cr(C_2O_4)_2(en)],$

 $[Cr(C_2O_4)(en)_2][Co(C_2O_4)_2(en)],$

 $[Cr(en)_3][Co(C_2O_4)_3]$, Total coordination isomers = 4

[Cu(NH₃)₄][CuCl₄], [CuCl(NH₃)₃][CuCl₃(NH₃)]

Total coordination isomers = 2

 $[Ni(en)_3][Co(NO_2)_6], [Ni(NO_2)_2(en)_2][Co(NO_2)_4(en)],$

 $[Co(NO_2)_2(en)_2][Ni(NO_2)_4(en)], [Co(en)_3][Ni(NO_2)_6]$

Total no. of coordination isomers = 4

- 41. (d) NO₃ ion never acts as ambidentate ligand.
- 42. (b) Complex [Cr(NO₂)(NH₃)₄][Zn(SCN)₄] can not shows optical activity.
- **44.** (a) (i) Pt(SCN)₂

- (a) m.m. = 0 B.M. (Diamagnetic)
- (b) Low spin complex
- (c) Show geometrical isomerism 5 geometrical isomer (1 cis + 4 trans)
- (d) Ma_3b_3 type complex show fac and mer form and this complex is $Ma_2b_2c_2$ type, so does not show fac and mer form

Above configuration is asymmetrical, hence optically active. Mabcd square planar exhibits geometrical isomerism.

Mabcd tetrahedral complex is optically active.

55. (a) In tetrahedral all the position are adjacent to one another hence only one isomer is possible

No. of trans-isomers = 3

57. (b) [NiCl₂(PMe₃)₂]

sp³ Hyb. Structure : Tetrahedral

$$\begin{bmatrix} Cl & & & \\ & & & \\ & & & \\ Cl & & & \\ & PMe_3 & & \\ & PMe_3 & & \\ \end{bmatrix}^{2-}$$
 No isomer is possible

58. (d) (i) [CoCl₃(NH₃)₃]: Both cis and trans forms are optically inactive

Orientation of the ligands does not affect asymmetric of the complex.

Orientation of NH₃ molecules determine asymmetric character of the complex.

Hence, orientation of ligands determine asymmetric nature of the complex.

59. (d) (l)
$$[\operatorname{CrCl}_2(\operatorname{NO}_2)_2(\operatorname{NH}_3)_2]^{-1}$$

$$\begin{bmatrix} \operatorname{NO}_2 \\ \operatorname{Cl} \\ \operatorname{NH}_3 \end{bmatrix} \begin{bmatrix} \operatorname{NO}_2 \\ \operatorname{H}_3 \\ \operatorname{NO}_2 \end{bmatrix} \begin{bmatrix} \operatorname{NO}_2 \\ \operatorname{Cl} \\ \operatorname{NO}_3 \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{NH}_3 \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{NH}_3 \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{NO}_2 \\ \operatorname{Cl} \\ \operatorname{NO}_2 \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{NH}_3 \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{NO}_2 \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{NH}_3 \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{NO}_2 \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{N}_3 \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{N}_3 \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{N}_3 \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{Irans} \\ \operatorname{Irans} \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{Irans} \\ \operatorname{Irans} \\ \operatorname{Irans} \\ \operatorname{Irans} \\ \operatorname{Irans} \end{bmatrix} \begin{bmatrix} \operatorname{Irans} \\ \operatorname{Ira$$

62. (b) The complex does not contain any element of symmetry hence the configuration is asymmetric,

⇒ All are optically inactive; No. of stereoisomers = 3

⇒ Both are optically active; No. of stereoisomers = 4

O. SHALLARISON

e bar ya**ti**li

 \Rightarrow No. of stereoisomers = 6

:. No. of stereoisomers = 3

- 66. (c) [Pd(Cl)(Br)(gly)] is square planer complex hence it can exhibits geometrical isomerism.
- 67. (a) Trans [Co(gly)3] is optically active complex, hence equimolar mixture of 'd' and 'l' form on mixing [Madecue]": No of space/stereoromer: = 5 gives racemic mixture.
- **68.** (c) Compound [Co(en)₃]³⁺ can show optical isomerism.

69. (d)
$$Na_2[Fe(CN)_5NO] + Na_2S \longrightarrow Na_4[Fe(CN)_5(NOS)]$$

(Sod. nitroprusside) (Purple)

$$Ni^{2+} + 2$$
 $H_3C - C = NOH$
 $OH^ OH^ OH^-$

(Rosy red ppt.)

$$Ag^{+} + 2Na_{2}S_{2}O_{3} \rightleftharpoons Na_{3}[Ag(S_{2}O_{3})_{2}] + Na^{+}$$

$$Cu^{2+} + 4NH \implies [CuON] > 2^{2+}$$

71. (c) Correct name of (a): Tris(acetylacetonato)iron(III)

Correct name of (b): Tetraammine dicyanoplatinum (IV)hexachloroplatinate(IV)

Correct name of (d): Dichloro (ethylenediamine) platinum(II)

72. (d) The correct IUPAC name of complex compound is $[Cr(NH_3)_5(CN)][Ir(NO_2)_6]$. Pentaamminecyanidochromium(III)hexanitrito-N-irridate(III).

Leve. 3

Passage-3

1. (b) $[Ti(en)_3]^{4+}$: No. of unpaired $\bar{e}s = 0$

 $[Sc(NH_3)_4(H_2O)_2]^{3+}$: No. of unpaired $\bar{e}s = 0$

 $[Zn(en)_2(NH_3)_2]^{2+}$: No. of unpaired $\bar{e}s = 0$

These complexes do not absorb light in visible range due to absence of unpaired electron and hence they are colourless.

While, in complex $[Cr(H_2O)_6]^{3+}$ there are unpaired $\overline{e}s$ and it is coloured due to absorption of light in visible range.

2. (a) From formula CrCl₂Br ·6H₂O following complexes can be derived

[Cr(H₂O)₆]BrCl₂[CrBr(H₂O)₅]Cl₂·H₂O

[CrCl(H2O)5]BrCl H2O[CrCl2(H2O)4]Br 2H2O

[CrBrCl(H2O)4]Cl · 2H2O

3. (b) $[M(AA)_2b_2]^{n\pm}$: No. of space/stereoisomers = 3

 $[Ma_3b_3]^{n\pm}$: No. of space/stereoisomers = 2

 $[Ma_3b_3]^{nt}$: No. of space/stereoisomers = 5

 $[Ma_2bcde]^{n\pm}$: No. of space/stereoisomers = 5

Passage-4

1. (c) Sc : $3d^{\circ}4s^{\circ}$, As d-orbitals at Sc are empty, hence, there is no synergic bonding in $[Sc(CO)_{6}]^{3+}$.

2. (a) No vacant 'd' or π * orbitals on CH_2 — CH_2

3. (d) Higher the positive oxidation state of metal, poor will be $M \xrightarrow{\pi} L$ hence Mn - C bond will longer among given complexes.

Passage-5

- 1. (c) [CoBr(en)₂(H₂O)]Cl₂: Its trans isomer is optically inactive.
- 2. (a) [CoBr(en)₂(H₂O)]Cl₂

Passage-6

1. (c) $K_4[Fe(CN)_6]$: Low spin complex: $P < \Delta_0$ $[PtCl_4]^{2^-}$: Low spin complex: $P < \Delta_0$

 $[CoF_6]^{3-}$: High spin complex: $P > \Delta_0$

2. (c)

3. (a) In $[Mn(H_2O)_6]^{3+}$: Both selection rules are followed due to unsymmetrical filling of e_x set of orbitals.

Passage-7

(a) dien is not π-acid ligend while PF₃, PCl₃, PEt₃ are π-acid ligands, therefore extent of Mo → CO back bonding in (dien) Mo(CO)₃ is maximum in order to disperse increased electron density at Mo; while in other complexes all ligands participate in M → L back bonding.

tic at a recinerism occur when both cation and amon are complex carried does

Extent of back bonding α Mo—CO bond order $\alpha = \frac{1}{\text{stretching frequency of CO}}$

- 2. (b) As d_{xy} forms δ -bond in Mn₂(CO)₁₀
- 3. (d) As PEt₃ accepts $M \xrightarrow{\pi} L$ back bonding into non-axial d-orbital of phosphorus and it forms $M \xrightarrow{\pi} L$ bond using its non-bonding molecular orbital.

will exhibit optical tomo

One or More Answers is/are Correct

5. (a,b,d)

 $[Tc(CO)_6]^+$ E.A.N. of $Tc = 43 - 1 + 6 \times 2 = 54$ (Xe) $[Nb(CO)_6]^-$ E.A.N. of $Nb = 41 + 1 + 6 \times 2 = 54$ (Xe)

Hence, both complexes are stable and they can not act as oxidizing or reducing agent.

Extent of $M \xrightarrow{\pi} CO$ back bonding in $[Nb(CO)_6]^-$ is greater than in $[Tc(CO)_6]^+$, hence

Bond order of Nb—C > bond order of Tc —C

Bond order of C—O in $[Tc(CO)_6]^+ > C — O$ bond order in $[Nb(CO)_6]^-$

6. (a, b, c, d)

Given ligands accept $M \xrightarrow{\pi} L$ back bonding to disperse increased electron density at metal.

8. (a, b, d)

A: [CoCl(NH3)5] ·BrCl

 $B : [CoBr(NH_3)_5] \cdot Cl_2$

 $C : [CoBrCl(NH_3)_4] \cdot Cl$

9. (a, c)

[PtBrCl(gly)] and [Pd(NO₂)(ox)(gly)] exhibit geometrical isomerism.

10. (b)

 $[Ru(en)_3]^{3+}$: Hyb. : d^2sp^3 ; does not exhibit geometrical isomerism but exhibits optical isomerism.

 $[Co(H_2O)Cl_3]$: Hyb. : sp^3 ; does not exhibit both geometrical isomerism and optical isomerism.

[PtBrCl(H_2O)N H_3]: Hyb.: dsp^2 ; exhibit geometrical isomerism but does not exhibit optical isomerism.

 $[FeBr_2(en)_2]^+$: Hyb.: d^2sp^3 ; exhibits both geometrical isomerism and optical isomerism.

17. (a,b,d)

F-, Cl- and OH- are weak field ligands usually form high spin complexes.

CN and NO are strong field ligands usually form low spin complexes.

[Ni(CO)₄] is low spin complex.

18. (b,c)

Irrespective of nature of ligand field, magnetic moment of octahedral complexes having metal ions in d^1 , d^2 , d^3 , d^8 , d^9 configuration, remains same.

Element may or may not form colourless complex.

19. (a, d)

Irrespective nature of ligand, complex compound having d^4 to d^3 configuration-inner orbital complex. Irrespective nature of ligand, complex compound having d^8 to d^{10} configuration-outer orbital complex.

20. (a,d)

Coordination isomerism occurs when both cation and anion are complex, caused due to interchange of ligands between two complex ions of the same complex.

22. (b, d)

Trans-form (optically inactive)

cis-form (optically active)

cis and trans are diastereomers to each other.

23. (a,b,c,d)

cis-[CoBrCl(en)₂]⁺ will exhibit optical isomerism. No. of geometrical isomers of [Pt(NO₂)(NH₃)(NH₂OH)py]³⁺ and space isomers for [PtBrCl](NO₂)(NH₃)(py) are 30 cis and trans forms are diastereomers to each other.

25. (b, c, d)

Formula of the complex [Co^{III}(SCN₂)(NH₃)₄]₃[Co^{III}(ox)₃] Linkage isomerism is due to presence of SCN⁻

Optical isomerism is exhibited due to presence of $[Co(ox)_3]^{3-}$ complex ion, which has asymmetric structure.

Geometrical isomerism is exhibited due to cationic part :

26. (a, c, d)

[PtCl₂(NH₃)₄]²⁺ ⇒ both cis and trans forms are optically inactive

$$(b) \begin{bmatrix} ox & Fe \\ ox & Fe \end{bmatrix}$$

⇒ Due to asymmetrical configuration, it exhibits optical isomerism.

(c)
$$\begin{bmatrix} a & b \\ d & c \end{bmatrix}^{n \pm 1}$$

square planar

⇒ Due to plane of symmetry does not exhibit optical isomerism, but exhibits geometrical isomerism.

⇒ Tetrahedral complex, Asymmetric configuration, hence exhibits optical isomerisms.

- 27. (a, d) $M \rightleftharpoons L$, In metal carbonyl complexes, C—O bond length increases compared to that in CO molecule as filled 'd' orbital of metal atom overlaps with π -antibonding M.O. of CO [CrCl₃(H₂O)₃]. 3H₂O is not hydrate isomer of [Cr(H₂O)₆]Cl₃. Facial and Meridional isomers of $[Ma_3b_3]^{n+}$ complex are optically inactive as each one contains plane of symmetry.
- **28.** (a,b,d) $[CoF_6]^{3-}$: $\Delta_0 < P$ and High spin complex

cis-form

 \Rightarrow Asymmetric configuration hence exist in d and l forms

⇒ Optically inactive

- trans-form
 - Total isomers = 4
- 30. (a,b,c) Nitrate ion gives a brown ring when reacts with conc. H₂SO₄ in presence of FeSO₄ due to formation of [Fe(H₂O)₅NO]SO₄ complex compound. Brown colour is just due to charge transfer spectra.
- **34.** (b, c, d)
 - (b) Sodium hydridotrimethoxoborate(III)
 - (c) Bis (benzoyl acetaonate) beryllium(II)
 - (d) Tetrachloroauric(III)acid.

Match the Column

- **2.** $[Pt(NO_2)_2(en)]^{2+}$
 - \rightarrow E.A.N. = 78 4 + 12 = 86 (86Rn)
 - \rightarrow Co-ordination number of Pt = 6 $[Cr(\pi-C_6H_6)(NO)_2]$
 - \rightarrow E.A.N. = 24 + 6 + 2 × 3 = 36 (₃₆Kr)
 - \rightarrow Synergic bonding is present hence, bond order of M—L bond > 1.0 and bond order of ligand decreases.
 - → Co-ordination number for central metal not applicable. $[Ir(SCN)(SO_4)(NH_3)_4]$
 - \rightarrow E.A.N = 77 3 + 12 = 86 (86Rn)

- → SCN : Ambidentate ligand
- → Co-ordination number of central metal = 6 its tempation is single (if)1, (NH,),)1 N $[Cr(C_2H_4)(CO)_5]$
- \rightarrow E.A.N. = 24 + 2 + 10 = 36 (36Kr)
- \rightarrow Synergic bonding is present hence, bond order of M—L bond > 1.0 and bond order of ligand decreases.

10. Sedium nitroprusside-1 a pl Sc. CN3, NOI ..

Potassium ferrocyanide-Kalfr (CNS)

- → Co-ordination number of central metal = 6
- 3. (a): [Pt(acac)BrCl(H2O)2]NO3
 - Cis configurations =2 Trans configurations = 2both optically active both optically inactive
 - Exhibits ionization isomerism
 - Total number of optical isomers = 6. \Rightarrow Optically active isomers = 4
 - (b): $[IrBr_2(en)(H_2O)(NH_3)]Br$:
 - Cis configurations = 2, both are optically active. Trans configurations = 2, both are optically inactive.
 - Does not exhibit structural isomerism. \Rightarrow
 - Total number of optical isomers = 6 (place) Total number of optical isomers = 6 ⇒ Optically active isomers = 4
 - (c): [Cr(acac)Cl₂(H₂O)₂]
 - Hyb" d'sp" y = 0, octahedr il. NO bgand Cis configuration = 1, which is optically active. Trans configurations = 2, which are optically inactive.
 - Does not exhibit structural isomerism. houself ON. MG 88% in landering of the ne- \Rightarrow
 - \Rightarrow Optically active isomers =2
 - $[Pt(Ox)_2(NH_3)_2]$ (d):
 - Cis configuration = 1, which is optically active. Trans configuration = 1, which is optically inactive.
 - Does not exhibit structural isomerism.
 - Total number of optical isomers = 3 Optically active isomers =2.

7.	Complex	Oxidation state	Туре	Magnetic property
	[Fe(CN) ₆] ⁴⁻	+2	d^2sp^3 (inner-orbital complex)	Diamagnetic
	[Fe(H ₂ O) ₆] ²⁺	+2 · VA	sp^3d^2 (outer-orbital complex)	Paramagnetic
	$[Cu(NH_3)_6]^{2+}$	+2	sp^3d^2 (outer complex)	Paramagnetic (8)
	[Ni(CN) ₆] ⁴⁻	+2' m 0.	sp^3d^2 (outer complex)	Diamagnetic

(B) P, Q

 $[Co(CN)_2(NH_3)_4]OC_2H_5$

Its ionization isomer [Co(CN)(OC₂H₅)(NH₃)₄]CN

(C) P

(D) P, Q

 $[PtCl_2(NH_3)_4]Br_2$, d^2sp^3 , octahedral, $\mu = 0$

There are two ionisation isomers: [PtBrCl(NH₃)₄]BrCl, [PtBr₂(NH₃)₄]Cl₂

10. Sodium nitroprusside—Na₂ [Fe (CN)₅ NO]

Hyb." —
$$d^2sp^3$$
; $\mu = 0$; octahedral, NO⁺ ligand

Brown ring [Fe(H2O)5NO]2+

 Hyb^n .— sp^3d^2 ; octahedral, m = 3.89 BM, NO^+ ligand

Complex formed during extraction of Ag is [Ag(CN)2]

Hybⁿ—sp; linear,
$$\mu = 0$$

Potassium ferrocyanide—K₄[Fe(CN)₆]

Hybⁿ
$$-d^2sp^3$$
; octahedral, $\mu = 0$

11. (A) [Ni(CO)₄] Ni in [NI(CO)₄]

u = 0

$$EAN = 28 - 0 + 4 \times 2 = 36$$

(B) $[Cu(NH_3)_4]SO_4$ Cu^{2+} in $[Cu(NH_3)_4]^{2+}$

dsp²: Square planar

$$\mu = 1.732 \, BM$$

EAN = 29 - 2 + 4 × 2 = 35

K₂[Ni(CN)₄] Ni²⁺ in [Ni(CN)₄]²⁻

 $\mu = 0$

EAN =
$$28 - 2 + 4 \times 2 = 34$$

 $K_3[Cu(CN)_4]$
 Cu^+ in $[Cu(CN)_4]^{3-}$

 $\mu = 0$

$$EAN = 29 - 1 + 4 \times 2 = 36$$

 $K_2[NiCl_4]$ Ni^{2+} in $[NiCl_4]^{2-}$ (C)

 sp^3 : Tetrahedral

 $\mu = 2.8 \, BM$ $EAN = 28 - 2 + 4 \times 2 = 34$

(D) K₂[NiCl₄] Ni2+ in [NiCl4]2-

 $\mu_{eff} = 2.8 \text{ BM}$ $EAN = 28 - 2 + 4 \times 2 = 34$

 $K_4[Ni(CN)_4]$ Ni in [Ni(CN)₄]⁴

 $\mu = 0$ $EAN = 28 - 0 + 4 \times 2 = 36$

K2[PtCl4]2-Pt2+ in [PtCl4]2-

 $\mu_{eff} = 0$ $EAN = 78 - 2 + 4 \times 2 = 84$

13. (A) SCN- is ambidentate ligand, therefore it shows linkage isomerism

cis-form is optically active.

(B)[CrCl₂(NH₃)₄]NO₃

 $[Cr(Cl)(NO_3)(NH_3)_4]Cl$

Ionization isomer of complex

trans-form

Both cis and trans-form are optically inactive.

 NO_2^- is ambidentate ligand so it also shows linakge isomerism. It is optically inactive square planar complex.

14. (A) K₃[Fe(CN)₅(CO)]

→ Due to +2 oxidation state of Fe extent of $d\pi(\text{Fe}^{\text{II}}) \longrightarrow \pi^*$ (CO) is poor, hence C—O bond length is not increased considerably as in $[\text{Co(CO)}_4]^-$ and $[\text{V(CO)}_6]$

$$\rightarrow$$
 EAN of Fe = 26 - 2 + 5 × 2 + 2 = 36 (Kr)

Fe $\frac{\pi}{\sigma}$ CO, hence synergic bonding is present.

(B) K[PtCl₃(CH₂=CH₂)]
EAN of Pt =
$$78 - 2 + 3 \times 2 + 2 = 84$$
,

(At. no. of Rn = 86)

Pt
$$\frac{\pi}{\pi}$$
 (CH₂=CH₂), synergic bonding is present.

$$Pt \leftarrow^{\pi} (CH_2 = CH_2)$$

$$Pt \xrightarrow{\pi} (CH_2 = CH_2)$$

(C)Na[CO(CO)₄]

EAN of Co =
$$27 + 1 + 4 \times 2 = 36$$
 (Kr)

 $Co = \frac{\pi}{G}CO$, synergic bonding takes place.

$$C_0 \longrightarrow + + C = 0$$
: $C_0 \longrightarrow C_0 \longrightarrow C = 0$

$$Co \xrightarrow{\pi} CO$$

Assertion-Reason Type Questions

2. (A)N2H4 can only act as monodentate ligand.

 $M = NH_2$; Three membered (unstable) ring. Hence it acts as monodentate ligand only. NH_2

- 3. (B) Both $[Ti(H_2O)_6]^{4+}$ and $[Sc(H_2O)_6]^{3+}$ are colourless, due to absence of free electrons in 3d subshell.
- **5.** (A) EDTA is hexadentate ligand. When it forms complex with a metal cation, the hybridisation of central atom will be d^2sp^3 .
- 12. (A) $\ddot{N}H_2 \ddot{N}H_2$ Neutral ligand

It does not act as bidentate because when it acts as bidentate, because when it acts as bidentate a three membered ring (chelat complex) will be formed, that will be highly strained.

13. (B)

Subjective Problems

1.

Compounds	Geometry	Hybridization	used <i>d</i> -orbital
Α	Square planar	ne no dsp ² remove	$d_{x^2-y^2}$
В	Trigonal bipyramidal	sp³d	d_{z^2}
С	Square pyramidal	sp³d	d _{x²-y²}
D	Octahedral	sp^3d^2	d _{x²-y²,d_{z²}} (22 1 1 1 4
Е	Pentgaonal bipyramidal	sp^3d^3	$d_{x^2-y^2} d_{z^2}, d_{xy}$

0

$$x = d_{z^2} = 3$$

 $y = d_{xy} = 1$; $(x + y - z)^2 = (3 + 1 - 4)^2 = 0$

3.
$$[M_1^{2+}A_4]^{2+}[M_1^{2+}B_4]^{2-} \qquad x_1 = 1$$

$$[M_2^{3+}A_6]^{3+}[M_2^{3+}B_6]^{3-} \qquad x_2 = 2$$

$$[M_2^{3+}C(A)_5]^{2+}[M_1B_4]^{2-} \qquad x_3 = 6$$

$$x_1^{2} + x_2^{2} + x_3^{2} = 1^{2} + 2^{2} + 6^{2} = 41$$

- 4. The carbonyls in general obey the effective atomic number rule and their effective atomic number = atomic number of next noble gas
 - (i) $Mo(CO)_x \Rightarrow EAN '54'$

$$42 + 2x = 54$$

$$x = 6$$

(ii) $H_yCr(CO)_5 \Rightarrow EAN '36'$

$$24 + (2 \times 5) + y = 36$$

(iii) Co₂(CO)_z ⇒ EAN '36'

$$27 + 1$$
 (from other Co-atom) $+ 2z = 36$

y = 2

$$x + y - z = 6 + 2 - 4 = 4$$

5. Ni²⁺(aq)+DMG
$$\xrightarrow{\text{AqNH}_3}$$
 $\xrightarrow{\text{Rosy Red voluminous ppt.}}$ +2H⁺
Hyb. of Ni²⁺: dsp^2

Distribution of electrons in the *d*-orbitals of Ni²⁺(3 d^8) in [Ni(DMG)₂] : $\overline{d_{x^2-y^2}}$

$$\begin{array}{c|c}
 & 1 \\
\hline
d_{xy} \\
 & 1 \\
\hline
d_{z^2} \\
\hline
1 \\
d_{yz}
\end{array}$$

Hence
$$x = 6$$
, $y = 2$
∴ Value of $\frac{2x^2}{y} = \frac{2 \times 36}{2} = 36$

6. Complexes

No. of geometrical isomers

- (i) $[Pt(NH_3)_2(SCN)_2]$
- 2
- (ii) $[Co(NO_2)_3(NH_3)_3]$
- 2 0
- (iii) [Pt(en)Cl₂]
- (iv) $[Cr(en)_2Br_2]^+$
- 2
- (v) $[Rh(en)_3]^{3+}$
- 0
- 0

(vi) [CoCl₂Br₂]²⁻ Hence, sum of total number of geometrical isomers = 6

7. $Cr(CO)_x \longrightarrow Cr(CO)_y(NO)_s$

$$x = 6$$
, $y = 3$, $z = 2$

Hence,
$$x+z-y=6+2-3=5$$

8. [Fe(H₂O)₅(NO)]SO₄

Experimental evidence : μ_{eff} (obs) = 3.89

: Complex is highly unstable

9.

C.F.S.E. value = $-(3 \times 0.4\Delta_0) + (1 \times 0.6\Delta_0) = -0.6\Delta_0 = -6$ Dq | CFSE| =6Dq.

10.

15. \Rightarrow [Fe(H₂O)₅(NO)]²⁺SO₄²⁻

$$^{+1}_{Fe}(3d^7)$$
 in $(^{+1}_{Fe}(H_2O)_5(NO)]^{2+}$; $\Delta_0 < P$

$$\begin{array}{c|c}
\hline
1 & 1 & e_g \\
\hline
d_{x^2-y^2}d_{z^2} \\
\hline
d_{y}d_{yz}d_{yx}
\end{array}$$

Number of electrons in t_{2g} set of d-orbitals = 5

16. \Rightarrow Pink colour complex : [Mn(H₂O)₆]²⁺

 $Mn^{2+}(3d^5)$ in $[Mn(H_2O)_6]^{++}$, $\Delta_0 < P$

CFSE of pink colour complex

$$= 3 \times \left(-\frac{2}{5} \Delta_0\right) + 2 \times \left[\frac{3}{5} \Delta_0\right] = 0$$

55

11

17.

$$\pi$$
 bond

		and the second state	The second se	Constitution of the second
18.		Complexes	No. of geometri	cal isomers
	(i)	[Pt(NH ₃) ₂ (SCN) ₂]	2	
	(ii)	[Co(NO2)3(NH3)3]	2	
	(iii)	[Pt(en)Cl ₂]	• 10	
	(iv)	$[Cr(en)_2Br_2]^+$	2	
	(v)	$[Rh(en)_3]^{3+}$	0	
	(vi)	[CoCl ₂ Br ₂] ²⁻	0 -4.0 0	
	Hence	, sum of total number o		=6
19.	⇒ (i)	[Cr(ox) ₃] ³⁻ : optically a	ctive	
		cis-[Pt(Cl ₂)(en)]: opti		, * 27 *
	(iii	i) cis-[Rh(Cl ₂)(NH ₃) ₄] :	ontically inactive	market in
	(iv	() $[Ru(dipy)_3]^{3+}$: optical	lly active	
	(v)	cis-[Co(NO ₂) ₃ (dien)]:	optically inactive	
	(vi) Trans-[Co(NO ₂) ₃ (dien)] : optically inactive	
	(vi	ii) cis-[Co(NO ₂) ₃ (NH ₃) ₃	1 : optically inactive	8. 6
	⇒ To	tal number of optically	active complexes = 2	
20.	(i) [Fe	IF(CN)(H ₂ O)(en)]	- Z	
		(active isomer)		
		IoCl ₂ F ₂ (gly)]		
		(active isomer)		
	x-y=	=12-4 ⇒8		
21.	P = NI	$H_2^-, O_2^-, OH^-, Cl^- = 4$		
		O_4^{2-} , NO_2^{-} , CO_3^{2-} , $CH_3CO_3^{-}$	$0^{-} = 4$	
		, acac, Phen, DMG, Gly		
		MG, Gly = 2		
		-5 -2 =1		

Mo(CO)_x(NO)_y $\xrightarrow{+NO}$ Mo(NO)_z If y = 2, then x = 3 and z = 4, hence x = y - z = 3 + 2 - 4 = 1

22. Metal $(M) \Rightarrow Mo(z = 42)$

General Principal Involved in Metallurgy

- 1. Highly electropositive metal(s) can not be commercially extracted by carbon reduction process at high temperature because these:
 - (a) matals combine with carbon to form covalent carbide
 - (b) metals combine with carbon to form ionic carbide
 - (c) ΔG_f of highly electropositive metal oxide is having low negative value
 - (d) metal oxides are not reduced by carbon
- 2. Consider the following reactions at 1000°C.
 - (I) $Zn(s) + 1/2 O_2(g) \xrightarrow{\Delta} ZnO(g); \Delta G^{\circ} = -360 \text{ kJ mol}^{-1}$
 - (II) C(s) + 1/2 O₂(g) $\stackrel{\Delta}{\longrightarrow}$ CO(g); $\Delta G^{\circ} = -460 \text{ kJ mol}^{-1}$

and choose the correct statement at 1000°C.

- (a) ZnO is more stable than CO
- (b) ZnO can be reduced to Zn by C
- (c) ZnO and CO are formed at equal rate
- (d) ZnO can not be reduced to Zn by C
- 3. Which of the following pair of ores cannot be converted into corresponding metals by pyrometallurgy?
 - (a) Ag₂S,ZnS
- (b) Cu₂S,HgS
- (c) MnO₂, SnO₂
- (d) None of these

- 4. Ellingham diagram represents:
 - (a) change of ΔG with temperature
- (b) change of ΔH with temperature
- (c) change of ΔG with pressure
- (d) change of $(\Delta G T\Delta S)$ with temperature
- 5. The process of the isolation of a metal by dissolving the ore in a suitable chemical reagent followed by precipitation of the metal by a more electropositive metal is called:
 - (a) hydrometallurgy (b) electrometallurgy (c) zone refining
- (d) electrorefining
- 6. The process of the isolation of a metal by dissolving the ore in a suitable chemical reagent followed by precipitation of the metal by a more electropositive metal is called :

 - (a) hydrometallurgy (b) electrometallurgy (c) zone refining
- (d) electrorefining

7.	In the alumino-thermite process, Al acts as:	
	(a) an oxidising agent	(b) a flux
	(c) solder	(d) a reducing agent
8.	Which of the following reaction forms the ba	asis of Goldschmidt alumino-thermite process?
	(a) $2Al + N_2 \rightarrow 2AlN$	(b) $2Al + 3Cl_2 \rightarrow 2AlCl_3$
	(c) $2Al + 6HCl \rightarrow 2AlCl_3 + 3H_2$	(d) $2Al + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$
9.	The extraction of zinc from zinc blende is ac	hieved by:
	(a) electrolytic reduction	
	(b) roasting followed by reduction with carb	on
	(c) roasting followed by reduction with another	her metal
	(d) roasting followed by self-reduction	
10.	Thermite is a mixture of :	
	(a) Fe powder and Al ₂ O ₃	(b) Al powder and Fe ₂ O ₃
	(c) Cu powder and Fe ₂ O ₃	(d) Zn powder and Cr ₂ O ₃
11.	If a metal has low oxygen affinity then the p	
10	(a) liquation (b) distillation	(c) zone refining (d) cupellation
12.	Neutral refractory material used in furnaces	
	(a) Graphite (b) CaO	(c) SiO (d) MgO
Or	es and their Concentration	
	Which of the following set of elements mostl	y occur as y phido ores 2
	(a) Zn, Cu, Na (b) Zn, Cu, Pb	() — (Q , -)
14.	Which one contains both Ca and Mg?	(c) Fe, Al, (d) Cu, Ag, Au
	(a) Limestone (b) Dolomite	(c) Chalk (d) Feldspar
15.	Match Column-I with Column-II and select the	(c) Chalk (d) Feldspar
	Column-I (Metals)	Column-II (Ores)
	(A) Tin	(1) Calamine
	(B) Zinc	(2) Cassiterite
	(C) Titanium	(3) Cerrusite
	(D) Lead	(4) Rutile
	(A) (B) (C) (D)	
	(A) (B) (C) (D) (a) 1 2 3 4	(A) (B) (C) (D)
	(a) 1 2 3 4 (c) 4 3 2 1	(b) 2 1 4 3 (d) 2 1 3 4
16	Which of the following is not an ore of magn	- 5 4
10.	(a) Carnallite	
	(c) Dolomite	(b) Magnesite (d) Gypsum
17	Which one of the following is not an ore of a	
1/.	(a) Bauxite (b) Corundum	(c) Encomis
18.	Cinnabar is the ore of :	(d) Cryolite
10.	(a) Zn (b) Cd	(c) Hg
19.	Which of the following minerals does not con	
	(a) Magnetite (b) Magnesite	(c) Haemaria
		(d) Limonite

-						
WETALLURGY						
20.	Which one of the following types of metals is expected to occur in the native state?					
	(a) The alkali metals	(b) The alkaline earth metals				
	(c) The noble metals	(d) The rare earth metals				
21.	Which one of the following elements	is most abundant in earth crust?				
	(a) Aluminium (b) Silicon	(c) Carbon (d) Oxygen				
22.	. The two most abundant metals in the earth crust are :					
	(a) Al, Zn (b) Ag, Au	(c) Fe, Cu (d) Fe, Al				
23.	A mineral is usually associated with a large amount of unwanted material called:					
	(a) Gangue (b) Flux	(c) Slag (d) Ore				
24.	The metal which mainly occurs as oxide ore in nature is:					
	(a) Silver (b) Lead	(c) Aluminium (d) Copper				
25.	Three most occurring elements into the earth crust are:					
	(a) O, Si, Al (b) Si, O, Fe	(c) Fe, Ca, Al (d) Si, O, N				
26.	Froth floatation process for the concentration of sulphide ores is an illustration of the practi					
	application of:					
	(a) adsorption (b) absorption	n (c) sedimentation (d) coagulation				
27.	Froth floatation process is used for t	ne concentration of the ore of:				
	(a) Fe (b) Al	(c) Cr (d) Cu				
28.	Haematite ore is concentrated by :					
	(a) gravity separation method (b) froth floatation process					
	(c) amalgamation	(d) hand picking				
29.	Electromagnetic separation is used in	the concentration of:				
	(a) Copper pyrite	(b) Bauxite				
	(a) Consiterite	(d) Cinnabar				
30.	Which one of the following is not a method of concentration of ore?					
	(a) Electromagnetic separation	(b) Sillerting				
	(d) Figure 100 (d) Fi					
31.	Chemical leaching is useful in the co	oncentration of :				
	(a) Connor purite (b) Bauxile	(c) dassiterite				
32.	The ore which is concentrated wetti	ng by oil is:				
	(a) oxide ore	(2) carp.				
	(a) corbonate ore	(d) sulphide ore				
33	Rutile is separated from chlorapatite	by:				
٠٠.	(a) Froth floatation method	\-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
	(c) Magnetic separation method	(d) Electrostatic separation method				
24	(c) Magnetic separation method (d) Interest the representation of Cu. In the extraction of copper from its sulphide ore, the metal is formed by reduction of Cu.					
34.	with:					
	(b) CO	(c) Cu_2S (d) SO_2				
25	(a) FeS Which of the following pair is incorn	rectly matched?				
35.	(a) FeS Which of the following pair is incorrectly matched? (b) Kroll's process — Titanium					

(a) van Arkel method — Zirconium

(b) O

(c) Froth Floatation — Cerussite 36. Most abundant metal in earth crust is:

(a) Al

(d) Si

(d) Distillation — Zinc

(c) Fe

(c) Iron from haematite

EXT	raction of Metals					
37.	Consider the following reactions	:				
	$2XS + 3O_2 \xrightarrow{\Delta} 2XO + 2SO_2$					
	$2XO + XS \xrightarrow{\Delta} 3'X' + SO_2$	No. of		a de de la companya d		
	Then 'X' can not be:			\$ v		
	(a) Hg (b) Pb		(c) Zn	(d) None		
38.	and the state of t					
	(a) Oxidising agent		(b) Reducing agent			
	(c) Catalyst		(d) Flux			
39.	2. Extraction of aluminium from bauxite ore, reduction is carried out by:					
	(a) carbon		(b) magnesium			
	(c) electrolysis		(d) hydrogen			
40.	Chromium is obtained by reducing concentrated chromite ore with:					
	(a) red hot coke		(b) gaseous hydrog			
			· ·	de		
41.	• The element which is recovered from electrolytic process is:					
	(a) iron (b) lead		(c) aluminium	TOTAL PRODUCTION OF STATE		
42.	42. Magnesium is manufactured by electrolysing fused magnesium chloride using:(a) a nickel cathode and a graphite anode					
	(b) the iron container as anode and a nickel cathode					
	(c) the iron container as cathod			477		
	(d) the nickel container as cathode and iron anode					
43.	Copper is extracted from sulphic	de ore using				
	(a) carbon reduction		(b) carbon monoxi			
	(c) auto reduction	al ia famuad	(d) none of these			
44. In the extraction of copper, metal is formed in the Bassemer converge.				verter due to reaction		
	(a) $Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$		(b) $Cu_2S \rightarrow 2Cu +$			
4-	(c) Fe + Cu ₂ O → 2Cu + FeO	r ore during	(d) $2Cu_2O \rightarrow 4Cu$	+O ₂		
45.	Silica is added to roasted coppe (a) cuprous sulphide (b) ferro	ne ovide				
46	Calcium is extracted by the elec		(c) lerrous sulphic	le (d) cuprous oxide		
40.	(a) Fused mixture of CaCl ₂ and		(b) CoCl 61	1		
	(c) Used mixture of CaCl ₂ and	NaF	(b) CaCl ₂ fused sa	alt solution		
47	Lead is mainly extracted by:		(d) $Ca_2(PO_4)_2$ fu	sed salt solution		
4/.	(a) Carbon reduction method					
	(b) Self-reduction method					
	(c) Electrolytic reduction					
	(d) Leaching with aqueous solu	ition of NaCl	N followed by reduce	tion		
48	(d) Leaching with aqueous solution of NaCN followed by reduction In which of the following metallurgy, no reducing agent is required from out side?					
70	(a) Mercury from cinnabar	0,,	(b) Zinc from zinc	red from out side?		
	()		(d) At	biende		

(d) Aluminium from Bauxite

: Ca(OH)₂

: spelter (Impure Zn)

: Ag

FTALLURGY

(a) Spiegleisan

(d) Liquation

(c) Parke's process

(b) Dow's sea water process

62.	Incorrect match is:	
	(a) Purification of Al metal: Baeyer's method	d
	(b) Polling: Reduction of Cu ₂ O	
	(c) FeCr ₂ O ₄ (chromite ore) : NaOH/Na ₂ CO ₃	3
	(d) Ag: Mac Arthur cyanide process	
63.	Refining of tin cannot be done by:	
	(a) cupellation	(b) liquation
	(c) poling	(d) electrorefining
64.	Which method is not correct given for refining	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(a) Distillation: zinc and mercury	(b) Liquation : tin
	(c) van Arkel : Zirconium	(d) Mond process : lead
65.	Aluminium metal is purified by :	(4)
٠٠.	(a) Hoope's process	(b) Hall's process
	(c) Serpeck's process	(d) Baeyer's process
66		(d) Bacyci's process
00.	High purity copper metal is obtained by:	(h) hardrogen reduction
	(a) carbon reduction	(b) hydrogen reduction
-	(c) electrolytic reduction	(d) thermite reduction
67.	Poling process is used for:	d) m
	(a) The removal of Cu ₂ O from Cu	(b) The removal of Al ₂ O ₃ from Al
	(c) The removal of Fe ₂ O ₃ from Fe	(d) All of these
68.	In zone refining method, the molten zone :	
	(a) consists of impurities only	1
	(b) contains more impurity than the original	I metal
	(c) contains the purified metal only	
	(d) moves to either side	5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -
69.	Which of the following pair is correctly mate	
	(a) Copper — Oxidative refining	(b) Nickel — Kroll's process
	(c) Mercury — Distillation	(d) Lead — van Arkel method
70.	Formation of Ni(CO) ₄ and subsequent its of Mond's process;	decomposition into Ni and CO makes basis of
	$Ni + 4CO \xrightarrow{T_1} Ni(CO)_4 \xrightarrow{T_2} Ni + 4CO, T$	T_1 and T_2 are :
	(a) 100°C, 50°C	(b) 50°C, 100°C
	(c) 50°C, 230°C	(d) 230°C, 50°C
71.	In the electrolytic refining of copper, Ag and	Au are found :
	(a) on anode	(b) in electrolyte solution
	(c) in anode mud	(d) in cathode mud
72.	Electrolyte solution in electrolytic refining of	
	(a) H ₂ SiF ₆ only	(b) PbSiF ₆ only
	(c) H ₂ SiF ₆ in presence of gelatin	(d) H ₂ SiF ₆ and PbSiF ₆ in presence of gelating
73.	Blister copper is:	2 0 mar 2 50m 6 m presence of genus
	(a) pure copper	(b) ore of copper
	(c) alloy of copper	(d) impure copper
		·

			-	211
	CA 1	ш	w	GΥ
MF	ſΔL	LU	IR	וט

74.	Percentage of silver in the alloy german silver	r is :	:	
	(a) 2.5%	(b)	1.5%	
	(c) 10%	(d)	0%	
75.	AgCl on fusion with sodium carbonate, gives	:	3 8A 5 🕯	
	(a) Ag ₂ CO ₃		Ag ₂ O	
	(c) Ag		Ag ₂ C ₂	
76.	An alloy which does not contain copper is:	` '	02-2	
5170.	(a) bronze	(b)	magnalium	
	(c) brass		bell metal	
77.	Stainless steel contains iron and :	(-)	1	
	(a) Zn	(b)	Cu	
	(c) Al		Cr	
78.	Axles are made by heating rods of iron embed	150		The process is known
	as:		m charcoal political	
	(a) tempering	(b)	annealing	
	(c) nitriding		case hardening	
79.	Nitriding is a process of heating steel in atmo	osph	ere of :	
	(a) ammonia		oxygen	
	(c) carbon dioxide	(d)	air	
80.	Bassemer converter is used in the refining of	•		
	(a) pig iron	(b)	steel	
	(c) wrought iron	(d)	cast iron	
81.	Which of the following elements constitutes	a ma	ajor impurity in pig i	ron?
	(a) Carbon	(b)	Oxygen	
	(c) Sulphur	(d)	Silicon	1

FOUGITARISM SERVICE OF ANGLE O

2.0	and Drive in all local and in AA-A-Ilea	CV 17.3	
	neral Principal Involved in Metallur		
1.	Which of the following pair of ores can no	t be converted into corresponding metals by	
	pyrometallurgy ?	a) C. C UgC	
	(a) Ag ₂ S, ZnS	(b) Cu ₂ S, HgS	
_	(c) MnO ₂ , SnO ₂	(d) None	
2.	XCl_2 (excess) + $YCl_2 \longrightarrow XCl_4 + Y \downarrow$;		
	YO $\frac{\Delta}{>400^{\circ}}$ $\frac{1}{2}$ O ₂ + Y, Ore of Y would be:	•	
	(a) Siderite	(b) Cinnabar	
	(c) Malachite	(d) Hornsilver	
3.	A sulphide ore is first converted into its oxide	e before reduction. This is done because :	
	(a) a sulphide ore cannot be reduced to meta		
	(b) no reducing agent is found suitable for re-		
	(c) the enthalpy of formation of CO ₂ is more		
	(d) a metal oxide is generally less stable than		
4.	Choose the correct code regarding Roasting p		
	(I) It is the process of heating ore in air to o	btain the oxide	
	(II) It is an exothermic process		
(III) It is used for hydrated oxide and oxysalt ore			
	(IV) It is used after the concentration of ore		
	(a) I, II and III	(b) I, II and IV	
	(c) I, III and IV	(d) I, II, III and IV	
5.	Carbon cannot be used in the reduction of A	l ₂ O ₃ because :	
	(a) it is non-metal		
	(b) the heat of formation of CO ₂ is more than that of Al ₂ O ₃		
	(c) pure carbon is not easily available		
	(d) the heat of formation of Al ₂ O ₃ is too high	gh	
6.	On heating quick lime with coke in an electr	ic furnace, we get :	
	(a) Ca and CO ₂	(b) CaCO ₃	
	(c) CaO	(d) CaC ₂	
7.	Boron can be obtained by various methods b	out not by :	
	(a) thermal decomposition of B ₂ H ₆	(b) pyrolysis of BI ₃ (van Arkel)	
	(c) reducing BCl ₃ with H ₂	(d) electrolysis of fused BCl ₃	
8.	Select correct statement :	, , , , , , , , , , , , , , , , , , , ,	
	(a) The decomposition of an oxide into oxyg	gen and metal vapour entropy increases	
	(b) Decomposition of an oxide is an endother	ermic change	
	(c) To make ΔG° negative, temperature show		
	(d) All are correct statements		

9.	The oxide of a metal (R) can be reduced by the metal (Q) . Then the decreasing order of the real	e met	al ((P) and metal (P)	R) can red) and (R)	duce the oxion	de of n is:
	(a) $P > Q > R$ correction as solved	(b)	P	> R > 0	d o much	os sestu (el	
	(c) R>P>Q 1 Pass nertword have and do a	(d)	0	> P > R	16 to 1/ J		
10.	. Consider the following metallurgical processes:						
0 . 0 .	(I) Heating impure metal with CO and disting and finally decomposition at 150°-200°C	illing	th	e resulting vola	atile carb	onyl (b.p. 4	3°C)
	(II) Heating the sulphide ore in air until a par in the absence of air to let the oxide read(III)Electrolysis of the molten electrolyte co	rt is o	con ith	verted to oxide unchanged me	and ther tal sulph	ide	
	metal chloride and NaCl to obtained the	met	al	of approximate	0 (02 201	(c) P is for	
	The processes used for obtaining magnesium						
	(a) (I), (II) and (III) sould a sould a mixed a	(b)	5 (I	I), (III) and (I)	1 8-3A	Logol Head	.81
	(c) (III), (I) and (II)	(d)	(I	I), (I) and (III)	. 5,000	10 6/4	
11.	When alumina is heated with carbon in nitro	ogen	atı	mosphere, the p	products	are:	
	(a) Al + CO . the form remaining and	(b)	A	+ CO2	100 III 5	SERIC. 11,2 15	
	(c) Al + CO + CO ₂ a samegra (d)	(d)	Δ1	N + CO		617 24 81	
12.	MgO is used as a refractory material because	e:		in had			
2019	(a) It has high melting point appeard source	(b)	۱It	is a good cond	uctor of	heat	20.
	(c) It is a good electrical insulator	(d)	A	ll of these ad ba		ternologies	
Or	es and their Concentration			i mine working	only org	(b) 7n : 1or	
10	Among the following statements, the incorre	ect st	ate	ment is:	duioz em	no Pd Li	
13.	Among the following statements, the incore	es	ro	aded in front	0 71.29 7	P 1 bi	
	(a) calamine and cerrusite are carbonate orestored than to be the respect to the latest and the same of the latest and the same of the latest and the same of the latest and the latest an						
	(b) rutile and cuprite are oxide ores				9161 9	carbol (a)	
	(c) zinc blende and pyrites are sulphide ores						
202	(d) malachite and azurite are sulphate ores Give the correct order of initials T or F for foll	lowi	nσs	statements. Use	T if state	ment is true	e and
14.	Give the correct order of initials 1 of 1 for ion	IOVVII		statements. Ode	2 ii state	inchi is truc	and
	F if it is false.	not a	m	ineral	rollar su	direction of	32.
	F if it is false. (i) Every mineral is an ore but every ore is not a mineral (ii) Slag is product formed during extraction of metal by combination of flux and impurities.						
	(iii) Highly pure metals can be obtained by	zone	re	fining.			
	(iii) Highly pure metals can be obtained by	sodiu	ım.	met, tadées s		n 5, n2 (5)	
	(iv) Carnallite is an ore of magnesium and s	(b)	F		Haraber 1	u acuatanos	182
	(a) TTTF		0.000	FTF		CIV OVID	
1=	(c) FTTT Find the incorrectly matched pair?	,		03 - 0, 15 -	0	+ 2,) (s)	
15.		1		Column-II (matale		
	Column-I (ores)		(1)	na funkcione militario del materio del materio del	metais)	10000	
	(a) Sylvine		1876 5	Potassium			
	(b) Malachite	2 500	(2)	Magnesium		1 5 11 (0)	1
	(c) Cinnabar		(3)	Mercury			
	(d) Fluorite (Flourspar)		(4)	Calcium			
	(a) Pluotice (Flourspan)						

- 16. Froth floatation process used for the concentration of sulphide ore:
 - (a) is based on the difference in wettability of different minerals
 - (b) uses sodium ethyl xanthate, C2H5OCS2Na as collector
 - (c) uses NaCN as depressant in the mixture of ZnS and PbS when ZnS forms soluble complex and PbS forms froth
 - (d) All are correct statements
- 17. When ZnS and PbS minerals are present together, then NaCN is added to separate them in the froth floatation process as a depressant, because :
 - (a) Pb(CN)2 is precipitated while no effect on ZnS
 - (b) ZnS forms soluble complex Na₂[Zn(CN)₄]
 - (c) PbS forms soluble complex Na₂[Pb(CN)₄]
 - (d) They cannot be separated by adding NaCN
- 18. Leaching of Ag 2S is carried out by heating it with a dilute solution of :
 - (a) NaCN only

(b) HCl

(c) NaOH

- (d) NaCN in presence of O2
- 19. Leaching is commercially carried out for in the concentration of :
 - (a) Galena

(b) Argentite

(c) Copper pyrites

- (d) Tin stone
- 20. NaCN is sometimes added in the forth flotation process as depressant when ZnS and PbS minerals are expected because:
 - (a) Pb(CN)2 is precipitated while no effect on ZnS
 - (b) ZnS forms soluble complex Na2[Zn(CN)4] while PbS forms froth
 - (c) PbS forms soluble complex Na2[Pb(CN)4] while ZnS forms froth
 - (d) NaCN is never added in froth floatation process
- 21. Which of the following substance acts as collector in froth floatation method?
 - (a) Sodium xenate

(b) Sodium pyrophosphate

(c) Sodium nitroprusside

(d) Sodium ethyl xanthate

Extraction of Metals

- 22. In which of the following pair of metals, both are commercially extracted from their respective ores by carbon reduction method?
 - (a) Zn, Cu

(b) Fe, Cu

(c) Sn, Zn

- (d) Al, Ag
- 23. Formation of metallic copper from the sulphide ore in the commercial metallurgical process involves

(a)
$$Cu_2S + \frac{3}{2}O_2 \longrightarrow Cu_2O + SO_2$$
;

$$Cu_2O+C \longrightarrow 2Cu+CO$$

(b)
$$Cu_2S + \frac{3}{2}O_2 \longrightarrow Cu_2O + SO_2$$
;

$$2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$$

(c)
$$Cu_2S + 2O_2 \longrightarrow CuSO_4$$
;

$$CuSO_4 + Cu_2S \longrightarrow 3Cu + 2SO_2$$

(d)
$$Cu_2S + \frac{3}{2}O_2 \longrightarrow Cu_2O + SO_2$$
;

$$Cu_2O + CO \longrightarrow 2Cu + CO_2$$

24.	There are following extraction process of silve	r but not :
	(a) as a side product in electrolytic refining o	f copper
	(b) Parke's process in which Zn is used to extra	ct silver by solvent extraction from morten lead
	(c) by reaction of silver sulphide with KCN at	nd then reaction of soluble complex with En
	(d) by heating Na[Ag(CN) ₂]	
25.	In the extraction of aluminium	and the second s
	Process X : applied for red bauxite to remove	iron oxide (chief impurity)
	Process Y: (Serpeck's process): applied for w	hite bauxite to remove Z (chief impurity) then,
	process X and impurity Z are:	280 1 20
	(a) $X = \text{Hall}$ and Heroult's process and $Y = \text{Sid}$	
	(b) $X = \text{Baeyer's process and } Y = \text{SiO}_2$	
	(c) $X = \text{Serpeck's process and } Y = \text{iron oxide}$	
	(d) $X = \text{Baeyer's process and } Y = \text{iron oxide}$	
26.	Give the correct order of initials T or F for follo F if it is false.	wing statements. Osc 1 in statements
	(i) In Gold schmidt thermite process aluminit	im acts as a reducing agent.
	(ii) Mg is extracted by electrolysis of aq. solut	ion of MgCla
	(iii) Extraction of Pb is possible by carbon rec	Juction method
	(iv) Red Bauxite is purified by Serpeck's proc	ess
	(a) TTTF (b) TFFT	(c) FTTT (d) TFTF
27	FeCr ₂ O ₄ (chromite) is converted to Cr by foll	owing steps:
2/.	reci ₂ O ₄ (cinoline) is converted to 51	a the eliteration (b)
	Chromite $\xrightarrow{\text{I}}$ NaCrO ₄ $\xrightarrow{\text{II}}$ Cr ₂ O ₃ $\xrightarrow{\text{III}}$ C	35. In the Interhold of a singular contract
	Reagents in I, II and III step might be:	cal terride. I the entire.
	I Stop II-Step III-St	for at the capacity with splane. The
	(a) Na CO 2/air, Δ C	35. Fac w those of word white of word to
	(c) Na_2CO_3/air , Δ C, Δ C, (d) conc. H_2SO_4 , Δ NH ₄ Cl, Δ C, Δ C, Δ NH ₄ Cl, Δ C, Δ	A de all to responde a contracted and
20	(d) conc. H_2SO_4 , Δ NH ₄ Cl, Δ C. The electrolysis of pure alumina is not feasible to the electrolysis of pure alumina is not feasible to the electrolysis of pure alumina is not feasible to the electrolysis of pure alumina is not feasible to the electrolysis of pure alumina is not feasible to the electrolysis of pure alumina is not feasible to the electrolysis of pure alumination of the electrolysis of the electrolysis of pure alumination of the electrolysis of the electrol	e because:
40.	The electrolysis of pure alumina is not leasing (a) it is bad conductor of electricity and its for	ision temperature is high
	(b) it is volatile in nature	
	(c) it is decomposed when fused	contains mip arties of & is.
	(d) it is amphoteric	
29	(d) it is amphoteric Which of the following reaction does not occur 20150 + 2010	ır in Bessemer's converter?
	(a) $2C_{11} C_{12} C_{13} C_{14} C_{13} C_{14} C_$	and the properties of the first of the properties of the second of the s
	(b) $2C_{11} C_{12} C_{13} C_$	the periods of the
	(c) $2Cu_2S + 3O_2 \longrightarrow Cu_2S + 2FeS + SO_2$	The system of th
	(d) $FeO + SiO_2 \longrightarrow FeSiO_3$	rsis of a concentrated aqueous solution of NaCl?
30.	What products are formed during, the electrony	1
	(I) $Cl_2(g)$ (II) $NaOH(aq)$	(111) 2 (8)
	(a) I only	(b) I and II only
	(c) I and III only	(d) I, II and III

40.	Match Column-I with Column-II
	Column-II Column-II
	(P) Nitriding (I) Process of heating steel to redness and then cooling it very slowly
	(Q) Annealing (II) Process of heating steel in presence of NH ₃ and producing hard coating of Iron Nitride on the surface of steel
	(R) Tempering (III) Process of heating steel to redness and then cooling it suddenly by plunging it into water or oil
	(S) Quenching (IV) Process of heating quenched steel to a temperature well below redness and then cooling it slowly
	P Q R S P Q R S (a) II I III IV (b) II I IV III (c) I II IV III (d) I II III IV
41.	'Softening of lead' means: (a) conversion of lead to PbO (b) conversion of lead to Pb ₃ O ₄ (c) removal of impurities (metallic) from lead (d) washing lead with HNO ₃ followed by alkali solution
42.	In the purification of impure nickel by Mond's process, metal is purified by : (a) Electrolytic reduction (b) Vapour phase thermal decomposition (c) Thermite reduction (d) Carbon reduction
43.	Correct match is: (a) Bayer's method (b) Matte (c) van Arkel method (d) Thomas slag — Na ₂ CO ₃ — 98% Cu ₂ S + 2% FeS — AgI — Raw material for cement industry

Level 3

PASSAGE

For a spontaneous reaction, the free energy change must be negative. $\Delta G = \Delta H - T\Delta S$, ΔH is the enthalpy change during the reaction. T is the absolute temperature, and ΔS is the change in entropy during the reaction. Consider a reaction such as the formation of an oxide

$$M + O_2 \longrightarrow MO$$

Dioxygen is used up in the course of this reaction. Gases have a more random structure (less ordered) than liquid or solids. Consequently gases have a higher entropy than liquids and solids. In this reaction S (entropy or randomness) decreases, hence ΔS is negative. Thus, if the temperature is raised then $T\Delta S$ becomes more negative. Since, $T\Delta S$ is substracted in the equation, then ΔG becomes less negative. Thus, the free energy change increases with the increase in temperature.

The free energy changes that occur when one mole of common reactant (in this case dioxygen) is used may be plotted graphically against temperature for a number of reactions of metals to their oxides. The following plot is called an Ellingham diagram for metal oxide. Understanding of Ellingham diagram is extremely important for the efficient extraction of metals.

261

1. For the conversion of Ca(s) to CaO(s) which of the following represent the ΔG vs. T?

- **2.** Free energy change of Hg and Mg for the convertion to oxides the slope of $\Delta G vs. T$ has been changed above the boiling points of the given metal because:
 - (a) above the boiling point of the metal entropy is increased
 - (b) above the boiling point of the metal the entropy is decreased
 - (c) above the boiling point of the metal the entropy change is equal to zero
 - (d) All of these
- 3. Which of the following elements can be prepared by heating the oxide above 400°C?
 - (a) Hg

(b) Mg

(c) Fe

- (d) Al
- 4. As per the Ellingham diagram of oxides which of the following conclusion is true?
 - (a) Al reduces Fe 2O 3, whereas MgO cannot be reduced by Al at 1500°C
 - (b) Fe reduces ${\rm Al}_2{\rm O}_3$, whereas MgO cannot be reduced by Al at 1500°C
 - (c) Al reduces Fe₂O₃, whereas MgO cannot be reduced by Ca at 1500°C
 - (d) Al can reduce both Fe $_2\mathrm{O}_3$ and MgO to the corresponding metal at 1500°C

The Ellingham diagram for zinc, magnesium and carbon converting into corresponding oxides is shown below.

- 1. At what temperature, zinc and carbon have equal affinity for oxygen?
 - (a) 1000°C

(b) 1500°C

(c) 500°C

- (d) 1200°C
- 2. To make the following reduction process spontaneous, temperature should be:

$$ZnO + C \longrightarrow Zn + CO$$

(a) 1000°C

(b) > 1100° C

(c) $< 500^{\circ}$ C

- (d) < 1000°C
- 3. At 1100°C, which reaction is spontaneous to a maximum extent?
 - (a) $MgO + C \longrightarrow Mg + CO$
 - (b) $ZnO + C \longrightarrow Zn + CO$

 - (c) $MgO + Zn \longrightarrow Mg + ZnO$ (d) $ZnO + Mg \longrightarrow MgO + Zn$

PASSAGE

The Ellingham diagram for a number of metallic sulphides is shown below.

1. Formation of which of the sulphides is most spontaneous?

(a) HgS

(b) Bi_2S_3

(d) CS₂

2. Which sulphide occurs to minimum extent in nature?

(a) HgS

(b) H_2S

(c) Bi_2S_3

(d) CS₂

3. Which of the following sulphides can not be reduced to metal by H2 at about 1000°C?

(a) HgS

(c) Bi_2S_3

(d) all of these

PASSAGE

Magnesium is a valuable, light weight metal used as a structural material as well as in alloys, batteries, and in chemical synthesis. Although magnesium is plentiful in Earth's crust, it is mainly found in the sea water (after sodium). There is about 1.3 g of magnesium in every kilogram of sea water. The process for obtaining magnesium from sea water employs all three types of reactions, i.e., precipitation, acid-base, and redox-reactions.

1. Precipitation reaction involves formation of :

(a) insoluble MgCO 3 by adding Na 2CO 3

- (b) insoluble Mg(OH)2 by adding Ca(OH)2
- (c) insoluble in MgSO₄ by adding Na₂SO₄
- (d) insoluble MgCl2 by adding NaCl
- 2. Acid-base reaction involves reaction between :

(a) MgCO₃ and HCl

(b) Mg(OH)2 and H2SO4

(c) Mg(OH)₂ and HCl

(d) MgCO3 and H2SO4

- 3. Redox reaction takes place (in the extraction of Mg):
 - (a) in the electrolytic cell when fused MgCl2 is subjected to electrolysis

(b) when fused MgCO3 is heated

- (c) when fused MgCO₃ is strongly heated
- (d) none of the above

PASSAGE 5

Dow's process of extraction of Mg involves extraction of Mg from sea water. Sea water is concentrated in sun-light and is then treated with slaked lime. Magnesium hydroxide is heated in a stream of HCl to give ${\rm MgCl}_2$ which is electrolysed to discharge Mg. The mixture is in the ratio 35% ${\rm MgCl}_2$ + 50% NaCl + 15% CaCl 2. NaCl and CaCl 2 are added to lower the fusion temperature and to increases the conductance.

$$Mg^{2+} + Ca(OH)_2 \longrightarrow Mg(OH)_2 + Ca^{2+}$$
 $Mg(OH)_2 + 2HCl \longrightarrow MgCl_2 + 2H_2O(l)$
 $MgCl_2 \longrightarrow Mg^{2+} + 2Cl$

Electrolysis of fused

$$Mg^{2+} + 2e^{-} \longrightarrow Mg$$
 (At Cathode)

$$2Cl^- \longrightarrow Cl_2 + 2e^-$$
 (At Anode)

Mg electrolysed is protected from atmospheric oxidation by a blanket of inert gases.

1. In the hydrated chloride of Mg the value of x is :

(a) 6

- 2. Molten mixture contains Mg²⁺, Na⁺ and Ca²⁺ but at cathode only Mg²⁺ is discharged because:
 - (a) Standard reduction potential of Mg 2+ is least among the three
 - (b) Standard oxidation potential of Mg is the least among the three
 - (c) Discharge potential of Mg 2+ is highest
 - (d) None of these
- 3. Molten mixture of NaCl and CaCl₂ is added to the heated MgCl₂ because:
 - (a) $MgCl_2 \cdot xH_2O + dry HCl \xrightarrow{973-1223 \text{ K}}$ Partially dehydrated $MgCl_2$ and molten mixture (NaCl + CaCl₂) makes it fully dehydrated
 - (b) CaCl2 is dehydrating agent
 - (c) (CaCl₂ + NaCl) lowers the melting point of MgCl₂
 - (d) None of these

PASSAGE 6

$$FeCr_2O_4 + NaOH + air \longrightarrow (A) + Fe_2O_3$$

$$(A) + (B) \longrightarrow Na_2Cr_2O_7$$

$$Na_2Cr_2O_7 + X \stackrel{\Delta}{\longrightarrow} Cr_2O_3$$

$$Cr_2O_3 + Y \stackrel{\Delta}{\longrightarrow} Cr$$

- 1. Compound (A) and (B) are:
 - (a) Na₂CrO₄, H₂SO₄

(b) Na₂Cr₂O₇, HCl

(c) Na₂CrO₅, H₂SO₄

(d) $Na_4[Fe(OH)_6]$, H_2SO_4

- 2. (X) and (Y) are:
 - (a) C and Al
- (b) Al and C
- (c) C in both
- (d) Al in both

- 3. Na₂CrO₄ and Fe₂O₃ are separated by :
 - (a) dissolving in conc. H₂SO₄
 - (c) dissolving in H2O

- (b) dissolving in NH₃
- (d) dissolving in dil. HCl

Electrolysis is an important technique for extraction of metals, and each ion of the solution needs a minimum voltage to get discharged and this value is expressed in terms of discharge potential. For some metal ions the discharge potentials follow the order given below:

 $\text{Li}^+ > \text{K}^+ > \text{Ca}^{2+} > \text{Na}^+ > \text{Mg}^{2+} > \text{Al}^{3+} > \text{Zn}^{2+} > \text{Fe}^{2+} > \text{Ni}^{2+} > \text{H}_3\text{O}^+ > \text{Cu}^{2+} > \text{Hg}_2^{2+} > \text{Ag}^+ > \text{Au}^{3+}$ For some anions the discharge potentials are in the order: $SO_4^2 > NO_3 > OH^- > Br^- > I^-$

- 1. When aqueous solution of cupric bromide is electrolyzed the product obtained at cathode will be:
- (b) H₂
- (c) Br₂
- $(d) O_2$
- 2. The product formed at anode and cathode, when dilute H_2SO_4 is electrolysed are :
 - (a) SO_2,H_2
- (b) SO_3,H_2
- (c) $H_2S_2O_8, H_2$
- $(d) O_2, H_2$
- 3. A mixture containing chlorides of sodium, calcium and zinc is electrolysed in presence of water. The product obtained at cathode will be:
 - (a) Na
- (b) H₂
- (c) Ca
- (d) Cl₂
- 4. When conc. H₂SO₄ is electrolysed with high current using Pt electrodes, the product obtained at anode is:
 - (a) SO_2
- (b) SO₃
- (c) O₂
- (d) $H_2S_2O_8$

ONE OR MORE ANSWERS IS/ARE CORRECT

- 1. Which of the following metal(s) is/are commercially extracted by self reduction method from their corresponding ore ?
 - (a) Cu
- (b) Fe
- (c) Pb
- (d) Hg
- 2. Which of the following process makes the ore porous?
 - (a) Roasting
- (b) Calcination
- (c) Reduction
- (d) Distillation

- 3. Which of the following ores is/are oxide ore(s)?
 - (a) Tinstone
- (b) Bauxite
- (c) Cryolite
- (d) Carnallite

- 4. Roasting of copper pyrites is done:
 - (a) to remove moisture

- (b) to oxidise free sulphur
- (c) to decompose pyrite into Cu₂S and FeS
- (d) to remove volatile organic impurities
- 5. Which of the following is a correct statement?
 - (a) Calamine is the ore of zinc
- (b) Pyrolusite is the ore of manganese
- (c) Cassiterite is the ore of tin
- (d) Calcite is the ore of calcium

266 INORGANIC CHEMISTRY

О.	in which of the following pairs, both the mir	
	(a) Sylvine, saltpetre	(b) Casseterite, litharge
	(c) Siderite, corundum	(d) Cuprite, tinstone
7.	Which of the following mineral does not con	tain sodium?
	(a) Trona (b) Borax	(c) Epsomite (d) Cerrusite
8.	Which of the following pair consists of ore o	(200)
	(a) Bauxite, Limonite	(b) Haematite, Siderite
	(c) Cinnabar, Cassiterite	(d) Galena, Cerrusite
9.	The process(es) by which lighter earthy part water is/are:	icles are freed from the heavier particles using
	(a) Gravity separation (b) Levigation	(c) Hydraulic washing (d) Leaching
10.	Roasting is carried out to:	•
	(a) convert sulphide to oxide and sulphate	(b) remove water of hydration
	(c) melt the ore	(d) remove arsenic and sulphur impurities
11.	The chemical treatment of the ore for concer	
	(a) aluminium	(b) silver
	(c) copper	(d) gold
12.	Froth floatation :	(L) Bass
	(a) is a physical method of separating miner	al from the gangue
		nding on the difference in wetability of gangue
	and the ore	3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	(c) is used for the sulphide ores	
	(d) is a method in which impurities sink to t	
13.	Which of the following reaction(s) occur dur	
	(a) $CaCO_3 \longrightarrow CaO + CO_2$	(b) $4\text{FeS}_2 + 110_2 \longrightarrow 2\text{Fe}_2\text{O}_3 + 8\text{SO}_2$
	(c) $2Al(OH)_3 \longrightarrow Al_2O_3 + 3H_2O$	(d) $CuS + CuSO_4 \longrightarrow 2Cu + 2SO_6$
14.	Amphoteric nature of aluminium is employed of aluminium?	in which of the following process for extraction
	(a) Baeyer's process	(b) Hall's process
	(c) Serpek's process	(d) Dow's process
15.	Which of the following is true for calcination	of a metal ore?
	(a) It makes the ore more porous	
	(b) The ore is heated to a temperature when	
	(c) Hydrated salts lose their water of crystal	lisation
16	(d) Impurities of S, As and Sb are removed in	n the form of their volatile oxides
10.	The difference(s) between roasting and calci (a) roasting is highly endothermic while calc	nation is/are :
	(b) partial fusion occurs in calcination but n	ot in reaction
	(c) calcination is performed in limited amou	nt of air but receive
	(d) combustion reaction occur in roasting bu	it not in calcination
17.	The extraction of metals from oxide ores inv	
-/.	(a) Reduction with carbon	
	(c) Electrolyte reduction	(b) Reduction with aluminium (d) Reduction with CO
	(-)	(a) requeston with CO

	and the state of t		
18.	Metals which can be extracted by smelting process are:		
	(a) Pb (b) Fe (c) Zn (d) Al		
19.	Of the following reduction processes, correct processes are:		
	(a) $\text{Fe}_2\text{O}_3 + \text{C} \longrightarrow \text{Fe}$ (b) $\text{ZnO} + \text{C} \longrightarrow \text{Zn}$		
	(c) $Ca_3(PO_4)_2 + C \longrightarrow P$ (d) $PbO + C \longrightarrow Pb$		
20.	In the extraction of aluminium metal, one of the process is summarised as follows:		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Impure		
	mix with 'D'		
	melt at 1000° C		
	Aluminium at 'E' electrolyse molten material with carbon electrodes		
	Which of the following entries correctly summarises reagents, electrodes & products of the process?		
	I II III IV V		
	(a) NaOH Al ³⁺ HF Na ₃ AlF ₆ Cathode		
	(b) NaOH NaAlO ₂ CO ₂ NaF Anode (c) H ₂ SO ₄ Al ₂ (SO ₄) ₃ NH ₃ Na ₃ AlF ₆ Cathode		
	(d) NaOH NaAlO ₂ CO ₂ Na ₃ AlF ₆ Cathode		
21.	During the production of iron and steel.		
	(a) The oxide ore is primarily reduced to iron by solid coke according to the reaction		
	$2\text{Fe}_2\text{O}_3 + 3\text{C} \longrightarrow 4\text{Fe} + 3\text{CO}_2$		
	(b) The oxide ore is reduced by the carbon monoxide according to the reaction		
	$Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$		
	(c) Major silica impurities are removed as calcium silicate slag by addition of a fluxing agent limestone		
	(d) The silicate slag is used in manufacturing cement		
22.	The smelting of iron in a blast furnace involves the following processes:		
	(a) combustion (b) reduction (c) slag formation (d) sublimation		
23.	Which one of the following metals can be extracted by aluminothermic process? (a) Manganese (b) Iron (c) Chromium (d) Magnesium		
_	(a) Manganese (b) Iron (c) Chromium (d) Magnesium For which of the following metal, the carbon reduction cannot be used?		
24.	(b) Manganese (c) llingsten (d) Iron		
25	(a) Lead (b) Manganesc (c) rangeten (d) non The advantage(s) of using carbon to reduce a number of oxides and other compounds are:		
45.	(a) easy availability of coke		
	(b) low cost of carbon		
	(a) tandengy of carbon to show catenation		
	(d) presence of carbon lowers the melting point of the oxides		
26	The disadventage of carbon reduction method are:		
	(a) high temperature needed which is expensive and requires the use of a diast furnace		
	(b) many metals combine with carbon forming carbides		

- (c) carbon combines with oxygen to form poisonous CO
- (d) carbon cannot be used with highly electropositive metals
- 27. Which of the following metals are extracted from its ore by using self-reduction method?
 - (a) Copper
- (b) Mercury
- (c) Lead
- (d) Silver

28. Which of the following is/are correctly matched?

Column-I (Metals)

- (a) Titanium
- (b) Aluminium
- (c) Chromium
- (d) Silver

Column-II (Process used for extraction)

Kroll process

Baeyer process

Thermite process

Mac-Arthur cyanide process

- 29. The function of adding cryolite in the electrolytic reduction of alumina by Hall-Heroult process is to:
 - (a) dissolve alumina
 - (b) lower the melting point of alumina
 - (c) lower the fuel bill
 - (d) increase the electrical conductivity of alumina
- **30.** Which of the following reduction reactions are actually employed in commercial extraction of metals?
 - (a) $\text{Fe}_2\text{O}_3 + 2\text{Al} \longrightarrow \text{Al}_2\text{O}_3 + 2\text{Fe}$
 - (b) $\operatorname{Cr}_2\operatorname{O}_3 + 2\operatorname{Al} \longrightarrow \operatorname{Al}_2\operatorname{O}_3 + 2\operatorname{Cr}$
 - (c) $2Na[Au(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + 2Au$
 - (d) $Cu_2S + Pb \longrightarrow Cu + PbS \downarrow$
- **31.** The chief reaction(s) occurring in blast furnace during extraction of iron from haematite is/are:
 - (a) $Fe_2O_3 + 3CO \longrightarrow 2Fe + 3CO_2$
- (b) $FeO + SiO_2 \longrightarrow FeSiO_3$
- (c) $Fe_2O_3 + C \longrightarrow 2Fe + 3CO$
- (d) $CaO + SiO_2 \longrightarrow CaSiO_3$
- 32. Which of the following are true for electrolytic extraction of aluminium?
 - (a) Cathode material contains graphite
 - (b) Anode material contains graphite
 - (c) Cathode reacts away forming CO2
 - (d) Anode reacts away forming CO₂
- 33. Select correct statement regarding silver extraction process.
 - (a) When the lead-silver alloy is rich in silver, lead is removed by the cupellation process
 - (b) When the lead-silver alloy is rich in lead, lead is removed by parke's or pattinson's process
 - (c) Zinc forms an alloy with lead, from which lead is separated by distillation
 - (d) Zinc forms an alloy with silver, from which zinc is separated by distillation
- 34. Aluminothermy used for the spot welding of large iron structures is based upon the fact that:
 - (a) As compared to iron, aluminium has greater affinity for oxygen
 - (b) As compared to aluminium, iron has greater affinity for oxygen
 - (c) Reaction between aluminium and oxygen is endothermic
 - (d) Reaction between iron oxide and aluminium is exothermic

- 35. Highly electropositive metals can not be extracted by carbon reduction process because these:
 - (a) Metals combine with carbon to form carbides
 - (b) Metals do not react with carbon
 - (c) Metal oxides are not reduced by carbon
 - (d) Loss of metal is more by vaporisation
- 36. Which of the following reaction in the blast furnace is/are endothermic?
 - (a) $C(s) + O_2(g) \rightleftharpoons CO_2(g)$
 - (b) $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$
 - (c) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$
 - (d) $\operatorname{Fe}_{2}O_{3}(s) + 3\operatorname{CO}(g) \iff 2\operatorname{Fe}(l) + 3\operatorname{CO}_{2}(g)$
- 37. The furnace lining in steel manufacture consists of :
 - (a) CaO

(b) SiO₂

(c) MgO

- (d) CaCO₃
- 38. Pick up the correct statement(s):
 - (a) All minerals are ores
 - (b) All minerals cannot be an ore
 - (c) All ores are minerals
 - (d) The minerals from which metals can be extracted profitably are called ores

MATCH THE COLUMN

Column-I and **Column-II** contains four entries each. Entries of column-I are to be matched with some entries of column-II. Each entry of column-I may have the matching with one or more than one entries of column-II.

1.	
	Column-I
	2003 100 200

(Main ore of metal)

- (A) Cinnabar
- (B) Chalcopyrite
- (C) Bauxite
- (D) Argentite

Column-II

(Process involved in commercial extraction pure metal)

- (P) Froth floatation method
- (Q) Roasting
- (R) Distillation
- (S) Leaching
- (T) Calcination

270 INORGANIC CHEMISTRY

2. Column-II Column-I (Corresponding metals) (Statements) (A) Hydrometallurgy applied in commer-(P) Ag cial extraction of metal (B) Carbon reduction applied in commer-(Q) Zn cial extraction in metal (C) Aqueous salt solution is used in elec-(R) Sn trolytic Refining method (D) Metal present in anode mud of refining (S) Au of crude copper ODE THE REST (T) Cu 3. Column-II Column-I (P) Self reduction (A) Haematite (Q) Roasting (B) Copper pyrites (R) Electrolytic reduction (C) Carnalite (S) Calcination (D) Bauxite (T) Reduction by carbon monoxide (mainly) as well as carbon at different temperature. Column-I Column-II (P) Found as its native state (A) Ca (Q) Found as its sulphide (B) Zn (R) Found as its carbonate (C) Cr (S) Found as its oxide (D) Ag 5. Column-II Column-I (P) Iron (A) Ilmentie (Q) Magnesium (B) Dolomite (R) Potassium (C) Carnallite (S) Titanium (D) Chromite (T) Calcium

91

II

Column-I

- (A) Cuprite
- (B) Cerussite
- (C) Kainite
- (D) Calamine

Column-II

- (P) Sulphate ore
- (Q) Carbonate ore
- (R) Oxide ore
- (S) Chloride ore

7. Column-I

- (A) Poling
- (B) Cupellation
- (C) Electro-refining
- (D) van Arkel method

Column-II

(P) Titanium

(P)

- (Q) Copper
- (R) Silver
- (S) Tin

_ 1	
8.	THE PARTY OF THE PARTY OF THE PARTY.
٠.	Column-I

- (A) Metal which occur in the native state in nature is
- (B) The oxides of metal that can be commercially reduced by Aluminothermic reduction process is
- (C) van Arkel method is used for preparing ultrapure metal of
- (D) Auto reduction process is employed for the sulphide ore of

	C	0	ł	t	t	ì	Ĭ	i	Ì		I	ĺ	I	
H	No.		i di	ū	8	8	ä					ĕ		3
									ŀ	ł	2	5		

- (Q) Ti
- 8 %
- (R) Cr
- (S) Ag

9. Column-I

- (A) Mond's process
- (B) van Arkel process
- (C) Thermite process
- (D) Kroll's process

Column-II

- (P) $Cr_2O_3 + 2Al \xrightarrow{\Delta} 2Cr + Al_2O_3$
- (Q) $TiCl_4 + 2Mg \xrightarrow{\Delta} Ti + 2MgCl_2$
- (R) $Ni(CO)_4 \xrightarrow{\Delta} Ni + 4CO$
- (S) $ZrI_4 \xrightarrow{\Delta} Zr + 2I_2$

10.

Column-I (Metal)

- (A) Pb
- (B) Cu
- (C) Zn
- (D) Fe (Steel)

Column-II

(Process involved in commercial extraction from their ore)

- (P) Bessemerisation
- (Q) Roasting
- (R) Pyrometallurgy
- (S) Self-reduction method

ASSERTION-REASON TYPE QUESTIONS

The questions given below consist of "Assertion" and their "Reason". Use the following key to choose the appropriate answer.

- (A) If both assertion and reason are CORRECT, and reason is the CORRECT explanation of the assertion
- (B) If both assertion and reason are CORRECT, but reason is NOT the CORRECT explanation of the assertion
- (C) If assertion is CORRECT but reason is INCORRECT
- (D) If assertion is INCORRECT but reason is CORRECT
- 1. Assertion: PbSiF₆ + H₂SiF₆ + gelatine is taken as electrolyte in electrolytic refining of
 - : Discharge potential of Pb 2+ is less than H+. Reason
- Assertion: Nitriding is the process of heating steel in presence of N₂ to form iron nitrides.
- : The surface of steel becomes hard after nitriding process. Assertion: Ores are generally converted into oxides, prior to reduction.
 - : Metal oxides can be easily reduced.
- Assertion: In the extraction of Ag, complex Na[Ag(CN)₂] is reacted with Zn.
 - **Reason**: Zn is d-block transition metal.
- 5. Assertion: Thermite mixture Fe₂O₃ + Al (powder) is used in the welding.
 - **Reason**: Al is a good reductant.
- 6. Assertion: In froth floatation process sodium ethyl xanthate is used as collector.
 - **Reason**: Sulphide ores are water soluble.
- 7. Assertion: Cryolite is used in electrolytic extraction of Al from alumina.
 - : It dissolves alumina. Reason
- 8. Assertion: CuFeS₂ is concentrated by froth floatation method.
 - **Reason**: CuFeS₂ is main ore of copper.
- Assertion: In the electrolytic reduction of Al₂O₃, cryolite is used.
 - : Cryolite is an ore of aluminium.
- 10. Assertion: Wrought iron is more malleable and ductile than steel.
 - : It contains slightly less percentage of carbon. Reason
- 11. Assertion: Lead, tin and bismuth are purified by liquation method.
- : Lead, tin and bismuth have low m.p. as compared to impurities. Reason
- 12. Assertion: Al₂O₃ is converted into Al by reduction with carbon at high temp. : Carbon has greater affinity for oxygen than aluminium. Reason
- 13. Assertion: Reduction of ZnO with carbon is done at 1100°C.
- : ΔG° is negative at this temperature thus, process is spontaneous. Reason
- 14. Assertion : Desilverisation of lead is done by Parke's method.
 - : When lead-silver alloy is poor in silver, zinc is added to molten ore. Reason
- 15. Assertion: All the ores are mineral.
- : Ores contains metals in combined state.

ANSWERS

Level

1.	(b)	2.	(b)	3.	(a)	4.	(a)	5.	(a)	6.	(a)	7.	(d)	8.	(d)	9.	(b)	10.	(b)
11.	(d)	12.	(a)	13.	(b)	14.	(b)	15.	(b)	16.	(d)	17.	(c)	18.	(c)	19.	(b)	20.	(c)
21.	(d)	22.	(d)	23.	(a)	24.	(c)	25.	(a)	26.	(a)	27.	(d)	28.	(a)	29.	(c)	30.	(b)
31.	(b)	32.	(d)	33.	(c)	34.	(c)	35.	(c)	36.	(a)	37.	(c)	38.	(b)	39.	(c)	40.	(c)
41.	(c)	42.	(c)	43.	(c)	44.	(a)	45.	(b)	46.	(a)	47.	(b)	48.	(a)	49.	(a)	50.	(a)
51.	(d)	52.	(c)	53.	(b)	54.	(b)	- 55.	(b)	56.	(b)	57.	(c)	58.	(a)	59.	(b)	60.	(c)
61.	(d)	62.	(a)	63.	(a)	64.	(d)	65.	(a)	66.	(c)	67.	(a)	68.	(b)	69.	(c)	70.	(c)
71.	(c)	72.	(d)	73.	(d)	74	(d)	75.	(c)	76.	(b)	77.	(d)	78.	(d)	79.	(a)	80.	(b)
81.	(a)						9				- 2	13.23		- 110 TX		in .			

Level 2

1.	(a)	2.	(b)	3.	(d)	4.	(b)	5.	(d)	6.	(d)	7.	(d)	8.	(d)	9.	(b)	10.	(c)
11.	(d)	12.	(d)	13.	(d)	14.	(b)	15.	(b)	16.	(d)	17.	(b)	18.	(d)	19.	(b)	20.	(b)
21.	(d)	22.	(c)	23.	(b)	24.	(d)	25.	(b)	26.	(d)	27.	(b)	28.	(a)	29.	(c)	30.	(d)
31.	(c)	32.	(b)	33.	(d)	34.	(c)	35.	(a)	36.	(d)	37.	(b)	38.	(d)	39.	(c)	40.	(b)
41.	(c)	42.	(b)	43.	(b)					7.0	24		NA		65				

Level 3

The state of the s		701000 (B) 704	COMMONWAY.	DESCRIPTION OF	THE STREET	TO THE REAL PROPERTY.	STORES OF	80000000	
Passage-1	1.	(c)	2.	(a)	3.	(a)	4.	(a)	
Passage-2	1.	(a)	2.	(b)	3.	(d)			
Passage-3	1.	(c)	2.	(d)	3.	(b)			
Passage-4	1.	(b)	2.	(c)	3.	(a)			

	NO.		37375	1020 100		1	STATE OF	
Passage-5	1.	(a)	2.	(b)	3.	(c)		
Passage-6	1.	(a)	2.	(a)	3,	(c)		
Passage-7	1.	(a)	2.	(d)	3.	(b)	4.	(d)

One or More Answers is/are correct

1.	(a,c,d)	2.	(a,b)	3.	(a,b)	4.	(a,b,c,d)	5.	(a,b,c,d)	6.	(b,d)
7.	(c,d)	8.	(b,d)	9.	(a,b,c)	10.	(a,b,d)	11.	(a,b,d)	12.	(a,b,c,d)
13.	(a,c)	14.	(a,b)	15.	(a,c)	16.	(c,d)	17.	(a,b,c,d)	18.	(a,b,c)
19.	(a,b,c,d)	20.	(d)	21.	(b,c,d)	22.	(a,b,c)	23.	(a,b,c)	24.	(b,c)
25.	(a,b)	26.	(a,b)	27.	(a,b,c)	28.	(a,c,d)	29.	(a,b,c,d)	30.	(b,c)
31.	(a,d)	32.	(a,b,d)	33.	(a,b,d)	34.	(a,d)	35.	(a,d)	36.	(b,c)
37.	(a,c)	38.	(b,c,d)								

Match the Column

1. $A \rightarrow P$, Q , R ;	$B \rightarrow P, Q;$	$C \rightarrow S, T;$	$D \rightarrow P$, S	
2. $A \rightarrow P$, S;	$B \rightarrow Q, R;$	$C \rightarrow P$, Q, R, S,	T;	$D \rightarrow P$, S
3. $A \rightarrow Q$, S, T;	$B \rightarrow P, Q;$	$C \rightarrow R, S;$	$D \rightarrow R$, S	, -
4. $A \rightarrow R$;	$B \rightarrow Q, R, S;$	$C \rightarrow S$;	$D \rightarrow P, Q$	
5. $A \rightarrow P$, S;	$B \rightarrow Q, T;$	$C \rightarrow Q, R;$	$D \rightarrow P$	
6. $A \rightarrow R$;	$B \rightarrow Q$;	$C \rightarrow P, S;$	$D \rightarrow Q$	
7. $A \rightarrow Q$, S;	$B \rightarrow R$;	$C \rightarrow Q$, R, S;	$D \rightarrow P$	
8. $A \rightarrow S$;	$B \rightarrow R$,	$C \rightarrow Q$;	$D \rightarrow P$	
9. $A \rightarrow R$;	$B \rightarrow S$;	$C \rightarrow P$;	$D \rightarrow Q$	
10 . $A \to Q$, R, S;	$B \rightarrow P$, Q, R, S;	$C \rightarrow Q, R;$	$D \rightarrow P$, Q, R	

Assertion-Reason Type Questions

Hints and Solutions

conditions are brunded at guidant bosons

Level 1

- 2. (b) From given reactions, Free energy of the reaction: $ZnO(g) + C(s) \xrightarrow{\Delta \\ 1000^{\circ}C} Zn(g) + CO(g)$, is negative.
- 37. (c) Zn is extracted from its sulphide ore by roasting followed by carbon reduction Hg, Pb and Cu are extracted by self reduction from their sulphide ores.
- 40. (c) Cr metal is commercially extracted by Al-reduction method.
- 61. (d) From spelter pure zinc is obtained either by distillation or by electrolytic refining.
- 62. (a) Purification of Al metal: Hoop's Method
- 65. (a) Others are purification methods of bauxite ore.
- 67. (a) When impure metal has impurity of its own metal oxide, then Poling process is used, e.g., impure Cu and Sn are purified by this method.

75. (c)
$$2AgCl + Na_2CO_3 \longrightarrow 2NaCl + Ag_2CO_3 \xrightarrow{\Delta} 2Ag + \frac{1}{2}O_2 + CO_2 \uparrow$$

Level 2

2. (b)
$$SnCl_2 + HgCl_2 \longrightarrow SnCl_4 + Hg$$

 (XCl_2) (YCl_2) (XCl_4) (Y)
 $HgO \xrightarrow{\Delta} Hg + \frac{1}{2}O_2$

HgS: Cinnabar

8. (d) See Ellingham diagram.

10. (c) (l) Ni
$$+4CO \xrightarrow{50^{\circ}C} [Ni(CO_4)] \xrightarrow{230^{\circ}C} Ni (pure) + 4CO \uparrow$$

(II)
$$Cu_2S + \frac{3}{2}O_2 \xrightarrow{\Delta} Cu_2O + SO_2$$

 $Cu_2S + 2Cu_2O \xrightarrow{high} 6Cu + SO_2$

(III)
$$MgCl_2(s) \xrightarrow{\text{electrolysis}} Mg^{2+}(l) + 2Cl^-(l)$$

At cathode: $Mg^{2+} + 2e^- \longrightarrow Mg(s)$
At anode: $2Cl^-(l) \longrightarrow Cl_2(g) + 2e^-$

17. (b)
$$ZnS + 4NaCN \implies 4Na^{+} + [Zn(CN)_{4}]^{2^{-}} + S^{2^{-}}$$
water soluble

18. (d)
$$Ag_2S + 4NaCN \xrightarrow{Air} 2Na[Ag(CN)_2] + Na_2S$$

 $2Na[Ag(CN)_2] + \begin{pmatrix} Zn \\ dust \end{pmatrix} \longrightarrow Na_2[Zn(CN)_4] + 2Ag \downarrow$

19. (b) Leaching is carried out for the concentration of argentite (Ag 2S).

(i) $Ag_2S + 4NaCN \xrightarrow{Air} 2Na[Ag(CN)_2]^- + Na_2S \xrightarrow{Air} Na_2SO_4 + S$

20. (b) Depressant is a substance that is added to suppress the floating characteristic of metal sulphide present as an impurity.

 $PbS + ZnS \xrightarrow{(Impurity)} \xrightarrow{4NaCN} Na_{2}[Zn(CN)_{4}] + PbS$ Soluble complex

21. (d) Sodium ethyl xanthate acts as collector for sulphide ore.

- **26.** (d) (i) $Cr_2O_3 + 2Al(R.A.) \xrightarrow{\Delta} Al_2O_3 + 2Cr; \Delta H = -ve$
 - (ii) Mg is extracted by electrolysis of fused MgCl2 and NaCl

(iii)
$$PbS + \frac{3}{2}O_2 \longrightarrow PbO + SO_2$$

$$PbO + C \longrightarrow Pb + CO$$

- (iv) Red Bauxite is purified by Baeyer's process
- **27.** (b) Chromite $\xrightarrow{\text{NaOH/air, }\Delta}$ NaCrO₄ $\xrightarrow{\text{C, }\Delta}$ Cr₂O₃ $\xrightarrow{\text{Al, }\Delta}$ Cr
- 32. (b) The reduction of metal oxides by aluminium powder is called Gold schmidt's aluminothermite process.

$$\underbrace{\text{Cr}_2\text{O}_3 + \text{Al powder}}_{\text{Thermite mixture}} \xrightarrow{\text{Mg powder} + \text{BaO}_2} \underbrace{\text{CCr}}_{\text{Molten}} + \text{Al}_2\text{O}_3 + \text{Heat}$$

- 33. (d) Mg²⁺ cation will be preferentially discharged than Al³⁺ at cathode.
- 38. (d) Metals, which are less reactive than Ag, remain in anode mud, and metals which are more reactive than Ag metal will be in electrolyte solution.

42. (b) Ni + 4CO
$$\xrightarrow{50^{\circ} \text{to } 60^{\circ}\text{C}}$$
 [Ni(CO)₄] \uparrow $\xrightarrow{200 \text{ to } 230^{\circ}\text{C}}$ Ni + 4CO \uparrow Volatile compound

43. (b) Roasted mass obtained from roasting step is called matte. (98% Cu₂S+2% FeS)

Level 3

One Ore More Answers is/are Correct

21. (b, c, d)

The oxide ore (Fe₂O₃) is primarily reduced to iron by carbon monoxide

$$SiO_2 + CaO \longrightarrow CaSiO_3$$
 (Slag)

31. (a, d)

In extraction of Fe, Fe₂O₃ is primary reduced by CO below 710°C and acidic impurity of SiO₂ is removed in the form of CaSiO₃ (slag).

Match The Column

METALLURGY

5. Ilmenite FeTiO₃ or FeO·TiO₂

Dolomite CaCO₃·MgCO₃

Carnaollite KCl·MgCl₂·6H₂O

Chromite FeCr₂O₄ or FeO·Cr₂O₃

6. Cuprite Cu₂O (oxide ore) Cerussite PbCO₃ (carbonate ore) Kainite KCl·MgSO₄·3H₂O (chloride and sulphate ore) Calamine ZnCO₃ (carbonate ore)

Poling: Impure molten metal is stirred with green wood poles, oxide impurities are removed, mainly used for Cu and Sn.

Cupellation is used when impurities are of other metals, mainly used for silver.

Electro-refining: Cu, Ag, Au, Cr, Zn, Ni, etc., are mainly purified by removing insoluble impurities as anode mud.

van Arkel method: (vapour phase refining) Metals like titanium, zirconium, thorium and uranium are purified by this method.