Play with Graphs for **RMO INMO** **IIT JEE Foundation** main Advanced **Essential Coaching** **Engineering Entrance Exams** **IITJEE Examination** Amit Agarwal Arihant Leading Edge Texts **Skills in Mathematics** *for* All Engineering Entrance Examinations ## Play with Graphs ## Skills in Mathematics for All Engineering Entrance Examinations ## Play with Graphs ### **Preface** It is a matter of great pleasure and pride for me to introduce to you this book "Play with Graphs". As a teacher, guiding the All Engineering aspirants for over a decade now, I have always been in the lookout for right approach to understanding various mathematical problems. I had always felt the need of a book that can develop and sharpen the ideas of the students within a very short span of time. The book in your hands, aims to help you solve various mathematical problems by the use of graphs. Ways to draw different types of graphs are very easy and can be understood by even an average student. I feel glad to mention that the use of graphs in solving various mathematical problems has been well illustrated in this book. I would like to take this opportunity to thank M/s Arihant Prakshan for assigning this work to me. It is their inspiration that has encouraged me to bring this book in this present form. I would also like to thank Arihant DTP Unit for the nice laser typesetting. Valuable suggestions from the students and teachers are always welcome, and these will find due places in the ensuing editions. Amit M Agarwal ### **Contents** | 1. Introduction to Graphs | 1-50 | |--|---------| | 2. Curvature and Transformations | 51-137 | | 3. Asymptotes, Singular Points & Curve Tracing | 138-165 | | Hints & Solutions | 166-182 | ### INTRODUCTION OF GRAPHS In this section, we shall revise some basic curves which are given as. #### 1.1 ALGEBRAIC FUNCTIONS #### 1. Polynomial Function A function of the form: $$f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$; where $n \in \mathbb{N}$ and $a_0, a_1, a_2, ..., a_n \in \mathbb{R}$. Then, f is called a polynomial function. "f(x) is also called polynomial in x". Some of basic polynomial functions are #### (i) Identity function/Graph of f(x) = x A function f defined by f(x) = x for all $x \in R$, is called the identity function. Here, y = x clearly represents a straight line passing through the origin and inclined at an angle of 45° with x-axis shown as: The domain and range of identity functions are both equal to R. A function given by $f(x) = x^2$ is called the square function. The domain of square function is R and its range is $R^+ \cup \{0\}$ Clearly $y = x^2$, is a parabola. Since $y = x^2$ is an even Fig. 1.1 #### function, so its graph is symmetrical about y-axis, shown as: (ii) Graph of $f(x) = x^2$ (iii) Graph of $f(x) = x^3$ A function given by $f(x) = x^3$ is called the cube function. The domain and range of cube are both equal to R. Since, $y = x^3$ is an odd function, so its graph is symmetrical about opposite quadrant, i.e., "origin", shown as: #### (iv) Graph of $f(x) = x^{2n}$; $n \in N$ If $n \in N$, then function f given by $f(x) = x^{2n}$ is an even function. So, its graph is always symmetrical about y-axis. Also, $$x^2 > x^4 > x^6 > x^8 > ...$$ for all $x \in (-1, 1)$ and $x^2 < x^4 < x^6 < x^8 < ...$ for all $x \in (-\infty, -1) \cup (1, \infty)$ Graphs of $y = x^2$, $y = x^4$, $y = x^6$,..., etc. are shown as: #### (v) Graph of $f(x) = x^{2n-1}$; $n \in N$ If $n \in N$, then the function f given by $f(x) = x^{2n-1}$ is an odd function. So, its graph is symmetrical about origin or opposite quadrants. Here, comparison of values of x, x^3 , x^5 ,... $$x \in (1, \infty)$$ $x < x^3 < x^5 < \dots$ $$x \in (0,1)$$ $x > x^3 > x^5 > ...$ $$x \in (-1, 0)$$ $x < x^3 < x^5 < ...$ $$x \in (-\infty, -1) \qquad x > x^3 > x^5 > \dots$$ Graphs of f(x) = x, $f(x) = x^3$, $f(x) = x^5$,... are shown as in Fig. 1.5 Fig. 1.5 #### 2. Rational Expression A function obtained by dividing a polynomial by another polynomial is called a rational function. $$f(x) = \frac{P(x)}{Q(x)}$$ $$Domain \in R - \{x \mid Q(x) = 0\}$$ domain $\in R$ except those points for which denominator = 0. i.e., Graphs of some Simple Rational Functions (i) Graph of $$f(x) = \frac{1}{x}$$ A function defined by $f(x) = \frac{1}{x}$ is called the reciprocal function or rectangular hyperbola, with coordinate axis as asymptotes. The domain and range of $f(x) = \frac{1}{x}$ is $R - \{0\}$. Since, f(x) is odd function, so its graph is symmetrical about opposite quadrants. Also, we observe $$\lim_{x \to 0^+} f(x) = +\infty \quad \text{and} \quad \lim_{x \to 0^-} f(x) = -\infty$$ and as $$x \to \pm \infty \implies f(x) \to 0$$ Thus, $f(x) = \frac{1}{x}$ could be shown as in Fig. 1.6. #### (ii) Graph of $f(x) = \frac{1}{x^2}$ Here, $f(x) = \frac{1}{x^2}$ is an even function, so its graph is **symmetrical about y-axis**. Domain of f(x) is $R - \{0\}$ and range is $(0, \infty)$. Also, as $$y \to \infty$$ as $\lim_{x \to 0^+} f(x)$ or $\lim_{x \to 0^-} f(x)$. and $$y \to 0$$ as $\lim_{x \to \pm \infty} f(x)$. Thus, $f(x) = \frac{1}{x^2}$ could be shown as in Fig. 1.7. Fig. 1.7 (iii) Graph of $$f(x) = \frac{1}{x^{2n-1}}$$; $n \in N$ Here, $f(x) = \frac{1}{x^{2n-1}}$ is an odd function, so its graph is symmetrical in opposite quadrants. Also, $$y \to \infty$$ when $\lim_{x \to 0^+} f(x)$ and $$y \to -\infty$$ when $\lim_{x \to 0^-} f(x)$. Thus, the graph for $f(x) = \frac{1}{x^3}$; $f(x) = \frac{1}{x^5}$, ..., etc. will be similar to the graph of $f(x) = \frac{1}{x}$ which has asymptotes as coordinate axes, shown as in Fig. 1.8 (iv) Graph of $$f(x) = \frac{1}{x^{2n}}$$; $n \in N$ We observe that the function $f(x) = \frac{1}{x^{2n}}$ is an even function, so its graph is **symmetrical about y-axis**. Also, $$y \to \infty$$ as $\lim_{x \to 0^+} f(x)$ or $\lim_{x \to 0^-} f(x)$ and $$y \to 0$$ as $\lim_{x \to -\infty} f(x)$ or $\lim_{x \to +\infty} f(x)$. The values of y decrease as the values of x increase. Thus, the graph of $f(x) = \frac{1}{x^2}$; $f(x) = \frac{1}{x^4}$,..., etc. will be Fig. 1.9 similar as the graph of $f(x) = \frac{1}{x^2}$, which has **asymptotes as coordinate axis.** Shown as in Fig. 1.9. #### 3. Irrational Function The algebraic function containing terms having non-integral rational powers of x are called irrational functions. **Graphs of Some Simple Irrational Functions** #### (i) Graph of $f(x) = x^{1/2}$ Here; $f(x) = \sqrt{x}$ is the portion of the parabola $y^2 = x$, which lies above x-axis. Domain of $f(x) \in R^+ \cup \{0\}$ or $[0, \infty)$ and range of $$f(x) \in \mathbb{R}^+ \cup \{0\}$$ or $[0, \infty)$. Thus, the graph of $f(x) = x^{1/2}$ is shown as; **Note** If $f(x) = x^n$ and $g(x) = x^{1/n}$, then f(x) and g(x) are inverse of each other. :. $$f(x) = x^n$$ and $g(x) = x^{1/n}$ is the mirror image about $y = x$. #### (ii) Graph of $f(x) = x^{1/3}$ As discussed above, if $g(x) = x^3$. Then $f(x) = x^{1/3}$ is image of g(x) about y = x. where domain $f(x) \in R$. and range of $f(x) \in R$. Thus, the graph of $f(x) = x^{1/3}$ is shown in Fig. 1.11; Fig. 1.11 (iii) Graph of $f(x) = x^{1/2n}$; $n \in N$ Here, $f(x) = x^{1/2n}$ is defined for all $x \in [0, \infty)$ and the values taken by f(x) are positive. So, domain and range of f(x) are $[0, \infty)$. Here, the graph of $f(x) = x^{1/2n}$ is the mirror image of the graph of $f(x) = x^{2n}$ about the line y = x, when $x \in [0, \infty)$. Thus, $f(x) = x^{1/2}$, $f(x) = x^{1/4}$, ... are shown as; #### (iv) Graph of $f(x) = x^{1/2n-1}$, when $n \in N$ Here, $f(x) = x^{1/2n-1}$ is defined for all $x \in R$. So, domain of $f(x) \in R$, and range of $f(x) \in R$. Also the graph of $f(x) = x^{1/2n-1}$ is the mirror image of the graph of $f(x) = x^{2n-1}$ about the line y = x when $x \in R$. Thus, $f(x) = x^{1/3}$, $f(x) = x^{1/5}$, ..., are shown as; We have discussed some of the simple curves for Polynomial, Rational and Irrational functions. Graphs of the some more difficult rational functions will be discussed in chapter 3. Such as; $$y = \frac{x}{x+1}$$ $y = \frac{1}{x^2-1}$, $y = \frac{x^2+x+1}{x^2-x+1}$,... Fig. 1.13 #### 4. Piecewise Functions As discussed piecewise functions are: - (a) Absolute value function (or modulus function), - (c) Greatest integer function. - (e) Least integer function. - (b) Signum function. - (d) Fractional part function. #### (a) Absolute value function (or modulus function) $$y = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$ "It is the numerical value of x". "It is symmetric about y-axis" where domain $\in R$ and range ∈ $[0, \infty)$. #### Properties of modulus functions (i) $$|x| \le a \Rightarrow -a \le x \le a$$; $(a \ge 0)$ (ii) $$|x| \ge a \Rightarrow x \le -a$$ or $x \ge a$; $(a \ge 0)$ (iii) $$|x \pm y| \le |x| + |y|$$ (iv) $$|x \pm y| \ge ||x| - |y||$$. #### (b) Signum function; y = Sgn(x) It is defined by; $$y = Sgn(x) = \begin{cases} \frac{|x|}{x} & \text{or } \frac{x}{|x|} ; & x \neq 0 \\ 0; & x = 0. \end{cases} = \begin{cases} +1, & \text{if } x > 0 \\ -1, & \text{if } x < 0 \\ 0, & \text{if } x = 0 \end{cases}$$ Here, Domain of $f(x) \in R$. and Range of $f(x) \in \{-1, 0, 1\}$. #### (c) Greatest integer function [x] indicates the integral part of x which is nearest and smaller integer to x. It is also known as floor of x. Thus, [2.3] = 2, [0.23] = 0, [2] = 2, [-8.0725] = -9,... In general; $$n \le x < n+1 \ (n \in \text{Integer}) \Rightarrow [x] = n.$$ Here, f(x) = [x] could be expressed graphically as; | x | [x] | |----------------|-----| | 0≤x<1 | 0 · | | 1≤x<2 | 1 1 | | 2≤ <i>x</i> <3 | 2 | #### Properties of greatest integer function - (i) [x] = x holds, if x is integer. - (ii) [x + I] = [x] + I, if *I* is integer. - (iii) $[x+y] \ge [x] + [y]$. - (iv) If $[\phi(x)] \ge I$, then $\phi(x) \ge I$. - (v) If $[\phi(x)] \le I$, then $\phi(x) < I + 1$. - (vi) [-x] = -[x], if $x \in$ integer. - (vii)
[-x] = -[x] 1, if $x \notin$ integer. "It is also known as stepwise function/floor of x." Fig. 1.14 Fig. 1.16 Fig. 1.17 #### (d) Fractional part of function Here, $\{.\}$ denotes the fractional part of x. Thus, in $y = \{x\}$. $$x = [x] + \{x\} = I + f$$; where $I = [x]$ and $f = \{x\}$ $$y = \{x\} = x - [x]$$, where $0 \le \{x\} < 1$; shown as: | 2 | | |---------|-----| | w too x | {x} | | 0≤x<1 | x | | 1≤x<2 | x-1 | | 2≤x<3 | x-2 | | -1≤x<0 | x+1 | | -2≤x<-1 | x+2 | #### Properties of fractional part of x - (i) $\{x\} = x$; if $0 \le x < 1$ - (ii) $\{x\} = 0$; if $x \in$ integer. - (iii) $\{-x\} = 1 \{x\}$; if $x \in \text{integer}$. #### (e) Least integer function $$y = (x) = \lceil x \rceil$$ (x) or $\lceil x \rceil$ indicates the integral part of x which is nearest and greatest integer to x. #### It is known as ceiling of x. Thus, $$\lceil 2.3023 \rceil = 3$$, $(0.23) = 1$, $(-8.0725) = -8$, $(-0.6) = 0$ In general, $n < x \le n+1$ $(n \in integer)$) In general, i.e., $$\lceil x \rceil$$ or $(x) = n+1$ $\lceil x \rceil$ shown as; Here, $f(x) = (x) = \lceil x \rceil$, can be expressed graphically as: | x | $\lceil x \rceil = (x)$ | |-----------------|-------------------------| | -1< <i>x</i> ≤0 | 0 | | 0< <i>x</i> ≤1 | 1 | | 1< x ≤ 2 | 2 | | $-2 < x \le -1$ | -1, -1, | | $-3 < x \le -2$ | -2 | Fig. 1.20 #### Properties of least integer function - (i) $(x) = \lceil x \rceil = x$, if x is integer. - (ii) $(x+I) = \lceil x+I \rceil = (x)+I$; if $I \in \text{integer}$. - (iii) Greatest integer converts x = I + f to [x] = I while [x] converts to (I + 1). #### Note We shall discuss the curves: $y = \{\sin x\}, y = \{x^3\}, y = \{\sin^{-1}(\sin x)\}\ y = [\sin x], \text{ etc. in chapter 2. (Curvature and } y = \{\sin x\}, \{\sin$ Transformations). #### 1. Trigonometric Function #### (a) Sine function Here, $f(x) = \sin x$ can be discussed in two ways i.e., Graph diagram and Circle diagram where Domain of sine function is "R" and range is [-1, 1]. #### Graph diagram (On x-axis and y-axis) $f(x) = \sin x,$ increases strictly from -1 to 1 as x increases from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$, decreases strictly from 1 to –1 as x increases from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$ and so on. We have graph $\left(\frac{3\pi}{2}, -1\right)$ Fig. 1.21 Here, the height is same after every interval of 2π . (i.e., In above figure, AB = CD after every interval of 2π). \therefore sin x is called periodic function with period 2π . #### Circle diagram as; (On trigonometric plane or using quadrants). Let a circle of radius '1', i.e., unit circle. Then, ..., shown as. Fig. 1.22 #### (b) Cosine function Here, $f(x) = \cos x$ The domain of cosine function is R and the range is [-1, 1]. #### Graph diagram (on x-axis and y-axis) As discussed, cos x decreases strictly from 1 to -1 as x increases from 0 to π , increases strictly from -1 to 1 as xincreases from π to 2π and so on. Also, $\cos x$ is periodic with period 2π . Fig. 1.23 ## Introduction of Gra #### Circle diagram Let a circle of radius '1', i.e., a unit circle. Then, $$\cos \alpha = \frac{a}{1}$$, $\cos \beta = -\frac{b}{1}$, $\cos \gamma = \frac{c}{1}$, $\cos \delta = -\frac{d}{1}$ #### (c) Tangent function $f(x) = \tan x$ The domain of the function $y = \tan x$ is; $$R - \left\{\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \ldots \right\}$$ i.e., $$R - \left\{ (2n+1) \frac{\pi}{2} \right\}$$ and Range $\in R$ or $(-\infty, \infty)$. The function $y = \tan x$ increases strictly from $-\infty$ to $+\infty$ as x increases from $$-\frac{\pi}{2} \text{ to } \frac{\pi}{2}, \frac{\pi}{2} \text{ to } \frac{3\pi}{2}, \frac{3\pi}{2} \text{ to } \frac{5\pi}{2}, \dots \text{ and so on.}$$ The graph is shown as: Fig. 1.25 **Note** Here, the curve tends to meet at $x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2} \pm \frac{5\pi}{2}, \dots$ but never meets or tends to infinity. $$x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2} \dots \text{ are asymptotes to } y = \tan x.$$ #### (d) Cosecant function Fig. 1.26 Here, domain of $y = \csc x$ is, $$R - \{0, \pm \pi, \pm 2\pi, \pm 3\pi, ...\}$$ i.e., $$R - \{n\pi \mid n \in z\}$$ and range $\in R - (-1, 1)$. as shown in Fig. 1.26. The function $y = \csc x$ is periodic with period 2π . #### (e) Secant function Here, $$f(x) = \sec x$$ $$\operatorname{domain} \in R - \left\{ (2n+1) \frac{\pi}{2} \middle| n \in z \right\}$$ Range $\in R - (-1, 1)$ Shown as: Fig. 1.27 The function $y = \sec x$ is periodic with period 2π . **Note** (i) The curve $y = \csc x$ tends to meet at $x = 0, \pm \pi, \pm 2\pi, ...$ at infinity. $$x = 0, \pm \pi, \pm 2\pi, \dots$$ or $x = n\pi$, $n \in \text{integer are asymptote to } y = \text{cosec } x$. (ii) The curve $y = \sec x$ tends to meet at $x = \pm \frac{\pi}{2} \pm \frac{3\pi}{2}$, ... at infinity. $\therefore x = \pm \frac{\pi}{2}, \ \pm \frac{3\pi}{2}, \ \pm \frac{5\pi}{2}, \dots \text{ or } x = (2n+1)\frac{\pi}{2}, \ n \in \text{integer are asymptote to } y = \text{cosec } x.$ Here, we have used the notation of asymptotes of a curve in the context of special curves, but we would have a detailed discussion in chapter 3. #### (f) Cotangent function $$f(x) = \cot x$$ Here domain $\in R - \{n\pi | n \in z\}$ Range $\in R$. which is periodic with period π , and has $x = n\pi$, $n \in z$ as asymptotes. As shown in Fig. 1.28; Fig. 1.28 #### 2. Exponential Function Here, $f(x) = a^{x}$, a > 0, $a \ne 1$, and $x \in R$, where domain $\in R$, Range \in (0, ∞). #### Case I. a > 1 Here, $f(x) = y = a^x$ increase with the increase in x, i.e., f(x) is increasing function on R. Fig. 1.29 For example; $$y = 2^x$$, $y = 3^x$, $y = 4^x$,...have; $$2^x < 3^x < 4^x < ...$$ for $x > 1$ and $$2^x > 3^x > 4^x > \dots$$ for $0 < x < 1$. and they can be shown as; #### Case II. 0 < a < 1 Here, $f(x) = a^x$ decrease with the increase in x, i.e., f(x) is decreasing function on R. "In general, exponential function increases or decreases as (a > 1) or (0 < a < 1) respectively". #### 3. Logarithmic Function #### (Inverse of Exponential) The function $f(x) = \log_a x$; (x, a > 0) and $a \ne 1$ is a logarithmic function. Thus, the domain of logarithmic function is all real positive numbers and their range is the set R We have seen that $y = a^x$ is strictly increasing when a > 1 and strictly decreasing when 0 < a < 1. $$y = a^x \implies x = \log_a y;$$ where $x \in R$ and $y \in (0, \infty)$ writing $y = \log_a x$ in place of $x = \log_a y$, we have the graph of $y = \log_a x$. Thus, logarithmic function is also known as inverse of exponential function. Properties of logarithmic function 1. $$\log_e(ab) = \log_e a + \log_e b$$ 2. $$\log_e \left(\frac{a}{b}\right) = \log_e a - \log_e b$$ $$3. \log_e a^m = m \log_e a$$ **4.** $$\log_a a = 1$$ **5.** $$\log_{b^m} a = \frac{1}{m} \log_b a$$ $$6. \log_b a = \frac{1}{\log_a b}$$ $$7. \log_b a = \frac{\log_m a}{\log_m b}$$ 8. $$a^{\log_a m} = m$$ $$9. \ a^{\log_c b} = b^{\log_c a}$$ **10.** If $$\log_m x > \log_m y \Rightarrow \begin{cases} x > y, & \text{if } m > 1 \\ x < y, & \text{if } 0 < m < 1 \end{cases}$$ Fig. 1.32 $$\{a, b > 0\}$$ $$\{a, b > 0\}$$ $$\{a>0 \text{ and } m\in R\}$$ $$\{a>0 \text{ and } a\neq 1\}$$ $$\{a, b > 0, b \neq 1 \text{ and } m \in R\}$$ $$\{a, b > 0 \text{ and } a, b \neq 1\}$$ $$\{a, b > 0 \neq \{1\} \text{ and } m > 0\}$$ $$\{a, m > 0 \text{ and } a \neq 1\}$$ $$\{a, b, c > 0 \text{ and } c \neq 1\}$$ $$\{m, x, y, > 0 \text{ and } m \neq 1\}$$ which could be graphically shown as; If m > 1 (Craph of $\log_m a$) Fig. 1.33 Again if 0 < m < 1. (Graph of $\log_m a$) Fig. 1.34 $\Rightarrow \log_m x > \log_m y$ when x > y and m > 1. $\Rightarrow \log_m x > \log_m y$; when x < y and 0 < m < 1. **11.** $$\log_m a = b \implies a = m^b \{a, m > 0; m \neq 1; b \in R\}$$ 12. $$\log_m a > b \implies \begin{cases} a > m^b; & \text{if } m > 1 \\ a < m^b; & \text{if } 0 < m < 1 \end{cases}$$ 13. $$\log_m a < b \Rightarrow \begin{cases} a < m^b; & \text{if } m > 1 \\ a > m^b; & \text{if } 0 < m < 1 \end{cases}$$ ## ntroduction of Graphs #### 4. Geometrical Curves #### (a) Straight line ax + by + c = 0 (represents general equation of straight line). We know, $$y = -\frac{c}{b}$$ when $x = 0$ $x = -\frac{c}{b}$ when $y = 0$ 0 joining above points we get required straight line. #### (b) Circle We know, and (i) $x^2 + y^2 = a^2$ is circle with centre (0, 0) and radius r. Fig. 1.36 (iii) $x^2 + y^2 + 2gx + 2fy + c = 0$; centre (-g, -f); radius $\sqrt{g^2 + f^2 - c}$ Fig. 1.38 ii) $(x-a)^2 + (y-b)^2 = r^2$, circle with centre (a, b) and radius r. Fig. 1.37 (iv) $(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$; End points of diameter are (x_1, y_1) and (x_2, y_2) . Fig. 1.39 #### (c) Parabola (i) $$y^2 = 4 ax$$ Vertex : (0, 0) Focus : (a, 0) Axis : x-axis or y = 0 Directrix : x = -a (ii) $y^2 = -4ax$ Vertex : (0, 0)Focus : (-a, 0) Axis : x-axis or y = 0 Directrix : x = a Fig. 1.40 #### (iii) $x^2 = 4 ay$ Vextex : (0,0) **Focus** : (0, a) Axis : y-axis or x = 0 Directrix : y = -a Fig. 1.42 (v) $$(y - k)^2 = 4a (x - h)$$ Vertex : (h, k)Focus : (h + a, k): x = hAxis Directrix : x = h - a (d) Ellipse (i) $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a^2 > b^2)$$: (0,0) **Focus** : (±ae, 0) Vertex Eccentricity: e = Directrix : $x = \pm \frac{a}{e}$ Fig. 1.41 #### (iv) $x^2 = -4 ay$ Vertex : (0,0) (0, -a)Focus : y-axis or x = 0Axis Directrix : y = a Fig. 1.43 Fig. 1.44 Fig. 1.45 Fig. 1.46 Fig. 1.47 (e) Hyperbola (i) $$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$: (0, 0) : (±ae, 0) Vertices Eccentricity: $e = \sqrt{1 + \frac{b^2}{a^2}}$ Directrix : $x = \pm \frac{a}{e}$ In above figure asymptotes are $y = \pm \frac{b}{a}x$. (ii) $$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$ Fig. 1.49 Fig. 1.48 (iii) $$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$ Introduction of Graphs #### (iv) $x^2 - y^2 = a^2$ (Rectangular hyperbola) As asymptotes are perpendicular. Therefore, called rectangular hyperbola. Fig.
1.51 #### (v) $xy = c^2$ Here, the asymptotes are x-axis and y-axis. Fig. 1.52 Note In above curves we have used the name asymptotes for its complete definition see chapter 3. #### Inverse Trigonometric Curves As we know trigonometric functions are many one in their domain, hence, they are not invertible. But their inverse can be obtained by restricting the domain so as to make invertible. Every inverse trigonometric is been converted to a function by shortening the domain. #### For example: Let $$f(x) = \sin x$$ We know, $\sin x$ is not invertible for $x \in R$. In order to get the inverse we have to define domain as: $$x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$:. If $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ defined by $f(x) = \sin x$ is invertible and inverse can be represented $$y = \sin^{-1} x$$. $\left(-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}\right)$ Similarly, $y = \cos x$ becomes invertible when $$f:[0,\pi] \rightarrow [-1,1]$$ $$y = \tan x$$; becomes invertible when $$f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to (-\infty,\infty)$$ $$y = \cot x$$; becomes invertible when $$f:(0,\pi)\to(-\infty,\infty)$$ $$y = \sec x$$; becomes invertible when $$f:[0,\pi]-\left\{\frac{\pi}{2}\right\}\to R-(-1,1)$$ $$y = \csc x$$; becomes invertible when $f: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] - \{0\} \rightarrow R - (-1, 1)$ and $$y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$ As the graph of $f^{-1}(x)$ is mirror image of f(x) about y = x. #### (ii) Graph of $y = cos^{-1} x$; Here, domain $\in [-1, 1]$ Range $\in [0, \pi]$ #### (iii) Graph of $y = tan^{-1} x$; Here, domain $\in R$, Range $\in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Fig. 1.53 ntroduction 17 Fig. 1.54 Fig. 1.55 As we have discussed earlier, "graph of inverse function is image of f(x) about y = x" or "by interchanging the coordinate axes". #### (iv) Graph of $y = \cot^{-1} x$; We know that the function $f:(0,\pi)\to R$, given by $f(\theta)=\cot\theta$ is invertible. \therefore Thus, domain of $\cot^{-1} x \in R$ and Range $\in (0, \pi)$. Fig. 1.56 (v) Graph for $y = sec^{-1} x$; The function $f:[0,\pi]-\left\{\frac{\pi}{2}\right\}\to (-\infty,-1]\cup[1,\infty)$ given by $f(\theta)=\sec\theta$ is invertible. $y = \sec^{-1} x, \text{ has domain } \in R - (-1, 1) \text{ and range } \in [0, \pi] - \left\{ \frac{\pi}{2} \right\} : \text{ shown as}$ $y = \sec^{-1} x$ Fig. 1.57 (vi) Graph for $y = \csc^{-1} x$; As we know, $f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\} \to R-(-1,1)$ is invertible given by $f(\theta)=\cos\theta$. $y = \csc^{-1} x; \operatorname{domain} \in R - (-1, 1)$ Range $\in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}.$ Fig. 1.58 Note If no branch of an inverse trigonometric function is mentioned, then it means the principal value branch of that function. In case no branch of an inverse trigonometric function is mentioned, it will mean the principal value branch of that function. (i.e.,) | | Function | Domain | Range | Principal value branch | |----|--------------------------------|-----------------|---|--| | | $\sin^{-1} x$ | [-1, 1] | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ | $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, where $y = \sin^{-1} x$ | | 2. | $\cos^{-1} x$ | [-1, -1]
R | [0, π] | $0 \le y \le \pi$, where $y = \cos^{-1} x$ | | 3. | $ \cos^{-1} x \\ \tan^{-1} x $ | | $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ | $-\frac{\pi}{2} < y < \frac{\pi}{2}$, where $y = \tan^{-1} x$ | | | | (-∞, -1]∪[1,∞) | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$ | $-\frac{\pi}{2} \le y \le \frac{\pi}{2}; y \ne 0, \text{ where } y = \csc^{-1} x$ | | 5. | sec ⁻¹ x | (-∞, -1]∪[1, ∞) | $[0,\pi]-\left\{\frac{\pi}{2}\right\}$ | $0 \le y \le \pi$; $y \ne \left\{\frac{\pi}{2}\right\}$, where $y = \sec^{-1} x$ | | 6. | cot-1 x | R | (0, π) | $0 < y < \pi$; where $y = \cot^{-1} x$. | #### 1.3 TRIGONOMETRIC INEQUALITIES To solve trigonometric inequalities including trigonometric functions, it is good to practice periodicity and monotonicity of functions. Thus, first solve the inequality for the periodicity and then get the set of all solutions by adding numbers of the form $2n\pi$; $n \in \mathbb{Z}$, to each of the solutions obtained on that interval. **EXAMPLE** 1 Solve the inequality; $\sin x > -\frac{1}{2}$. **SOLUTION** As the function $\sin x$ has least positive period 2π . {That is why it is sufficient to solve inequality of the form $\sin x > a$, $\sin x \ge a$, $\sin x \le a$, $\sin x \le a$ first on the interval of length 2π , and then get the solution set by adding numbers of the form $2\pi n$, $n \in z$, to each of the solutions obtained on that interval}. Thus, let us solve this inequality on the interval $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$, where graph of $y = \sin x$ and $y = -\frac{1}{2}$ are taken two curves on x-y plane. $$y = \sin x$$ and $y = -\frac{1}{2}$ 20 From above figure, $\sin x > -\frac{1}{2}$ when $-\frac{\pi}{6} < x < \frac{7\pi}{6}$. Thus, on generalising above solution; $$2n\pi - \frac{\pi}{6} < x < 2n\pi + \frac{7\pi}{6}$$; $n \in z$. which implies that those and only those values of x each of which satisfies these two inequalities for a certain $n \in \mathbb{Z}$ can serve as solutions to the original inequality. **EXAMPLE** Solve the inequality: $\cos x \le -\frac{1}{2}$. SOLUTION As discussed in previous example, $\cos x$ is periodic with period 2π . So, to check the solution in $[0, 2\pi]$. It is clear from figure, $\cos x \le -\frac{1}{2}$ when; $$\frac{2\pi}{3} \le x \le \frac{4\pi}{3}$$ On generalising above solution; $$2n\pi + \frac{2\pi}{3} \le x \le 2n\pi + \frac{4\pi}{3}; \ n \in \mathbb{Z}$$ $$\therefore$$ Solution of $\cos x \le -\frac{1}{2}$ $$x \in \left[2n\pi + \frac{2\pi}{3}, 2n\pi + \frac{4\pi}{3}\right]; n \in z.$$ **EXAMPLE** 3 Solve the inequality: $\tan x < 2$. **SOLUTION** We know tan x is periodic with period π . So, to check the solution on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ It is clear from figure, $\tan x < 2$ when; $-\frac{\pi}{2} < x < \tan^{-1} 2$ or $-\frac{\pi}{2} < x < \arctan 2$ ⇒ General solution $$2n\pi - \frac{\pi}{2} < x < 2n\pi + \tan^{-1} 2$$ $n \in \left(2n\pi - \frac{\pi}{2}, 2n\pi + \text{arc tan } 2\right)$ Fig. 1.61 **EXAMPLE** 4 Solve the inequality: $\sin\left(\frac{3x}{2} + \frac{\pi}{12}\right) < \frac{1}{\sqrt{2}}$. **SOLUTION** Here, $\sin\left(\frac{3x}{2} + \frac{\pi}{12}\right) < \frac{1}{\sqrt{2}}$; put $\frac{3x}{2} + \frac{\pi}{12} = t$ $\therefore \sin t < \frac{1}{\sqrt{2}}$, now $\sin t$ is periodic with period $$2\pi$$, thus to check on $\left[\frac{\pi}{2}, \frac{5\pi}{2}\right]$ or $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$ From figure, $$\sin t < \frac{1}{\sqrt{2}}$$, when $\frac{3\pi}{4} < t < \frac{9\pi}{4}$. $$\therefore \text{ general solution} \\ 2n\pi + \frac{3\pi}{4} < t < 2n\pi + \frac{9\pi}{4} \text{ ; } n \in \mathbb{Z}$$ Substituting $t = \frac{3x}{2} + \frac{\pi}{12}$ Fig. 1.62 $$2n\pi + \frac{3\pi}{4} < \frac{3x}{2} + \frac{\pi}{12} < 2n\pi + \frac{9\pi}{4}$$ $$\frac{4}{9}\pi + \frac{4}{3}\pi n < x < \frac{13}{9}\pi + \frac{4}{3}n\pi ; n \in z.$$ **EXAMPLE** (5) Solve the inequality: $\cos 2x - \sin 2x \ge 0$ **SOLUTION** Here, $\cos 2x - \sin 2x$ can be reduced to, $$\sqrt{2} \left\{ \frac{1}{\sqrt{2}} \cos 2x - \frac{1}{\sqrt{2}} \sin 2x \right\} \qquad \Rightarrow \qquad \sqrt{2} \left\{ \cos \frac{\pi}{4} \cos 2x - \sin \frac{\pi}{4} \sin 2x \right\}$$ $$\sqrt{2}\cos\left(\frac{\pi}{4}+2x\right)$$ $$\cos 2x - \sin 2x \ge 0$$ or $\cos \left(\frac{\pi}{4} + 2x\right) \ge 0$; put $2x + \frac{\pi}{4} = t$ ∴ $\cos(t) \ge 0$, solving graphically, $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$ or $$2n\pi - \frac{\pi}{2} < t < 2n\pi + \frac{\pi}{2}$$ where $$t=2n+\frac{\pi}{4}$$ $\therefore 2n\pi - \frac{\pi}{2} \le 2n + \frac{\pi}{4} \le 2n\pi + \frac{\pi}{2}$ $$n\pi - \frac{3\pi}{8} \le n \le n\pi + \frac{\pi}{8}; \quad n \in \mathbb{Z}.$$ Fig. 1.63 **EXAMPLE** 6 If $A+B+C=\pi$, then prove that; $\cos A + \cos B + \cos C < \frac{3}{2}$; where A, B, C are distinct. **SOLUTION** Here, we have the three trigonometric functions as $\cos A$, $\cos B$ and $\cos C$. which can be plotted as; let $f(x) = \cos x$; Fig. 1.64 Now, let us suppose any three points x = A, x = B, x = C on $f(x) = \cos x$. So that $A + B + C = \pi$ or on the interval of length π . where G, be centroid of $$\Delta$$ given by $\left(\frac{A+B+C}{3}, \frac{\cos A + \cos B + \cos C}{3}\right)$ Thus, from figure points Q, G, P are collinear, where; ordinate of GQ < ordinate of PQ. $$\frac{\cos A + \cos B + \cos C}{3} < \cos \left(\frac{A + B + C}{3}\right)$$ $$\Rightarrow \cos A + \cos B + \cos C < 3\cos\left(\frac{\pi}{3}\right)$$ $$\Rightarrow$$ $\cos A + \cos B + \cos C < \frac{3}{2}$ Fig. 1.65 Here, a particular case arises when A = B = C (i.e., when A, B, C are non-distinct) $$\cos A = \cos B = \cos C$$ and $A + B + C = \pi$ $$\Rightarrow A + A + A = \pi \text{ or } A = \pi/3.$$ $$\therefore \qquad \cos A = \cos B = \cos C = \frac{1}{2}$$ $$\cos A + \cos B + \cos C = \frac{3}{2}$$ (only when $A = B = C$) **EXAMPLE** Solve the inequality: $\sin x \cos x + \frac{1}{2} \tan x \ge 1$. **SOLUTION** Here; left hand side is defined for all x, except $x = n\pi + \frac{\pi}{2}$, where $n \in \mathbb{Z}$. $$2 \sin x \cos x + \tan x \ge 2$$ $$\frac{2y}{1+y^2}+y\geq 2$$ $$\Rightarrow \frac{2y + y(1 + y^2) - 2(1 + y^2)}{(1 + y^2)} \ge 0$$ $$\{\because 1+y^2 \ge 0\}$$ $$2y + y(1 + y^2) - 2(1 + y^2) \ge 0$$ $$\Rightarrow \qquad \qquad y^3 - 2y^2 + 3y - 2 \ge 0$$ $$\Rightarrow y^{2}(y-1)-y(y-1)+2(y-1) \ge 0$$ or $$(y-1)(y^2-y+2) \ge 0$$ $$\{:: y^2 - y + 2 = \left(y - \frac{1}{2}\right)^2 + \frac{7}{4} > 0, \text{ for all } y\}$$ \therefore tan $x \ge 1$, shown as: from given figure;
$$\frac{\pi}{4} \le x < \frac{\pi}{2}$$ \Rightarrow $$n\pi + \frac{\pi}{4} \le x < n\pi + \frac{\pi}{2} \quad ; \quad n \in \mathbb{Z}$$ $$x \in \left[n\pi + \frac{\pi}{4}, n\pi + \frac{\pi}{2}\right]; n \in z$$ Fig. 1.66 **EXAMPLE** (B) If $A + B + C = \pi$, then prove that $$\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} > 1.$$ **SOLUTION** Here, $\tan^2 \frac{A}{2}$, $\tan^2 \frac{B}{2}$ and $\tan^2 \frac{C}{2}$ are three same function. So consider $$f(x) = \tan^2 \frac{x}{2}$$, whose period is 2π . $$\therefore$$ plotting $\tan^2 \frac{x}{2}$ for $x \in (-\pi, \pi)$. In given curve let us consider any three points A, B, C such that $$A+B+C=\pi.$$ Now, centroid of ΔRST ; $$G\left(\frac{A+B+C}{3}, \frac{\tan^{2}\frac{A}{2} + \tan^{2}\frac{B}{2} + \tan^{2}\frac{C}{2}}{3}\right) \qquad x = -\pi$$ $M\left(\frac{A+B+C}{3}, \tan^2\left(\frac{A+B+C}{2(3)}\right)\right)$ also, $$\Rightarrow \frac{\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2}}{3} > \tan^2 \left(\frac{A+B+C}{6}\right) \Rightarrow \tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} > 1.$$ Fig. 1.67 where; GN > MN. $$\Rightarrow \tan^2\frac{A}{2} + \tan^2\frac{B}{2} + \tan^2\frac{C}{2} > 1.$$ #### SOLVING EQUATIONS GRAPHICALLY Here, we sketch both left hand and right hand side of equality and the numbers of intersections are required solutions. **EXAMPLE** 9 Find the number of solutions of; $\sin x = \frac{x}{10}$. SOLUTION Here, let $f(x) = \sin x$ and $g(x) = \frac{x}{10}$ also we know; $$-1 \le \sin x \le 1$$ $$-1 \le \frac{x}{10} \le 1 \qquad \Rightarrow \qquad -10 \le x \le 10$$ Thus, to sketch both curves when $x \in [-10, 10]$ From above figure $f(x) = \sin x$ and $g(x) = \frac{x}{10}$ intersect at 7 points. So, **numbers of solutions** are 7. **EXAMPLE** 10 Find the least positive value of x, satisfying $\tan x = x + 1$ lies in the interval. Let; $f(x) = \tan x$ and g(x) = x + 1; which could be shown as: Fig. 1.69 From the above figure $\tan x = x + 1$ has infinitly many solutions but the least positive value of $x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. **EXAMPLE** II Find the number of solutions of the equation, $\sin x = x^2 + x + 1.$ **SOLUTION** Let; $f(x) = \sin x$ and $g(x) = x^2 + x + 1 = \left(x + \frac{1}{2}\right)^2 + \frac{3}{4}$ which could be shown as; Fig. 1.70 which do not intersect at any point, therefore no solution. **EXAMPLE** Find the number of solutions of: $e^x = x^4$. **SOLUTION** Let; $f(x) = e^x$ and $g(x) = x^4$, which could be shown as; Fig. 1.71 From the figure, it is clear they intersect at two points, therefore two solutions. **EXAMPLE** 13 Find the number of solutions of; $\log_{10} x = x$. **SOLUTION** Let; $f(x) = \log_{10} x$ and g(x) = x; which could be shown as; Fig. 1.72 From above figure, it is clear they intersect at one points, therefore 1 solution. #### SOME MORE SOLVED EXAMPLES **EXAMPLE** Sketch the graph for $y = \sin^{-1} (\sin x)$. **SOLUTION** As, $y = \sin^{-1}(\sin x)$ is periodic with period 2π . \therefore to draw this graph we should draw the graph for one interval of length 2π and repeat for entire values of x. As we know; $$\sin^{-1}(\sin x) = \begin{cases} x; & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ (\pi - x); & -\frac{\pi}{2} \le \pi - x < \frac{\pi}{2} \end{cases} \quad \left(i.e., \frac{\pi}{2} \le x \le \frac{3\pi}{2}\right)$$ $$\sin^{-1}(\sin x) = \begin{cases} x, & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \frac{3\pi}{2}, \end{cases}$$ $$\sin^{-1}(\sin x) = \begin{cases} x, & -\frac{\pi}{2} \le x \le \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x \le \frac{3\pi}{2} \end{cases}$$ which is defined for the interval of length 2π , plotted as Fig. 1.73 Thus, the graph for $y = \sin^{-1}(\sin x)$, is a straight line up and a straight line down with slopes 1 and -1 respectively lying between $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ **Note:** Students are adviced to learn the definition of $\sin^{-1}(\sin x)$ as, $$y = \sin^{-1}(\sin x) = \begin{cases} x + 2\pi & ; & -\frac{5\pi}{2} \le x \le -\frac{3\pi}{2} \\ -\pi - x & ; & -\frac{3\pi}{2} \le x \le -\frac{\pi}{2} \end{cases}$$ $$x & ; & -\frac{\pi}{2} \le x \le \frac{\pi}{2}$$ $$\pi - x & ; & \frac{\pi}{2} \le x \le \frac{3\pi}{2}$$ $$x - 2\pi & ; & \frac{3\pi}{2} \le x \le \frac{5\pi}{2} \dots \text{ and so on } \end{cases}$$ **EXAMPLE** 2 Sketch the graph for $y = \cos^{-1}(\cos x)$. **SOLUTION** As, $y = \cos^{-1}(\cos x)$ is periodic with period 2π . \therefore to draw this graph we should draw the graph for one interval of length 2π and repeat for entire values of x of length 2π . As we know; $$\cos^{-1}(\cos x) = \begin{cases} x; & 0 \le x \le \pi \\ 2\pi - x; & 0 \le 2\pi - x \le \pi, \end{cases}$$ $$\cos^{-1}(\cos x) = \begin{cases} x; & 0 \le x \le \pi \\ 2\pi - x; & \pi \le x \le 2\pi. \end{cases}$$ or $$\cos^{-1}(\cos x) = \begin{cases} x; & 0 \le x \le \pi \\ 2\pi - x; & \pi \le x \le 2\pi \end{cases}$$ Thus, it has been defined for $0 < x < 2\pi$ that has length 2π . So, its graph could be plotted as; Fig. 1.74 Thus, the curve $y = \cos^{-1}(\cos x)$. #### **EXAMPLE** Sketch the graph for $y = \tan^{-1}(\tan x)$. **SOLUTION** As $y = \tan^{-1}(\tan x)$ is periodic with period π . \therefore to draw this graph we should draw the graph for one interval of length π and repeat for entire values of x. As we know; $$\tan^{-1}(\tan x) = \left\{x; -\frac{\pi}{2} < x < \frac{\pi}{2}\right\}$$ Thus, it has been defined for $-\frac{\pi}{2} < x < \frac{\pi}{2}$ that has length π . So, its graph could be plotted as; Fig. 1.75 Thus, the curve for $y = \tan^{-1}(\tan x)$, where y is not defined for $x \in (2n+1)\frac{\pi}{2}$. #### **EXAMPLE** 4 Sketch the graph for $y = \csc^{-1}(\csc x)$. **SOLUTION** As $y = \csc^{-1}(\csc x)$ is periodic with period 2π . \therefore to draw this graph we should draw the graph for one interval of length 2π and repeat for entire values of x. As we know: $$cosec^{-1}(cosec x) = \begin{cases} x; & -\frac{\pi}{2} \le x < 0 & \text{or } 0 < x \le \frac{\pi}{2} \\ \pi - x; & -\frac{\pi}{2} \le \pi - x < 0 & \text{or } 0 < \pi - x \le \frac{\pi}{2} \end{cases}$$ $$cosec^{-1}(cosec x) = \begin{cases} x; & x \in \left[-\frac{\pi}{2}, 0\right] \cup \left(0, \frac{\pi}{2}\right] \\ \pi - x; & x \in \left[\frac{\pi}{2}, \pi\right] \cup \left(\pi, \frac{3\pi}{2}\right] \end{cases}$$ Thus, it has been defined for $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right] - \{0, \pi\}$ that has length 2π . So, its graph could be plotted **EXAMPLE** 5 Sketch the graph for $y = \sec^{-1}(\sec x)$. **SOLUTION** As $y = \sec^{-1}(\sec x)$ is periodic with period 2π . \therefore to draw this graph we should draw the graph for one interval of length 2π and repeat for entire values of x. As we know; $$\sec^{-1}(\sec x) = \begin{cases} x; & x \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right] \\ 2\pi - x; & 2\pi - x \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right] \end{cases}$$ or $$\sec^{-1}(\sec x) = \begin{cases} x; & 0 \le x < \frac{\pi}{2} & \text{or } \frac{\pi}{2} < x \le \pi \\ 2\pi - x; & \pi \le x < \frac{3\pi}{2} & \text{or } \frac{3\pi}{2} < x \le 2\pi \end{cases}$$ Thus, it has been defined for $[0, 2\pi] - \left\{\frac{\pi}{2}, \frac{3\pi}{2}\right\}$ that has length 2π . So, its graph could be plotted as; Fig. 1.77 Thus, the curve for $y = \sec^{-1} (\sec x)$. **EXAMPLE** 6 Sketch the graph for $y = \cot^{-1}(\cot x)$. **SOLUTION** As, $y = \cot^{-1}(\cot x)$ is periodic with period π . :. to draw this graph we should draw the graph for one interval of length π and repeat for entire values of x. As we know $$\cot^{-1}(\cot x) = \{x ; \ 0 < x < \pi\}$$ which is defined for length π , i.e., $x \in (0, \pi)$ and $x \notin \{n\pi, n \in z\}$. So, its graph could be plotted as; Fig. 1.78 Thus, the curve for $$y = \cot^{-1}(\cot x).$$ #### **EXAMPLE** Sketch the graph for: (i) $\sin(\sin^{-1}x)$ (ii) $\cos(\cos^{-1}x)$ (iii) $\tan(\tan^{-1}x)$ (iv) $\csc(\csc^{-1}x)$ (v) $\sec(\sec^{-1}x)$ (vi) $\cot(\cot^{-1}x)$ SOLUTION As we know, all the above mentioned six curves are non-periodic, but have restricted domain and range. So, we shall first define each curve for its domain and range and then sketch these curves. #### (i) Sketch for $y = \sin(\sin^{-1} x)$ We know; domain, $x \in [-1, 1]$ (i.e., $-1 \le x \le 1$) and range $y = x \implies y \in [-1, 1]$ Hence, we should sketch $y = \sin(\sin^{-1} x)$ only when $x \in [-1, 1]$ and y = x. So, its graph could be plotted as shown in figure. Fig. 1.79 Thus, the graph for $y = \sin(\sin^{-1} x)$. #### (ii) Sketch for the curve $y = \cos(\cos^{-1} x)$. We know, domain, $$x \in [-1, 1]$$ $(i.e., -1 \le x \le 1)$ and range $$y = x \implies y \in [-1, 1]$$ Hence, we should sketch $y = \cos(\cos^{-1} x) = x$ only when $x \in [-1, 1]$. So, its graph could be plotted as shown in Fig. 1.80. Fig. 1.80 Thus, the graph for $y = \cos(\cos^{-1} x)$. #### (iii) Sketch for the curve $y = \tan(\tan^{-1} x)$ We know, domain, $$x \in R$$ (i.e., $-\infty < x < \infty$) and Range $$y = x \implies y \in R$$. Hence, we should sketch $$y = \tan(\tan^{-1} x) = x, \forall x \in R.$$ So, its graph could be plotted as shown; Thus, the graph for $y = \tan(\tan^{-1} x)$. Fig. 1.81 # Introduction of Graphs #### (iv) Sketch for $y = \csc(\csc^{-1}x)$ We know; domain $\in R - (-1, 1)$ (i.e., $$-\infty < x \le -1 \text{ or } 1 \le x < \infty$$) and range $y = x \implies y \in R - (-1, 1)$. Hence, we should sketch $y = \csc(\csc^{-1}x) = x$ only when $x \in (-\infty, -1] \cup [1, \infty)$. So, its graph could be plotted as shown in Fig. 1.82; Thus, the graph for $$y = \csc(\csc^{-1}x)$$. #### (v) Sketch for $y = \sec(\sec^{-1} x)$ We know, domain $\in R - (-1, 1)$ (i.e., $$-\infty < x \le -1$$ or $1 \le x < \infty$) and range $y = x \implies y \in R - (-1, 1)$
. Hence, we should sketch $$y = \sec(\sec^{-1}x) = x,$$ only when $x \in (-\infty, -1] \cup [1, \infty)$ So, its graph could be plotted as shown in Fig. 1.83. Thus, the graph for $$y = \sec(\sec^{-1}x) = x$$ #### (vi) Sketch for $y = \cot(\cot^{-1}x)$ We know; Domain $\in R$ (i. e., $-\infty < x < \infty$) and Range $$y = x \implies y = R$$. Hence, we should sketch $$y = \cot(\cot^{-1} x) = x, \forall x \in R.$$ Shown as in Fig. 1.84. Thus, the graph for $y = \cot(\cot^{-1} x)$. Fig. 1.83 #### Note From previous discussions, we learn that if: - (i) The function is periodic then find period and trace the curve. - (ii) If non-periodic, then define for their domain and find range to trace the curve. Now, before going ahead you must revise previous curves of inverse trigonometry as; $y = \sin^{-1} x$, $y = \cos^{-1} x$, $y = \cot^{-1} x$, $y = \cot^{-1} x$, $y = \sec^{-1} x$ with their domain and range. EXAMPLE (8) Sketch the graph for: (i) $$\sin^{-1}\left(\frac{2x}{1+x^2}\right)$$ (ii) $$\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$ (iii) $$\tan^{-1}\left(\frac{2x}{1-x^2}\right)$$ 8 Sketch the graph for: (i) $$\sin^{-1}\left(\frac{2x}{1+x^2}\right)$$ (ii) $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ (iii) $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$ (iv) $\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$ (v) $\sin^{-1}(3x-4x^3)$ (vi) $\cos^{-1}(4x^3-3x)$ (v) $$\sin^{-1} (3x - 4x^3)$$ (vi) $$\cos^{-1}(4x^3 - 3x)$$ SOLUTION As we know, all the above mentioned six curves are non-periodic, but have Restricted domain and Range. So, we shall first define each curve for its domain and range and then sketch these curves. (i) Sketch for $$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$. Here, for domain $$\left|\frac{2x}{1+x^2}\right| \le 1$$ $$2|x| \le 1 + x^2$$ $$\{: 1+x^2 > 0 \text{ for all } x\}$$ $$|x|^{2} - 2|x| + 1 \ge 0$$ $$(|x|^{2} - 1)^{2} \ge 0$$ $$\{\because x^2 = |x|^2\}$$ $$\Rightarrow$$ $$x \in R$$. For range: $$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$ $$y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$ $$\begin{cases} as; \ y = \sin^{-1}\theta \implies y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \end{cases}$$ **Defining the curve:** Let, $x = \tan \theta$ $$y = \sin^{-1}(\sin 2\theta) = \begin{cases} \pi - 2\theta & ; & 2\theta > \frac{\pi}{2} \\ 2\theta & ; & -\frac{\pi}{2} \le 2\theta \le \frac{\pi}{2} \\ -\pi - 2\theta & ; & 2\theta < -\frac{\pi}{2} \end{cases}$$ {See Ex. 1} curve: Let, $$x = \tan \theta$$ $$y = \sin^{-1}(\sin 2\theta) = \begin{cases} \pi - 2\theta & ; \ 2\theta > \frac{\pi}{2} \\ 2\theta & ; \ -\frac{\pi}{2} \le 2\theta \le \frac{\pi}{2} \end{cases}$$ {See Ex. 1} $$y = \begin{cases} \pi - 2\tan^{-1} x & ; \ \tan^{-1} x > \frac{\pi}{4} \\ 2\tan^{-1} x & ; \ -\frac{\pi}{4} \le \tan^{-1} x \le \frac{\pi}{4} \end{cases}$$ {: $\tan \theta = x \Rightarrow \theta = \tan^{-1} x$ } $$y = \begin{cases} \pi - 2\tan^{-1} x & ; \ \tan^{-1} x < -\frac{\pi}{4} \end{cases}$$ {: $\tan \theta = x \Rightarrow \theta = \tan^{-1} x$ } $$y = \begin{cases} \pi - 2\tan^{-1} x & ; \ \tan^{-1} x < -\frac{\pi}{4} \end{cases}$$...(i) $$y = \begin{cases} \pi - 2\tan^{-1} x & ; & x > 1 \\ 2\tan^{-1} x & ; & -1 \le x \le 1 \\ -\pi - 2\tan^{-1} x & ; & x < -1 \end{cases} \dots (i)$$ Thus, $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$ is defined for $x \in R$, where $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, so the graph for Eq. (i) could be shown as in Fig. 1.85. Fig. 1.85 Thus, the graph for $y = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$ Note As in later section (i.e., chapter 2) we shall discuss that functions having sharp edges and gaps are not differentiable at that point. So, in previous curve $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$, we know it has sharp edge at x = -1 and x = 1. So, not differentiable. (ii) Sketch for $$y = \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$$ Here, for domain $$\left|\frac{1-x^2}{1+x^2}\right| \le 1$$ $$|1-x^2| \le 1+x^2$$ which is true for all x; as $1+x^2 > 1-x^2$ $$x \in R$$ For range: $$y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) \Rightarrow y \in (0, \pi)$$ **Define the curve**: Let, $x = \tan \theta$ Define the curve: Let, $$x = \tan \theta$$ $$\therefore \qquad y = \cos^{-1} \left(\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \right) = \cos^{-1} (\cos 2\theta)$$ $$= \begin{cases} 2\theta; & 2\theta \ge 0 \\ -2\theta; & 2\theta \le 0 \end{cases}$$ $$= \begin{cases} 2\theta; & 2\theta \ge 0 \\ -2\theta; & 2\theta < 0 \end{cases}.$$ {See Example 2} 33 $$y = \begin{cases} 2\tan^{-1} x; & \tan^{-1} x \ge 0 \\ -2\tan^{-1} x; & \tan^{-1} x < 0 \end{cases} \quad \{ \because \tan \theta = x \implies \theta = \tan^{-1} x \}$$ $$\{\because \tan\theta = x \Rightarrow \theta = \tan^{-1} x\}$$ So, the graph of $$y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \begin{cases} 2\tan^{-1} x; & x \ge 0 \\ -2\tan^{-1} x; & x < 0, \end{cases}$$ is shown as: Fig. 1.86 Thus, the graph for $$y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \begin{cases} 2\tan^{-1} x, & x \ge 0 \\ -2\tan^{-1} x, & x < 0 \end{cases}$$. From above figure it is clear $y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ is not differentiable at x = 0. (iii) Sketch for $$y = \tan^{-1} \left(\frac{2x}{1-x^2} \right)$$ Here, for domain $$\frac{2x}{1-x^2} \in R$$ except; $1-x^2=0$ i.e.. $$x \neq \pm 1$$ or $x \in R - \{1, -1\}$ For range $$y = \tan^{-1} \left(\frac{2x}{1 - x^2} \right)$$ ⇒ $$y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$ as $y = \tan^{-1}\theta \Rightarrow y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ #### Defining the curve Le $$x = \tan \theta$$ $$\Rightarrow y = \tan^{-1} \left(\frac{2 \tan \theta}{1 - \tan^2 \theta} \right) = \tan^{-1} (\tan 2\theta) = \begin{cases} \pi + 2\theta; & 2\theta < -\frac{\pi}{2} \\ 2\theta; & -\frac{\pi}{2} < 2\theta < \frac{\pi}{2} \\ -\pi + 2\theta; & 2\theta > \frac{\pi}{2} \end{cases}$$ {See Example 3} $$= \begin{cases} \pi + 2\tan^{-1} x; & \tan^{-1} x < -\frac{\pi}{4} \\ 2\tan^{-1} x; & -\frac{\pi}{4} < \tan^{-1} x < \frac{\pi}{4} \\ -\pi + 2\tan^{-1} x; & \tan^{-1} x > \frac{\pi}{4} \end{cases}$$ {as $\tan \theta = x \Rightarrow \theta = \tan^{-1} x$ } So, the graph of; $$y = \tan^{-1} \left(\frac{2x}{1 - x^2} \right) = \begin{cases} \pi + 2 \tan^{-1} x; & x < -1 \\ 2 \tan^{-1} x; & -1 < x < 1 \text{ is shown as;} \\ -\pi + 2 \tan^{-1} x; & x > 1 \end{cases}$$ Fig. 1.87 Thus, the graph for $$y = \tan^{-1} \left(\frac{2x}{1 - x^2} \right) = \begin{cases} \pi + 2 \tan^{-1} x, & x < -1 \\ 2 \tan^{-1} x; & -1 < x < 1 \\ -\pi + 2 \tan^{-1} x, & x > 1 \end{cases}$$ which is neither continuous nor differentiable at $x = \{-1, 1\}$. (v) Sketch for the curve $y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$. Here, for domain $$y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$ $$\Rightarrow x \in R \text{ except} \qquad 1 - 3x^2 = 0 \qquad \Rightarrow \qquad x \neq \pm \frac{1}{\sqrt{3}}$$ $$x \in R - \left\{ \pm \frac{1}{\sqrt{3}} \right\}$$ For range $$y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right)$$ $$\mathbf{y} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \qquad \left\{ \text{as } \mathbf{y} = \tan^{-1}\theta \implies \mathbf{y} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \right\}$$ **Defining the curve**: Let; $x = \tan \theta$ $$x = \tan \theta$$ $$\Rightarrow y = \tan^{-1}(\tan 3\theta) = \begin{cases} \pi + 3\theta; & 3\theta < -\frac{\pi}{2} \\ 3\theta; & -\frac{\pi}{2} < 3\theta < \frac{\pi}{2} \end{cases} = \begin{cases} \pi + 3\tan^{-1}x; & \tan^{-1}x < -\frac{\pi}{6} \\ 3\tan^{-1}x; & -\frac{\pi}{6} < \tan^{-1}x < \frac{\pi}{6} \end{cases}$$ $$-\pi + 3\tan^{-1}x; & x < -\frac{1}{\sqrt{3}}$$ $$= \begin{cases} \pi + 3\tan^{-1}x; & x < -\frac{1}{\sqrt{3}} \\ 3\tan^{-1}x; & -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} \\ -\pi + 3\tan^{-1}x; & x > \frac{1}{\sqrt{3}} \end{cases}$$ So, the graph of; $$y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right) = \begin{cases} \pi + 3 \tan^{-1} x; & x < -\frac{1}{\sqrt{3}} \\ 3 \tan^{-1} x; & -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} \\ -\pi + 3 \tan^{-1} x; & x > \frac{1}{\sqrt{3}} \end{cases}$$ Thus, the curve for $$y = \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right) = \begin{cases} \pi + 3 \tan^{-1} x, & x < -\frac{1}{\sqrt{3}} \\ 3 \tan^{-1} x, & -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}} \\ -\pi + 3 \tan^{-1} x; & x > \frac{1}{\sqrt{3}} \end{cases}$$ which is neither continuous nor differentiable for $x = \left\{\pm \frac{1}{\sqrt{3}}\right\}$. (v) Sketch the curve $y = \sin^{-1}(3x - 4x^3)$ Defining the curve: Let $x = \sin \theta$, $$\Rightarrow y = \sin^{-1}(\sin 3\theta) = \begin{cases} \pi - 3\theta; & \frac{\pi}{2} \le 3\theta \le \frac{3\pi}{2} \\ 3\theta; & -\frac{\pi}{2} \le 3\theta \le \frac{\pi}{2} \\ -\pi - 3\theta; & -\frac{3\pi}{2} \le 3\theta \le -\frac{\pi}{2} \end{cases} \begin{cases} \pi - 3\sin^{-1}x; & \frac{\pi}{6} \le \sin^{-1}x \le \frac{\pi}{2} \\ 3\sin^{-1}x; & -\frac{\pi}{6} \le \sin^{-1}x \le \frac{\pi}{6} \\ -\pi - 3\sin^{-1}x; & -\frac{\pi}{2} \le \sin^{-1}x \le -\frac{\pi}{6} \end{cases}$$ $$y = \sin^{-1}(3x - 4x^{3}) = \begin{cases} \pi - 3\sin^{-1}x, & \frac{1}{2} \le x \le 1 \\ 3\sin^{-1}x, & -\frac{1}{2} \le x \le \frac{1}{2} \\ -\pi - 3\sin^{-1}x, & -1 \le x \le -\frac{1}{2} \end{cases}$$ For domain $y = \sin^{-1}(3x - 4x^{3}) \implies x \in [-1, 1]$ **For domain** $y = \sin^{-1}(3x - 4x^3) \implies x \in [-1, 1]$ For range $y = \sin^{-1}(3x - 4x^3)$ \Rightarrow $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ So, the graph of; $$y = \sin^{-1}(3x - 4x^3) = \begin{cases} \pi - 3\sin^{-1}x; & \frac{1}{2} \le x \le 1\\ 3\sin^{-1}x; & -\frac{1}{2} \le x \le \frac{1}{2}\\ -\pi - 3\sin^{-1}x; & -1 \le x \le -\frac{1}{2} \end{cases}$$ is shown as: Fig. 1.89 $y = \sin^{-1}(3x - 4x^3)$ Thus, the curve for which is not differentiable at $x = \left\{\pm \frac{1}{2}\right\}$. (vi) Sketch the curve $y = \cos^{-1} (4x^3 - 3x)$ Here, **domain** $\in [-1, 1]$ range $\in [0, \pi]$ Now, defining the curve $x = \cos \theta$ Let
$$\Rightarrow y = \cos^{-1}(\cos 3\theta) = \begin{cases} 2\pi - 3\theta; & \pi \le 3\theta \le 2\pi \\ 3\theta; & 0 \le 3\theta \le \pi \\ -2\pi + 3\theta; & -\pi \le 3\theta \le 0 \end{cases} = \begin{cases} 2\pi - 3\cos^{-1}x; & \frac{\pi}{3} \le \cos^{-1}x \le \frac{2\pi}{3} \\ 3\cos^{-1}x; & 0 \le \cos^{-1}x \le \frac{\pi}{3} \\ -2\pi + 3\cos^{-1}x; & -\frac{\pi}{3} \le \cos^{-1}x \le 0 \end{cases}$$ $$= \begin{cases} 2\pi - 3\cos^{-1}x; & -\frac{1}{2} \le x \le \frac{1}{2} \\ 3\cos^{-1}x; & \frac{1}{2} \le x \le 1 \\ -2\pi + 3\cos^{-1}x; & -1 \le x \le -\frac{1}{2} \end{cases}$$ {: If $0 \le \theta \le \frac{\pi}{3} \Rightarrow \cos \frac{\pi}{3} \le \cos \theta \le \cos 0$ or $\frac{1}{2} \le \cos \theta \le 1$. Here, the interval changed since, $\cos x$ is decreasing in $[0, \pi]$ } So, the graph of; $$y = \cos^{-1}(4x^3 - 3x) = \begin{cases} 2\pi - 3\cos^{-1}x; & -\frac{1}{2} \le x \le \frac{1}{2} \\ 3\cos^{-1}x; & \frac{1}{2} \le x \le 1 \\ -2\pi + 3\cos^{-1}x; & -1 \le x \le -\frac{1}{2}, \end{cases}$$ is shown as; Fig. 1.90 Thus, the curve for $y = \cos^{-1}(4x^3 - 3x)$, which is not differentiable at $x = \left\{\pm \frac{1}{2}\right\}$ #### EXAMPLE 9 Sketch the graph for: - (i) $\sin x$. $\csc x$ - (ii) cos x · sec x - (iii) tan x · cot x **SOLUTION** As we know for the above curves each is equal to 1, but for different domain as; (i) $$y = \sin x \cdot \csc x = 1$$; $\forall x \in R - \{n\pi; n \in z\}$ (ii) $$y = \cos x \cdot \sec x = 1$$; (ii) $$y = \cos x \cdot \sec x = 1;$$ $x \in R - \left\{ (2n+1)\frac{\pi}{2}; \ n \in z \right\}$ (iii) $$y = \tan x \cdot \cot x = 1$$; $$x \in R - \left\{ n\pi, n\pi + \frac{\pi}{2}; n \in z \right\}$$ Thus, they could be plotted as: $\frac{3\pi}{2}$ $y = \sin x.\csc x$ $y = \cos x \cdot \sec x$ Fig. 1.91 From above example it becomes clear that $y = \sin x \cdot \csc x = 1$, $y = \cos x \cdot \sec x = 1$, Note $y = \tan x \cdot \cot x = 1$ but they are not equal, as their domains are different. .. Equal functions: Those functions which have same domain and range are equal functions. #### **EXAMPLE** 10 Sketch the graph for: (i) $$\frac{|\sin x|}{|\sin x|}$$ (ii) $$\frac{|\cos x|}{\cos x}$$ (iii) $$\sin^{-1}\left(\frac{1+x^2}{2x}\right)$$ (i) $$\frac{|\sin x|}{\sin x}$$ (ii) $\frac{|\cos x|}{\cos x}$ (iii) $\sin^{-1}\left(\frac{1+x^2}{2x}\right)$ (iv) $\log_{1/4}\left(x-\frac{1}{4}\right) + \frac{1}{2}\log_4\left(16x^2 - 8x + 1\right)$ (v) $$1+3(\log|\sin x|+\log|\csc x|)$$ (vi) $$1+3(\log \sin x + \log \csc x)$$ SOLUTION As we know, to plot above curves we must check periodicity domain and range; (i) $$y = \frac{|\sin x|}{\sin x}$$ $$y = \begin{cases} 1; & \sin x > 0 \\ -1; & \sin x < 0 \end{cases}$$ $$y = \begin{cases} 1; & 2n\pi < x < (2n+1)\pi; & n \in z \\ -1; & (2n+1)\pi < x < (2n+2)\pi; & n \in z \end{cases}$$ So, from above, domain $\in R - \{n \pi; n \in z\}$ Range $$\in$$ $$\begin{cases} 1; & 2n\pi < x < (2n+1)\pi \\ -1; & (2n+1)\pi < x < (2n+2)\pi \end{cases}$$: it could be plotted as shown in-Fig. 1.92. Fig. 1.92 ## (ii) Sketch for $y = \frac{|\cos x|}{\cos x}$ Here, $$y = \begin{cases} 1; & \cos x > 0 \\ -1; & \cos x < 0 \end{cases}$$ \Rightarrow $y = \begin{cases} 1; & 2n\pi - \frac{\pi}{2} < x < 2n\pi + \frac{\pi}{2} \\ -1; & 2n\pi + \frac{\pi}{2} < x < 2n\pi + \frac{3\pi}{2} \end{cases}$ So, it could be plotted as: # (iii) Sketch for $y = \sin^{-1}\left(\frac{1+x^2}{2x}\right)$ Here $y = \sin^{-1}\left(\frac{1+x^2}{2x}\right)$ is defined; when; $$\left|\frac{1+x^2}{2x}\right| \le 3$$ {as; $\sin^{-1} x$ is defined when $|x| \le 1$ } $$1+x^2 \le 2|x|$$ {as; $$1+x^2>0$$ } $$|x^2 - 2|x| + 1 \le 0$$ {as; $$x^2 = |x|^2$$ } $$\rightarrow$$ $$|x|^2 - 2|x| + 1 \le 0$$ $$\{as, x - |x|\}$$ $$1 + x^{2} \le 2|x|$$ $$x^{2} - 2|x| + 1 \le 0$$ $$|x|^{2} - 2|x| + 1 \le 0$$ $$(|x| - 1)^{2} \le 0$$ $$(|x| - 1)^{2} = 0$$ {as; $$(|x|-1)^2 < 0$$ is not possible} $$x = \pm 1$$ Domain $\in \{\pm 1\}$ Domain $$\in \{\pm 1\}$$ For range $$y = \sin^{-1} \left(\frac{1 + x^2}{2x} \right)$$, where $x = +1, -1$ $$y = \sin^{-1}(1)$$ and $y = \sin^{-1}(-1)$ $$y = \pm$$ Range $$\in \left\{\pm \frac{\pi}{2}\right\}$$ Hence, the graph for $$y = \sin^{-1}\left(\frac{1+x^2}{2x}\right)$$ is **only two** points. Shown as: Thus, the sketch for $y = \sin^{-1}\left(\frac{1+x^2}{2x}\right)$ is only two points A and B. (iv) Sketch for $$y = \log_{1/4} \left(x - \frac{1}{4} \right) + \frac{1}{2} \log_4 \left(16x^2 - 8x + 1 \right)$$ Here, $$y = \log_{1/4} \left(x - \frac{1}{4} \right) + \frac{1}{2} \log_4 (4x - 1)^2$$ $$\Rightarrow y = \log_{1/4} \left(x - \frac{1}{4} \right) + \frac{1}{2} \log_4 16 + \frac{1}{2} \log_4 \left(x - \frac{1}{4} \right)^2$$ or $$y = -\log_4\left(x - \frac{1}{4}\right) + \frac{1}{2}\log_4 4^2 + \frac{2}{2}\log_4\left(x - \frac{1}{4}\right)$$ $\left\{as; \log_{b^n} a^m = \frac{m}{n}\log_b a\right\}$ $$\Rightarrow y = -\log_4\left(x - \frac{1}{4}\right) + \log_4\left(x - \frac{1}{4}\right) + \frac{2}{2}\log_4 4$$ $$\Rightarrow y = 1$$, whenever; $\left(x - \frac{1}{4}\right) > 0$ {as; $\log_a x$ exists only when $a, x > 0$ and $a \ne 1$ } Thus, $$y = \log_{1/4} \left(x - \frac{1}{4} \right) + \frac{1}{2} \log_4 (4x - 1)^2$$ $$\Rightarrow$$ Domain $\in \left(\frac{1}{4}, \infty\right)$ #### Range ∈ {1} Thus, the graph is shown as: Thus, the graph for $$y = \log_{1/4} \left(x - \frac{1}{4} \right) + \frac{1}{2} \log_4 (4x - 1)^2.$$ Fig. 1.95 #### (v) Sketch for $y = 1 + 3 (\log |\sin x| + \log |\cos x|)$ Here $$y = 1 + 3[\log(|\sin x| \cdot |\csc x|)]$$ $$|\sin x| \neq 0$$ and $|\csc x| \neq 0$ $$y = 1 + 3 (\log 1);$$ whenever $x \notin n\pi$; $n \in \mathbb{Z}$. $$y = 1$$ {as; $$log 1 = 0$$ } Domain $\in R - \{n\pi; n \in z\}$ #### Range ∈ {1} : it could be plotted as: Fig. 1.96 Thus, the curve for $y = 1 + 3(\log|\sin x| + \log|\csc x|)$. #### (vi) Sketch for $y = 1 + 3 (\log \sin x + \log \csc x)$ Here $$y = 1 + 3 (\log \sin x \cdot \csc x)$$ whenever $\sin x > 0$ and $\csc x > 0$ $$\Rightarrow \qquad \qquad y = 1 + 3 \log 1;$$ $$x\in (2n\pi,(2n+1)\pi)$$ $$y = 1$$; whenever $x \in (2n\pi, (2n + 1)\pi)$ $$y = 1 + 3 (\log \sin x + \log \csc x) = \{1; 2n\pi < x < (2n + 1)\pi \text{ is shown as;} \}$$ Fig. 1.97 Thus, the curve for $y = 1 + 3 (\log \sin x + \log \csc x)$ #### **EXAMPLE** 11 Sketch the curve for $\cos y = \cos x$. **SOLUTION** Here, $\cos y = \cos x$ \Rightarrow $y = 2n\pi \pm x$; $n \in \mathbb{Z}$ $\cos y = \cos x$, represents two straight lines; $$y = \begin{cases} x + 2n\pi; & n \in \mathbb{Z} \\ -x + 2n\pi; & n \in \mathbb{Z} \end{cases}$$ i.e., two infinite set of perpendicular straight lines which could be shown as: Thus, graph for $\cos y = \cos x$; represents two infinite set of perpendicular straight lines which have infinite number of points of intersections; (So, if asked number of solutions then they are infinite). **EXAMPLE** 12 Sketch the curve for $\sin y = \sin x$. $y = n\pi + (-1)^n x$; $n \in \mathbb{Z}$ SOLUTION Here $\sin y = \sin x \implies$ $[n\pi + x; n \text{ even integer}]$ $n\pi - x$; n odd integer Fig. 1.99 **EXAMPLE** 13 Find the number of solutions for; $$\sin\frac{\pi x}{2} = \frac{99x}{500}.$$ **SOLUTION** Let $f(x) = \sin \frac{\pi x}{2}$ and $g(x) = \frac{99x}{500}$, to find number of solutions; we shall plot both the curves as; Fig. 1.100 Clearly, from the above figure, the number of solutions are 7. EXAMPLE (14) Find the number of solutions for; $\cos x = x$ **SOLUTION** As, $\cos x = x$: to plot the curve for $y = \cos x$; y = x and find the point of intersection as to obtain number of solutions. Here, the two curves intersect at a point A. So, $\cos x = x$ has only one solution. Fig. 1.101 **EXAMPLE** 15 Find the number of solutions for; $[x] = \{x\}$, where $[\bullet]$, $\{\bullet\}$ represents integer and fractional part of x. greatest SOLUTION As, $$[x] = \{x\}$$: to plot $$y = [x]; y = \{x\}$$ and find point of intersection. Here, the only point of intersection is x = 0, : only one solutions. 45 **EXAMPLE** 16 Find the number of solutions of $$4\{x\} = x + [x]$$ where $\{\,\cdot\,\}$, $[\,\cdot\,]$ represents fractional part and greatest integer function. SOLUTION As we know, to find number of solutions of two curves we should find the point of intersection of two curves. $$\therefore 4\{x\} = x + [x]$$ $$4(x-[x])=x+[x]$$ $$\{\because x = [x] + \{x\}\}$$ $$\Rightarrow$$ $4x - x = 4[x] + [x]$ $$\Rightarrow 3x = 5[x]$$ $$[x] = \frac{3}{5}$$:. To plot the graph of both $$y = [x]$$ and $y = \frac{3}{5}x$. Fig. 1.103 -3/5 Clearly, the two graphs intersects when $$[x] = 0$$ and $[x] = 1$...(ii) $$x = \frac{5}{3}[x]$$ [from Eqs. (i) and (ii)] $$x = \frac{5}{3} \cdot 0$$ and $x = \frac{5}{3} (1)$ are the only two solutions. **EXAMPLE** 17 Find the value of x graphically satisfying; $[x] - 1 + x^2 \ge 0$; where $[\cdot]$ denotes the greatest integer function. SOLUTION As, $$[x]-1+x^2\geq 0$$ $$x^2 - 1 \ge -[x]$$ Thus, to find the points for which $f(x) = x^2 - 1$ is greater than or equals to $$g(x) = -[x].$$ where two functions f(x) and g(x) could be plotted as shown in Fig. 1.104; From the adjoining figure; the solution set lies when $$x \le A$$ or $x \ge B$. Thus, to find A and B. It is clear that f(x) and g(x) intersects when; -[x]=2. $$\therefore \qquad \qquad x^2 - 1 =$$ $$x = \pm \sqrt{3}$$ \Rightarrow $x = -\sqrt{3}$ (neglecting $x = +\sqrt{3}$ as A lies for x < 0) Fig. 1.104 Thus, for A: $x = -\sqrt{3}$ and for B: x = 1. ∴ Solution set for which $x^2 - 1 \ge -[x]$ holds. $$\Rightarrow \qquad x \in (-\infty, -\sqrt{3}] \cup [1, \infty).$$ Note The method discussed in previous example is very important as it reduces your calculations, so students should practice these forms. **EXAMPLE** 13 Find the values of x graphically which satisfy; $-1 \le [x] - x^2 + 4 \le 2$; where $[\cdot]$ denotes the greatest integer function. SOLUTION As, $-1 \le [x] - x^2 + 4 \le 2 \implies x^2 - 5 \le [x] \le x^2 - 2$ Thus, to find the points for which $f(x) = x^2 - 5$ is less
than or equal to g(x) = [x] and g(x) = [x] is less than or equal to $h(x) = x^2 - 2$, where the three functions f(x), g(x) and h(x) could be plotted as; Fig. 1.105 Thus, from the above graph; $$x^2 - 5 \le [x] \le x^2 - 2$$ when $x \in [A, B] \cup [C, D]$ where A and D is the point of intersection if; $$x^2 - 5 = \pm 2$$ \Rightarrow $x = -\sqrt{3}, \sqrt{7}$ and C is point of intersection of $$x^2-2=1 \Rightarrow x=\sqrt{3}$$. $$A = -\sqrt{3}$$, $B = -1$, $C = \sqrt{3}$ and $D = \sqrt{7}$. $$\therefore -1 \le [x] - x^2 + 4 \le 2 \text{ is satisfied};$$ when ٠. $$x \in [-\sqrt{3}, -1] \cup [\sqrt{3}, \sqrt{7}].$$ **EXAMPLE** 19 If $0 \le a \le 3$, $0 \le b \le 3$ and the equation; $x^2 + 4 + 3\cos(ax + b) = 2x$ has at least one solution then find the value of (a + b). SOLUTION Here, $$x^2 + 4 + 3\cos(ax + b) = 2x$$ or $x^2 - 2x + 4 = -3\cos(ax + b)$ $\Rightarrow (x - 1)^2 + 3 = -3\cos(ax + b)$ From figure the two curves could atmost touch at one point only when $-3\cos(a+b)=3$ $$\Rightarrow$$ $\cos(a+b)=-1$ $$\Rightarrow$$ $a+b=\pi$, 3π , 5π ,... But $3\pi > 6$ $$\Rightarrow$$ $a + b = \pi$ as $0 \le a, b \le 3$. Fig. 1.106 # **EXAMPLE** 20 If $A+B+C=\pi$ and A, B, C are angles of Δ ; then show $\sin A + \sin B + \sin C < \frac{3\sqrt{3}}{2}$. **SOLUTION** Here; we have three trigonometric ratios sin *A*, sin *B*, sin *C*. .. Let $y = \sin x$, on which there are three points x = A, x = B and x = C shown as; As from the figure; In $\triangle PQR$, Centroid of Δ formed by $P(A, \sin A)$ $Q(B, \sin B)$ $R(C, \sin C)$ is; $$G = \left(\frac{A+B+C}{3}, \frac{\sin A + \sin B + \sin C}{3}\right)$$ where; G, H and I are collinear Fig. 1.107 47 $$I\left(\frac{A+B+C}{3}, 0\right); G\left(\frac{A+B+C}{3}, \frac{\sin A + \sin B + \sin C}{3}\right)$$ and $$H\left(\frac{A+B+C}{3}, \sin\left(\frac{A+B+C}{3}\right)\right)$$ From figure; i.e., ordinate of H > ordinate of G $$\Rightarrow \qquad \sin\left(\frac{A+B+C}{3}\right) > \frac{\sin A + \sin B + \sin C}{3}$$ $$\Rightarrow \frac{3\sqrt{3}}{2} > \sin A + \sin B + \sin C.$$ # **EXAMPLE** 21 If $0 < A < \frac{\pi}{6}$, then show $A(\csc A) < \frac{\pi}{3}$. **SOLUTION** Here, graph for $y = \sin x$ is shown as; where $$P(A, \sin A)$$ and $Q\left(\frac{\pi}{6}, \sin \frac{\pi}{6}\right)$ From adjoining figure; slope of OP > slope of OQ $$\Rightarrow \frac{\sin A - 0}{A - 0} > \frac{\sin \frac{\pi}{6} - 0}{\frac{\pi}{6} - 0}$$ $$\Rightarrow \frac{\sin A}{A} > \frac{3}{\pi} \text{ or } \frac{A}{\sin A} < \frac{\pi}{3}$$ or Fig. 1.108 **EXAMPLE** 22 If 0 < A, B, $C < \frac{\pi}{2}$, then show that: A cosec A + B cosec B + C cosec $C < \frac{3\pi}{2}$. **SOLUTION** Here, graph for $y = \sin x$ is shown as; where $$P(B, \sin B)$$; $Q(C, \sin C)$; $R(A, \sin A)$; $S\left(\frac{\pi}{2}, \sin \frac{\pi}{2}\right)$. From figure; slope of OP > slope of OS: $$\Rightarrow \frac{\sin B - 0}{B - 0} > \frac{\sin \frac{\pi}{2} - 0}{\frac{\pi}{2}}$$ $$\Rightarrow \frac{\sin B}{B} > \frac{2}{\pi} \quad \text{or} \quad \frac{B}{\sin B} < \frac{\pi}{2}$$...(i) or $B \csc B < \frac{\pi}{2}$ Similarly, slope of OQ < slope of OS and slope of OR < slope of OS. $$\Rightarrow \qquad \qquad C \csc C < \pi/2 \qquad \qquad ...(ii)$$ A cosec $$A < \pi/2$$...(iii) Adding Eqs. (i), (ii) and (iii), we get A cosec $$A + B$$ cosec $B + C$ cosec $C < \frac{3\pi}{2}$. Note Students must practice above method in different questions of trigonometric inequality as it saves time. ## EXERCISE #### 1. Construct the graph for; (i) $$f(x) = \begin{cases} x - 1, & x < 0 \\ \frac{1}{4}; & x = 0 \\ x^2; & x > 0 \end{cases}$$ (ii) $$f(x) = \begin{cases} 2x + 3; & -3 \le x < -2 \\ x + 1; & -2 \le x < 0 \\ x + 2; & 0 \le x \le 1 \end{cases}$$ 2. Construct the graph of the function: (i) $$f(x) = |x - 1| + |x + 1|$$ (ii) $$f(x) = \begin{cases} 3^x; & -1 \le x \le 1 \\ 4 - x; & 1 \le x < 4 \end{cases}$$ (iii) f(x) = [x] + |x - 1|; $-1 \le x \le 3$ (where [] denotes greatest integer function) (iv) $$f(x) = \begin{cases} x^4; & x^2 < 1 \\ x; & x^2 \ge 1 \end{cases}$$ 3. Is $f(x) = x^2 + x + 1$ invertible? If not in which region it is invertible. - 4. If f is defined by y = f(x); where x = 2t |f|, $y = t^2 + t|f|$, $t \in R$. Then construct the graph for f(x). - Construct the graph for f(x) = [[x] x]; where denotes greatest integer function. 6. If $$0 < \alpha < 1$$; then show; $$\frac{\tan^{-1}\alpha}{\alpha} > \frac{\pi}{4}$$ - 7. Find the number of solutions for; $\cos^{-1}(\cos x) = [x]$ where $[\cdot]$ denotes the greatest integer function. - **8.** Find the number of solutions for; $[[x] x] = \sin x$; where $[\cdot]$ denotes the greatest integer function. - 9. Find the values of x graphically which satisfy $\left| \frac{x^2}{x-1} \right| \le 1$ - **10.** Find the value of x for which $x^3 [x] = 3$, where $[\cdot]$ denotes the greatest integer function. #### **ANSWERS** 3. $$x \ge -\frac{1}{2}$$ 7. 5 solutions. 8. infinite **9.** $$x \in \left[\frac{-1 - \sqrt{5}}{2}, \frac{-1 + \sqrt{5}}{2} \right]$$ 10. $x = 2^{2/3}$. # Chapter 2 Curvature and Transformations #### In this chapter we shall study: - ➡ The bending of curves at different points. - Transformations of curves. #### 2.1 CURVATURE "The study of bending of curves at different points is known as curvature." or "Rate at which the curve curves". Consider a curve and a point *P* on it and let *Q* be a point near *P*. Let *A* be a point on the curve. $$arc AP = s$$, $$arc AQ = s + \delta s$$ $$arc PQ = \delta s$$ Let ψ and $\psi + \delta \psi$ be angles which the tangents at *P* and *Q* makes with *x*-axis. :. $\delta \psi$ is called the total curvature of the arc PQ. $\frac{\delta \psi}{s}$ is called the average curvature of the arc PQ. $\lim_{\delta s \to 0} \frac{\delta \psi}{\delta s} = \frac{d\psi}{ds} = \text{ curvature of the curve at } P.$ Fig. 2.1 **Note** To study curvature we shall define $\frac{d\psi}{ds}$ or $\frac{d^2y}{dx^2}$ #### 2.2 CONCAVITY, CONVEXITY AND POINTS OF INFLEXION #### (a) Concave upwards If in the neighbourhood of a point P on a curve is above the tangent at P, it is said to be concave upwards. #### Mathematically $$\frac{dy}{dx}$$ increases as x increases. $\Rightarrow \frac{d^2y}{dx^2} > 0$ #### Geometrically Fig. 2.2 #### (b) Convex upwards or Concave downwards If the curve is below the tangent at P, it is said to be convex upward or concave downward. Mathematically $$\frac{dy}{dx} \text{ decreases as } x \text{ decreases.} \Rightarrow \frac{d^2y}{dx^2} < 0$$ Geometrically Fig. 2.3 #### (c) Point of Inflexion If at a point P, a curve changes its concavity from upwards to downwards or vice versa. Then P is called point of inflexion. Geometrically Fig. 2.4 Mathematically - (i) $\frac{d^2y}{dx^2} = 0$ at the point. - (ii) $\frac{d^2y}{dx^2}$ changes its sign as x increases through the value at which $\frac{d^2y}{dx^2} = 0$; i.e., $\frac{d^3y}{dx^3} \neq 0$. #### 2.3 PLOTTING OF ALGEBRAIC CURVES USING CONCAVITY Here; if $y = f(x) = (x - \alpha)(x - \beta)$. $0 < \alpha < \beta$. Then we know it has roots α and β and would be plotted as shown in Fig. 2.6. From above discussion it becomes clear that to plot curves we require; - (i) Point of intersection on x-axis. (i.e., y = 0) - (ii) Point of maximum and minimum value. - (iii) Interval for which function increases or decreases. - (iv) Point at which concave up, concave down and point of inflexion. #### **EXAMPLE** 1 Sketch y = (x-1)(x-2). - **SOLUTION** Here; y = (x-1)(x-2) - (i) Put $y = 0 \Rightarrow x = 1, 2$. (ii) $$y = x^2 - 3x + 2$$ $$\Rightarrow \frac{dy}{dx} = 2x - 3 \quad \text{and} \quad \frac{d^2y}{dx^2} = 2$$ $$\therefore \text{ minimum at } x = \frac{3}{2} \qquad \left(\text{as } \frac{d^2y}{dx^2} > 0 \right)$$ (iii) Increases when $x > \frac{3}{2}$ and decreases when $x < \frac{3}{2}$. Fig. 2.7 - (iv) Concave upwards for $x > \frac{3}{2}$ or $x < \frac{3}{2}$. - :. Graph is sketched as shown in Fig. 2.7. #### **EXAMPLE** 2 Sketch the curve y = (x-1)(x-2)(x-3). - **SOLUTION** Here; y = (x-1)(x-2)(x-3) - (i) Put $y = 0 \implies x = 1, 2, 3$ - (ii) $y = x^3 6x^2 + 11x 6$ $$\Rightarrow \frac{dy}{dx} = 3x^2 - 12x + 11 \quad \text{and} \quad \frac{d^2y}{dx^2} = 6x - 12$$ when $$\frac{dy}{dx} = 0 \quad \Rightarrow \quad x = \frac{6 \pm \sqrt{3}}{3}$$ $$\therefore \text{ maximum when;} \qquad x = \frac{6 - \sqrt{3}}{3} \quad \text{as} \quad \frac{d^2 y}{dx^2} = -2\sqrt{3}$$ $$\text{minimum when;} \qquad x = \frac{6 + \sqrt{3}}{3} \quad \text{as} \quad \frac{d^2 y}{dx^2} = 2\sqrt{3}$$ - minimum when; $x = \frac{6+\sqrt{3}}{3}$ as $\frac{d}{d}$ (iii) Here; $\frac{dy}{dx} = 3x^2 - 12x + 11$ - $=3\left(x-\frac{6-\sqrt{3}}{3}\right)\left(x-\frac{6+\sqrt{3}}{3}\right)$ - ⇒ Increases when; $x < \frac{6 \sqrt{3}}{3}$ $x > \frac{6 + \sqrt{3}}{3}$ decreases when; $\frac{6-\sqrt{3}}{3} < x < \frac{6+\sqrt{3}}{3}$ - (iv) Concave upwards when x>2 and concave down when x<2. - :. Graph is sketched as shown in Fig. 2.8. Fig. 2.8 #### **EXAMPLE** 3 Sketch the curve $y = (x-1)^2(x-2)$. - **SOLUTION** Here; $y = (x-1)^2(x-2)$ - (i) Put $y = 0 \implies x = 1, 1, 2$ - (ii) $y = x^3 4x^2 + 5x 2$ $$\Rightarrow \frac{dy}{dx} = 3x^2 - 8x + 5 \quad \text{and} \quad \frac{d^2y}{dx^2} = 6x - 8$$ when $\frac{dy}{dx} = 0 \quad \Rightarrow \quad x = 1, \frac{5}{3}$ \therefore maximum when; x=1 as $\frac{d^2y}{dx^2}=-2$. Concave down when x < 4/3 minimum when x = 0 - minimum when; $x = \frac{5}{3}$ as $\frac{d^2y}{dx^2} = 2$. - (iii) Here; $\frac{dy}{dx} = 3x^2 8x + 5 = 3(x 1)\left(x \frac{5}{3}\right)$ - ⇒ Increases when; x<1 or $x>\frac{5}{3}$. Decreases when; $1< x<\frac{5}{3}$. - (iv) Concave up when $x > \frac{4}{3}$ and concave down when $x < \frac{4}{2}$ - :. Graph is sketched as shown in Fig. 2.9. SOLUTION Here; $$y = 3x^2 - 2x^3$$ $\Rightarrow x = 0, \frac{3}{2}$ when $y = 0$ $$\frac{dy}{dx} = 6x - 6x^2 = 6x(1-x)$$ and $$\frac{d^2y}{dx^2} = 6$$ $$\frac{d^2y}{dx^2} = 6 - 12x = 6(1 - 2x)$$ ⇒ maximum when; $$x = 1$$ as
$\frac{d^2y}{dx^2} = -6$ when $x = 0$ and minimum when; $x = 0$ as $\frac{d^2y}{dx^2} = 6$...(ii) ← Concave up - y increases when; - y decreases when; $$\begin{cases} 0 < x < 1. \\ x < 0 \text{ and } x > 1 \end{cases} \dots \text{(iii)}$$ Concave up when; $$x < \frac{1}{2}$$ - Concave down when; - :. Graph is sketched as shown in Fig. 2.10. ### **EXAMPLE** 5 Sketch the graph for the function: f(x) = |x+3|(x+1). SOLUTION Here; $y = |x+3|(x+1) = \begin{cases} (x+3)(x+1); & x \ge -3 \\ -(x+3)(x+1); & x < -3 \end{cases}$ $$\Rightarrow$$ $$x = -1, -3$$ when $y = 0$ $$\frac{dy}{dx} = \begin{cases} +2x+4; & x \ge -3 \\ -2x-4; & x < -3 \end{cases} \quad \text{and} \quad \frac{d^2y}{dx^2} = \begin{cases} 2; & x \ge -3 \\ -2; & x < -3 \end{cases}$$ also; $$\frac{d^2y}{dx^2} = \begin{cases} 2; & x \ge -3 \\ -2; & x < -3 \end{cases}$$ # minimum at x = 5/3Concave up when x > 4/3 0 9 # maximum x = 1/2Fig. 2.10 ...(i) Fig. 2.11 Increasing when x < -3 or x > -2decreasing when -3 < x < -2 > maximum at x = -3...(iii) minimum at x = -2 concave up when x < -3...(iv) concave down when x > -3 Above example could also be solved by using transformations discussed in later part of chapter. **EXAMPLE** 6 Sketch the graph for: $f(x) = \frac{x+1}{x^2+3}$ SOLUTION Here; $y = \frac{x+1}{x^2+3}$ \Rightarrow $y = \frac{1}{3}$ when x = 0...(i) $\frac{dy}{dx} = \frac{-x^2 - 2x + 3}{(x^2 + 3)^2} = \frac{-(x + 3)(x - 1)}{(x^2 + 3)^2} \implies \text{Increasing when; } 3 < x < 1$ Decreasing when; x < -3 or x > 1...(ii) Fig. 2.12 In above curve x-axis works as asymptote, i.e., the curve would never meet x-axis. For detail refer chapter 3. #### **GRAPHICAL TRANSFORMATIONS** Where | • | means modulus or absolute value function. Where [•] denotes greatest integer less than or equal Where $\{\bullet\}$ denotes fractional part of x. #### Here, we shall discuss the transformations as: - (i) f(x) transforms to $f(x) \pm a$ - (ii) f(x) transforms to $f(x \pm a)$. - (iii) f(x) transforms to (a f(x)) - (iv) f(x) transforms to f(ax). - (v) f(x) transforms to f(-x). - (vi) f(x) transforms to -f(x). - (vii) f(x) transforms to -f(-x) - (viii) f(x) transforms to |f(x)|. - (ix) f(x) transforms to f(|x|). - (x) f(x) transforms to |f(|x|)|. - (xi) y = f(x) transforms to |y| = f(x). - (xii) y = f(x) transforms to |y| = |f(x)|. - (xiii) y = f(x) transforms to |y| = |f(|x|)|. - (xiv) y = f(x) transforms to y = [f(x)]. - (xv) y = f(x) transforms to y = f([x]). - (xvi) y = f(x) transforms to y = [f([x])]. - (xvii) y = f(x) transforms to [y] = f(x). - (xviii) y = f(x) transforms to [y] = [f(x)]. - (xix) y = f(x) transforms to $y = f({x})$. - (xx) y = f(x) transforms to $y = \{f(x)\}.$ - (xxi) y = f(x) transforms to $y = \{f(\{x\})\}.$ - (xxii) y = f(x) transforms to $\{y\} = f(x)$. - (xxiii) y = f(x) transforms to $\{y\} = \{f(x)\}.$ (xxiv) y = f(x) transforms to $y = f^{-1}(x)$, $f^{-1}(x)$ represents inverse of f(x). (i) When f(x), transforms to $f(x) \pm a$. (where a is + ve) i.e., $f(x) \longrightarrow f(x) + a$ shift the given graph of f(x) upward through 'a' units again, $f(x) \longrightarrow f(x) - a$ shift the given graph of f(x) downward through 'a' units. Graphically it could be stated as: Fig. 2.13 - **EXAMPLE** 1 Plot $y = e^x + 1$; $y = e^x 1$, with the help of $y = e^x$. - **SOLUTION** We know; $y = e^x$ (exponential function) could be plotted as; Fig. 2.14 \Rightarrow $y = e^x + 1$, is shifted **upwards** by 1 unit, shown as Also $y = e^x - 1$, is shifted downwards by 1 unit, shown as Fig. 2.16 59 _ ### **EXAMPLE** 2 Plot y = |x| + 2 and y = |x| - 2, with the help of y = |x|. **SOLUTION** We know; y = |x| (modulus function) could be plotted as; Fig. 2.17 $\Rightarrow y = |x| + 2$ is shifted **upwards** by 2 units. Fig. 2.18 also y = |x| - 2 is shifted **downwards** by 2 units. Fig. 2.19 **EXAMPLE** 3 Plot $y = \sin^{-1} x$; $y = (\sin^{-1} x) + 1$ and $y = (\sin^{-1} x) - 1$. **SOLUTION** We know, $y = \sin^{-1} x$ (Inverse trigonometric) could be plotted as; Fig. 2.20 $\Rightarrow y = \sin^{-1} x + 1, \text{ is shifted } \mathbf{upwards} \text{ by } 1 \text{ unit.}$ and $y = \sin^{-1} x - 1, \text{ is shifted } \mathbf{downwards} \text{ by } 1 \text{ unit.}$ Fig. 2.21 (ii) f(x) transforms to f(x - a) i.e., $f(x) \longrightarrow f(x-a)$; a is positive. Shift the graph of f(x) through 'a' unit towards right f(x) transforms to f(x+a). i.e., $f(x) \longrightarrow f(x+a)$; a is positive. Shift the graph of f(x) through 'a' units towards left. Graphically it could be stated as Fig. 2.22 **EXAMPLE** 1 Plot y = |x|, y = |x-2| and y = |x+2|. SOLUTION As discussed $f(x) \longrightarrow f(x-a)$; shift towards right. y = |x-2| is shifted '2' units **towards right**. Fig. 2.23 also y = |x + 2| is shifted '2' units towards left. Fig. 2.24 **EXAMPLE** 2 Plot $y = \sin\left(x - \frac{\pi}{2}\right)$ and $y = \sin\left(x + \frac{\pi}{2}\right)$ **SOLUTION** As we know; $y = \sin x$ could be plotted as; Fig. 2.25 EXAMPLE 3 Plot $y=\sin^{-1}x;$ $y = \sin^{-1}(x-1)$ and $y = \sin^{-1}(x+1)$. SOLUTION We know; $y = \sin^{-1} x$ could be plotted as shown in Fig. 2.26. $y = \sin^{-1}(x-1)$ is shifted '1' unit **towards right**. $y = \sin^{-1}(x+1)$ is shifted '1' unit **towards left**. Shown as in Fig. 2.27. Fig. 2.26 Fig. 2.27 (iii) f(x) transforms to a f(x) $$f(x) \longrightarrow af(x); a > 1$$ **Stretch** the graph of f(x) 'a' times along y-axis. $$f(x) \longrightarrow \frac{1}{a} f(x); a > 1.$$ **Shrink** the graph of f(x) 'a' times along y-axis. Graphically it could be stated as shown in Fig. 2.28. Fig. 2.28 **EXAMPLE** 1 Plot y = x; y = 2x and $y = \frac{1}{2}x$. **SOLUTION** As we know graph for y = 2x. \therefore y = 2x; is **stretch** of f(x) '2' times along y-axis and $y = \frac{1}{2}x$; is **shrink** of f(x) '2' times along y-axis. Shown as in Fig. 2.29. Fig. 2.29 **EXAMPLE** 2 Plot $y = \sin x$ and $y = 2\sin x$ **SOLUTION** We know; $y = \sin x$ and $f(x) \rightarrow a f(x)$ \Rightarrow **Stretch** the graph of f(x) 'a' times along y-axis. $\therefore y = 2 \sin x \implies$ **stretch** the graph of $\sin x$ '2' times along y-axis. Fig. 2.30 Above curve is plotted for the interval [– π , π] as periodic with period 2π . ## **EXAMPLE** 3 Plot $y = \sin x$ and $y = \frac{1}{2} \sin x$. SOLUTION As we know; $$y = \frac{1}{a}f(x)$$ \Rightarrow **shrink** the graph of f(x) 'a' times along y-axis. $$\therefore \qquad y = \frac{1}{2}\sin x$$ \Rightarrow **shrink** the graph of f(x) '2' times along *y*-axis. Fig. 2.31 #### (iv) f(x) transforms to f(ax) i.e., $$f(x) \longrightarrow f(ax)$$; $a > 1$ **Shrink** (or contract) the graph of f(x) 'a' times along x-axis. again $$f(x) \longrightarrow f\left(\frac{1}{a}x\right); a > 1$$ **Stretch** (or expand) the graph of f(x) 'a' times along *x*-axis. Graphically it could be stated as shown in Fig. 2.32. Fig. 2.32 ### **EXAMPLE** 1 Plot $y = \sin x$ and $y = \sin 2x$. SOLUTION Here; $y = \sin 2x$, is to shrink (or contract) the graph of $\sin x$ by '2' units along x-axis. Shown as in Fig. 2.33. Fig. 2.33 From above figure $\sin x$ is periodic with period 2π and $\sin 2x$ with period π . **SOLUTION** Here; $y = \sin\left(\frac{x}{2}\right)$, is to **stretch (or expand)** the graph of $\sin x$ '2' times along x-axis. Shown as in Fig. 2.34. Fig. 2.34 From above figure $\sin x$ is periodic with period 2π and $\sin\left(\frac{x}{2}\right)$ is periodic with period 4π . **EXAMPLE** 3 Plot $y = \sin^{-1} x$ and $y = \sin^{-1}(2x)$. SOLUTION Here; $y = \sin^{-1}(2x)$, is to shrink (or contract) the graph of $\sin^{-1} x$ '2' times along x-axis. Shown as in Fig. 2.35. Fig. 2.35 **EXAMPLE** 4 Plot $y = \sin^{-1}\left(\frac{x}{3} - 1\right)$. - **SOLUTION** To plot $y = \sin^{-1}\left(\frac{x}{3} 1\right)$. We should follow as; - (i) Plot $y = \sin^{-1} x$ - (ii) Plot $y = \sin^{-1}\left(\frac{x}{3}\right)$, i.e., stretch graph '3' units along x-axis. - (iii) Plot $y = \sin^{-1}\left(\frac{x}{3} 1\right)$, i.e., shift the graph (ii) by '3' unit towards right. (ii) Plot $$y = \sin^{-1}\left(\frac{x}{3}\right)$$: and Fig. 2.37 y = f(x) (iii) Plot $$y = \sin^{-1}\left(\frac{x}{3} - 1\right)$$: Fig. 2.38 (iv) f(x) transforms to f(-x) $$f(x) \longrightarrow f(-x)$$ To draw y = f(-x), take the image of the curve y = f(x) in y-axis as plane mirror. "Turn the graph of f(x) by 180° about y-axis." Graphically it is stated as; Fig. 2.39 **SOLUTION** As $y = e^x$ is known; then $y = e^{-x}$ is the image in y-axis as plane mirror for $y = e^x$; shown as; Fig. 2.40 **EXAMPLE** 2 Plot the curve $y = \log_e(-x)$. **SOLUTION** Here; $y = \log_e(-x)$; is to take **mirror image** of $y = \log_e x$ about y-axis. Shown as; Fig. 2.41 **EXAMPLE** 3 Plot the curve $y = \sin^{-1}(-x)$. **SOLUTION** Here; $y = \sin^{-1}(-x)$; is the **mirror image** of $y = \sin^{-1}(x)$ about y-axis. Shown as in Fig. 2.42. Fig. 2.42 (vi) f(x) transforms to -f(x) 66 $$f(x) \longrightarrow -f(x);$$ To draw y = -f(x) take **image** of y = f(x) in the x-axis as plane mirror. OR "Turn the graph of f(x) by 180° about x-axis." \therefore $y = -e^x$ take image of $y = e^x$ in the x-axis as plane mirror. Fig. 2.43 **EXAMPLE** 2 Plot the curve $y = -(\log x)$. **SOLUTION** As $y = \log x$ is given then $y = -\log x$ is the image of $y = \log x$ in the **x-axis** as plane mirror. Fig. 2.44 **EXAMPLE** 3 Plot the curve $y = -\{x\}$; where $\{\cdot\}$ denotes the fractional part of x. **SOLUTION** As $y = \{x\}$ is known; $y = -\{x\}$ is the image of $y = \{x\}$ about x-axis as plane mirror. Fig. 2.45 (vii) f(x) transforms to -f(-x) $$f(x) \longrightarrow -f(-x);$$ to draw y = -f(-x) take image of f(x) about y-axis to obtain f(-x) and then take image of f(-x) about x-axis to obtain -f(-x). $$f(x) \longrightarrow -f(-x)$$ - ⇒ (i) Image about y-axis. Graphically it could be stated as; - (ii) Image about x-axis. Fig. 2.46 - **EXAMPLE** 1 Plot the curve $y = -e^{-x}$. - **SOLUTION** As $y = e^x$ is known; -
(i) Take image about y-axis; for $y = e^{-x}$. - (ii) Take image of $y = e^{-x}$ about x-axis; for $y = -e^{-x}$. Shown as in Fig. 2.47. Fig. 2.47 - **EXAMPLE** 2 Plot the curve $y = -\log(-x)$. - **SOLUTION** As $y = \log x$ is known; - (i) Take image about y-axis, for $y = \log(-x)$. - (ii) Take image of $y = \log(-x)$ about x-axis, for $y = -\log(-x)$. Fig. 2.48 **SOLUTION** As we know the curve for $y = \{x\}$. To plot $y = -\{-x\}$ - (i) Take image about x-axis. - (ii) Take image about y-axis. Fig. 2.49 **EXAMPLE** 4 Plot the curve for y = -[-x]. (where $[\cdot]$ denotes the greatest integer function.) ormatio **SOLUTION** As we know the curve for y = [x]. $\int_{\mathbb{R}^n} |\nabla y|^2 dy = \int_{\mathbb{R}^n} \int_{\mathbb$ (i) Take image about x-axis. Fig. 2.50 (viii) f(x) transforms to |f(x)|; (where | • |represents modulus function) io $$f(x) \longrightarrow |f(x)|$$ Here; y = |f(x)| is drawn in two steps. - (a) In the I step, leave the positive part of f(x), {i.e., the part of f(x) above x-axis) as it is. - (b) In the II step, take the mirror image of negative part of f(x). {i.e., the part of f(x) below x-axis} in the x-axis as plane mirror. OR Take the mirror image (in x-axis) of the portion of the graph of f(x) which lies below x-axis. OR Turn the portion of the graph of f(x) lying below x-axis by 180° about x-axis. Graphically it could be stated as Graph of f(x): Fig. 2.52 Graph for |f(x)|: Fig. 2.53 Note Above transformation of graph is very important as to discuss differentiability of f(x). As from above example we could say y = f(x) is differentiable for all $x \in R - \{0\}$. But; y = |f(x)| is differentiable for all $x \in R - \{-1, 0, 1\}$ as, "at sharp edges function is not differentiable." ## **EXAMPLE** 1 Draw the graph for $y = |\log x|$ - **SOLUTION** To draw graph for $y = |\log x|$ we have to follow two steps: - (i) Leave the (+ ve) part of $y = \log x$, as it is - (ii) Take images of (-ve) part of $y = \log x$, i.e., the part below x-axis in the x-axis as plane mirror. Shown as: Fig. 2.54 which is differentiable for all $x \in (0, \infty)$ Fig. 2.55 which is clearly differentiable for all $x \in (0, \infty) - \{1\}$. "as at x = 1 their is a sharp edge". **EXAMPLE** 2 Draw the graph for $y = |x^2 - 2x - 3|$ - SOLUTION As we know the graph for $y = x^2 2x 3 = (x 3)(x + 1)$ is a parabola; so to sketch $y = |x^2 2x 3|$ we have to follow two steps. - (i) Leave the positive part of $y = x^2 2x 3$, as it is. - (ii) Take the **image of negative part** of $y = x^2 2x 3$, i.e., the part below x-axis in the x-axis as plane mirror shown as in Fig. 2.56. Graph for $y = x^2 - 2x - 3 = (x - 3)(x + 1)$: Graph for $y = |x^2 - 2x - 3|$: Fig. 2.57 Clearly above curve is differentiable for all $x \in R - \{-1, 3\}$. **EXAMPLE** 3 Sketch the graph for $y = |\sin x|$. **SOLUTION** Here; $y = \sin x$ is known. .. To draw $y = |\sin x|$, we take the mirror image (in x-axis) of the portion of the graph of $\sin x$ which lies below x-axis. Fig. 2.58 From above figure it is clear; $y = |\sin x|$ is differentiable for all $x \in R - \{n\pi; n \in \text{integer}\}$. (ix) f(x) transforms to f(|x|) i.e. $$f(x) \longrightarrow f(|x|).$$ If we know y = f(x), then to plot y = f(|x|), we should follow two steps: - (i) Leave the graph lying right side of the y-axis as it is. - (ii) Take the image of f(x) in the right of y-axis as the plane mirror and the graph of f(x) lying leftward of the y-axis (if it exists) is omitted. OR Neglect the curve for x < 0 and take the images of curve for $x \ge 0$ about y-axis. Graphically shown as; y = f(|x|)Neglected Image of f(x) about y-axis when x > 0Fig. 2.59 **EXAMPLE** 1 Sketch the curve $y = \log |x|$. **SOLUTION** As we know, the curve $y = \log x$. \therefore $y = \log |x|$ could be drawn in two steps: (i) Leave the graph lying right side of y-axis as it is. (ii) Take the image of f(x) in the y-axis as plane mirror. mati $y = \log |x|$ $y = \log x$ 0 Fig. 2.60 **EXAMPLE** 2 Plot the curve $y = e^{|x|}$. **SOLUTION** As we know the curve for $y = e^x$. Image for y = f(x); $x \ge 0$ (1, 0) neglect (1, 0) \therefore To plot $y = e^{|x|}$, neglect the curve for x < 0 and take image about y-axis for $x \ge 0$. Shown as in Fig. 2.61 Fig. 2.62. Fig 2.62 73 Fig. 2.63 **EXAMPLE** 4 Plot the curve $y = |x|^2 - 2|x| - 3$. **SOLUTION** As we know, the curve for $y = x^2 - 2x - 3$ is plotted as shown in Fig. 2.64. $= |x|^2 - 2|x| - 3$ Fig. 2.65 \therefore y = f(|x|), i.e., $y = |x|^2 - 2|x| - 3$ is to be plotted as shown in Fig. 2.65. which shows $y = |x|^2 - 2|x| - 3$ is differentiable for all $x \in R - \{0\}$. (x) f(x) transforms to |f(|x|)| $$f(x) \longrightarrow |f(|x|)|$$ Here, plot the curve in two steps; $$(i) \ f(x) \longrightarrow |f(x)| |f(x)| \longrightarrow |f(|x|)|$$ (ii) OR (i) $$f(x) \longrightarrow f(|x|)$$ (ii) $f(|x|) \longrightarrow |f(|x|)|$, i.e., (viii) and (ix) transformations. Graphically it could be stated as shown in Fig. 2.66. 75 Fig. 2.67 (ii) $$y = |f(|x|)|$$: Fig. 2.68 **EXAMPLE** 1 Sketch the curve for $y = ||x|^2 - 2|x| - 3|$. **SOLUTION** As we know the graph for $y = x^2 - 2x - 3$, shown as; Fig. 2.69 (i) $$y = x^2 - 2x - 3 \rightarrow y = |x|^2 - 2|x| - 3$$. Fig. 2.70 (ii) $$y = |x|^2 - 2|x| - 3 \rightarrow y = ||x|^2 - 2|x| - 3|$$ Fig. 2.71 Clearly, above figure is differentiable for all $x \in R - \{-3, 0, 3\}$. Fig. 2.72 (i) $$y = e^{-x} \longrightarrow y = e^{-x} - \frac{1}{2}$$. Fig. 2.74 (iii) $$y = \left| z^{-|x|} - \frac{1}{2} \right|$$ (xi) $$y = f(x)$$ transforms to $|y| = f(x)$ Clearly $$|y| \ge 0 \implies \text{if } f(x) < 0$$; graph of $|y| = f(x)$ would not exist. if $$f(x) \ge 0$$; $|y| = f(x)$ would be given as $y = \pm f(x)$. Hence, the graph of |y| = f(x) exists only in the regions where f(x) is non-negative and will be reflected about x-axis only when $f(x) \ge 0$. "Region where f(x) < 0 is neglected". - (i) Remove (or neglect) the portion of the graph which lies below x-axis. - (ii) Plot the remaining portion of the graph, and also its mirror image in the x-axis. Graphically it could be stated as shown in Fig. 2.76. Graph for y = f(x): Fig. 2.76 **EXAMPLE** 1 Sketch the curve |y| = (x-1)(x-2). SOLUTION As we know the graph for y = (x-1)(x-2), is shown in Fig. 2.77. Fig. 2.77 $\Rightarrow y = (x-1)(x-2) \longrightarrow |y| = (x-1)(x-2),$ as shown in Fig. 2.78. Fig. 2.78 **EXAMPLE** 2 Plot the curve $|y| = \sin x$. **SOLUTION** Here, we know the curve for $y = \sin x$. Fig. 2.79 $$y = \sin x \longrightarrow |y| = \sin x$$ Fig. 2.80 **EXAMPLE** 3 Sketch the curve |x|+|y|=1 **SOLUTION** As the graph for y = 1 - x is; Fig. 2.81 (i) $$y = 1 - x \longrightarrow y = 1 - |x|$$. Fig. 2.82 Fig. 2.83 Clearly above figure represents a square. **EXAMPLE** 4 Sketch the curve |x| - |y| = 1. **SOLUTION** As the graph for y = x - 1 is known; Fit. 2.84 (i) $$y = x - 1 \longrightarrow y = |x| - 1$$ Fig. 2.85 (ii) $$y = |x| - 1 \longrightarrow |y| = |x| - 1$$ Fig. 2.86 (xii) y = f(x) transforms to |y| = |f(x)| i.e., $y = f(x) \longrightarrow |y| = |f(x)|$; is plotted in two steps. (i) $$y = f(x) \longrightarrow y = |f(x)|$$ (ii) $$y = |f(x)| \longrightarrow |y| = |f(x)|$$ Graphically it could be stated as; . **SOLUTION** Here; curve for $y = e^{-x}$ is shown as; Fig. 2.88 (i) $y = e^{-x} \longrightarrow y = |e^{-x}|$ Fig. 2.89 (ii) $y = |e^{-x}| \longrightarrow |y| = |e^{-x}|$. Fig. 2.90 **EXAMPLE** 2 Plot the curve $|y| = |e^x - 1|$. **SOLUTION** As we know the curve for $y = e^x$ is shown as; Fig. 2.91 (i) $y = e^x \longrightarrow y = e^x - 1$ Fig. 2.92 (ii) $y = e^x - 1 \longrightarrow y = |e^x - 1|$. Fig. 2.93 Fig. 2.94 **EXAMPLE** 3 Plot the curve $|y| = \left| \sin x + \frac{1}{2} \right|$. **SOLUTION** Here; we know the graph for $y = \sin x$, is shown as Fig. 2.95 (i) $$y = \sin x \longrightarrow y = \sin x + \frac{1}{2}$$. Fig. 2.96 (ii) $$y = \sin x + \frac{1}{2} \longrightarrow y = \left| \sin x + \frac{1}{2} \right|$$ Fig. 2.97 (iii) $$y = \left| \sin x + \frac{1}{2} \right| \longrightarrow |y| = \left| \sin x + \frac{1}{2} \right|$$ (xiii) y = f(x) transforms to |y| = |f(|x|)| i.e., $$y = f(x) \longrightarrow |y| = |f(x)|$$. The steps followed are: $$y = f(x) \longrightarrow y = |f(x)|.$$ $$y = |f(x)| \longrightarrow y = |f(|x|)|$$ $$y = |f(|x|)| \longrightarrow |y| = |f(|x|)|.$$ Graphically it could be stated as: Fig. 2.99 83 (i) $$y = f(x) \longrightarrow y = |f(x)|$$ (ii) $$y = |f(x)| \longrightarrow y = |f(|x|)|$$ Fig. 2.101 (iii) $$y = |f(|x|)| \longrightarrow |y| = |f(|x|)|$$. **EXAMPLE** (1) Plot the $$|y| = \left| e^{-|x|} - \frac{1}{2} \right|$$. **SOLUTION** Here; we know the graph for $y = e^{-x}$. Fig. 2.103 (i) $$y = e^{-x} \longrightarrow y = e^{-x} - \frac{1}{2}$$ Fig. 2.104 Fig. 2.105 (iii) $$y = e^{-|x|} - \frac{1}{2} \longrightarrow y = \left| e^{-|x|} - \frac{1}{2} \right|$$. (iii) $$y = e^{-|x|} - \frac{1}{2} \longrightarrow y = \left| e^{-|x|} - \frac{1}{2} \right|$$. (iv) $y = \left| e^{-|x|} - \frac{1}{2} \right| \longrightarrow |y| = \left| e^{-|x|} - \frac{1}{2} \right|$. Fig. 2.107 **EXAMPLE** 2 Plot $|y| = |\log |x||$. **SOLUTION** Here; $y = \log x$ is plotted as; Fig. 2.108 (i) $$y = \log x \longrightarrow y = \log |x|$$ Fig. 2.109 (ii) $$y = \log |x| \longrightarrow y = |\log |x||$$ Fig. 2.110 (iii) $$y = |\log|x|| \longrightarrow |y| = |\log|x||$$ Fig. 2.111 # **EXAMPLE** 3 Sketch the curve $|y| = ||x|^2 - 3|x| - 2|$. **SOLUTION** As we know the graph for $y = x^2 - 3x - 2$. Fig. 2.112 (i) $$y = x^2 - 3x - 2 \rightarrow y = |x|^2 - 3|x| - 2$$ (i) $$y = x^2 - 3x - 2 \rightarrow y = |x|^2 - 3|x| - 2$$ (ii) $y = |x|^2 - 3|x| - 2 \rightarrow y = ||x|^2 - 3|x| - 2|$. Fig. 2.114 (iii) $$|y| = ||x|^2 - 3|x| - 2|$$ Fig. 2.115 (xiv) y = f(x) transforms to y = [f(x)]; (where $[\bullet]$ denotes the greatest integer function) i.e., $f(x) \longrightarrow [f(x)]$ Here; in order to draw y = [f(x)] mark the integer on y-axis. Draw the horizontal lines
through integers till they intersect the graph. Draw vertical dotted lines from these intersection points; finally draw horizontal lines parallel to x-axis from any intersection point to the nearest vertical dotted line with blank dot at right end in case f(x) increase. OR **Step 1.** Plot f(x). **Step 2.** Mark the intervals of unit length with integers as end points on y-axis. **Step 3.** Mark the corresponding intervals {with the help of graph of f(x)} on x-axis. **Step 4.** Plot the value of [f(x)] for each of the marked intervals. #### Graphically it could be shown as: **EXAMPLE** 1 Sketch the curve $y = [\sin x]$. **SOLUTION** Here, sketch for $y = \sin x$ is shown as in Fig. 2.117. 87 Fig. 2.117 $$y = \sin x \rightarrow y = [\sin x]$$ Fig. 2.118 **EXAMPLE** 2 Sketch the curve $y = [x^2 - 1]$ (where $[\cdot]$ denotes greatest integer function). When $-2 \le x \le 2$. **SOLUTION** Here $y = x^2 - 1$ could be plotted as shown in Fig. 2.119. (i) $$y = x^2 - 1 \longrightarrow y = [x^2 - 1].$$ Fig. 2.119 Fig. 2.120 **EXAMPLE** 3 Sketch the curve; $y = [\sqrt{2-x^2}]$; where $[\cdot]$ denotes the greatest integer function. **SOLUTION** We know, $y = \sqrt{2 - x^2}$ represents a circle for $y \ge 0$. Shown as in Fig. 2.121. Thus, the graph for $y = [\sqrt{2-x^2}]$ Fig. 2.121 (xv) y = f(x) transforms to y = f([x]) Here, mark the integers on the x-axis. Draw vertical lines till they intersect the graph of f(x). From these intersection points draw horizontal lines (parallel to x-axis) to meet the nearest right vertical line, with a black dot on each nearest right vertical line which can be shown as in Fig. 2.122. Fig. 2.122 Fig. 2.123 $$y = f(x) \longrightarrow y = f([x])$$ **Step 1.** Plot the straight lines parallel to y-axis for integral values of x (say - 3, -2, -1, 0, 1, 2, 3, ...) Step 2. Now mark the points at which x = -3, x = -2, x = -1, x = 0, x = 1, ... on the curve. Step 3. Take the lower marked point for x say if n < x < n + 1 then take the point at x = n and draw a horizontal line to the nearest vertical line formed by x = n + 1, proceeding in this way we get required curve. **EXAMPLE** 1 Plot the curve $y = e^{[x]}$. **SOLUTION** Here the graph for $y = e^{[x]}$ is shown as; **EXAMPLE** 2 Sketch the curve $y = \sin[x]$ when $-2\pi \le x \le 2\pi$ SOLUTION The curve for $y = \sin[x]$; could be plotted as shown in Fig. 2.125. Fig. 2.125 **EXAMPLE** 3 Sketch the curve for $y = \cos[x]$; $-\pi \le x \le \pi$. **SOLUTION** The curve for $y = \cos[x]$ could be plotted as; Fig. 2.126 **EXAMPL5** 4 Plot the curve $y = [x]^2$; $-2 \le x \le 2$. **SOLUTION** The curve for $y = [x]^2$; $-2 \le x \le 2$ could be plotted as; Fig. 2.127 (xvi) y = f(x) transforms to y = [f([x])]Here, we should follow two steps; 91 (i) $$y = f(x) \longrightarrow y = f([x])$$ $y = f([x]) \longrightarrow y = [f([x])]$ (ii) **EXAMPLE** 1 Sketch the curve $y = [\sin[x]]$; where $[\cdot]$ denotes the greatest integral function when $0 \le x \le \pi$. **SOLUTION** Here; first we shall plot the curve for $y = \sin[x]$, when $x \in [0, \pi]$. Fig. 2.128 From above figure we conclude that; when $$0 \le x \le \pi \implies y = \sin[x] \in [0, 1).$$ \Rightarrow $$y = [\sin[x]] \longrightarrow 0$$ for all $0 \le x \le \pi$. **EXAMPLE** 2 Plot the curve $y = [e^{\{x\}}]$; when -4 < x < 2. **SOLUTION** Here to sketch $y = [e^{[x]}]$, we should follow the steps as; (i) $$y = e^x$$ (ii) $$y = e^{[x]}$$ (ii) $$y = e^{[x]}$$ (iii) $y = [e^{[x]}]$ (i) $y = e^x$ (ii) $y = e^{[x]}$ Fig. 2.129 Fig. 2.130 (iii) $y = [e^{[x]}]$; from Fig. 2.130. $$e^{[x]} = \begin{cases} 0 < e^{[x]} < 1; & x < 0 \\ e^{[x]} = 1 & ; & 0 \le x < 1 \\ e^{[x]} = 2.7 & ; & 1 \le x < 2 \end{cases}$$ Thus; $y = [e^{[x]}]$ $$\Rightarrow y = \begin{cases} 0; & x < 0 \\ 1; & 0 \le x < 1 \text{ shown as in} \\ 2; & 1 \le x < 2 \end{cases}$$ Fig. 2.131. Graph for; $y = [e^{[x]}];$ when x < 2. Fig. 2.131 (xvii) y = f(x) transforms to [y] = f(x) / Graph of Candles Here, to plot [y] = f(x); we check only those points for which $f(x) \in \text{integers}$, as $[y] \in \text{integers}$ for all x. Thus; [y] = f(x) represents only integral values of y. Here, domain of f(x) are set of values of x for which $f(x) \in$ integers. EXAMPLE Sketch the curve; $[y] = \sin x$. **SOLUTION** As we know; $-1 \le \sin x \le 1$ but since; $[y] = \sin x$. \Rightarrow sin x = -1, 0, 1 are only solutions; or $x = \frac{n\pi}{2} \in \text{Domain of } [y] = \sin x.$ Thus, $[y] = \sin x$ is shown as in Fig. 2.132. Graph for $y = \sin x$: Fig. 2.132 #### Graph for $[y] = \sin x$: From above figure, (the points marked O, A, B, C, D, E, A', B', C', D', E',... is the graph for candles), or graph for $[y] = \sin x$. **EXAMPLE** Sketch the curve $[y] = \sin^{-1} x$. **SOLUTION** As we know the graph for $y = \sin^{-1} x$; shown as in Fig. 2.134 and 2.135. Graph for $y = \sin^{-1} x$; Fig. 2.134 Graph for $[y] = \sin^{-1} x$; Fig. 2.135 From above figure, $[y] = \sin x$. (xviii) y = f(x) transforms to [y] = [f(x)] As we have earlier discussed y = [f(x)], i.e., **transformation** (xiv), and we know [y] implies only those values of x for which $f(x) \in$ integer. **EXAMPLE** 1 Sketch the curve; $[y] = [\sin x]$. **SOLUTION** To sketch the curve $[y] = [\sin x]$ we first plot $y = [\sin x]$. (i) Graph for $y = [\sin x]$ Fig. 2.136 (ii) Graph for $[y] = [\sin x]$ Fig. 2.137 From above figure it is clear $[y] = [\sin x]$ is periodic with period 2π . (xix) y = f(x) transforms to $y = f({x})$; (where ${\cdot}$ denotes fractional part of x, i.e., $$\{x\} = x - [x]$$) $$f(x) \longrightarrow f(\{x\})$$ Graph of f(x-[x]) or $f(\{x\})$ can be obtained from the graph of f(x) by following rule. "Retain the graph of f(x) for values of x lying between interval [0, 1). Now it can be repeated for rest of the points. (taking periodicity 1). New obtained function is graph for $y = f(\{x\})$ ". Graphically it could be stated as; Graph for y = f(x) Fig. 2.139 **EXAMPLE** 1 Sketch the curve $y = ({x} - 1)^2$. **SOLUTION** Here, we know the curve for $y = (x-1)^2$ shown as; Graph for $y = (x - 1)^2$: Fig. 2.140 Now; to plot $y = (\{x\} - 1)^2$ retain the graph for the interval $x \in [0, 1)$ and repeat for length 'one'. Graph for $y = (\{x\} - 1)^2$: Fig. 2.141 **EXAMPLE** Sketch the curve $|y| = (\{x\} - 1)^2$. **SOLUTION** As discussed in above example $y = (\{x\} - 1)^2$. Thus, $|y| = (\{x\} - 1)^2$ is image of $(\{x\} - 1)^2$ on x-axis whenever $(\{x\} - 1)^2$ is positive. Graph of $|y| = (\{x\} - 1)^2$: Fig. 2.142 **EXAMPLE** Sketch the graph of $y = \frac{2^x}{2^{[x]}}$. **SOLUTION** As we know 2^x is exponential function and we want to transform it to $2^{x-[x]}$, it retain the graph for $x \in [0, 1)$ and repeat for rest points. Graph for $y = 2^x$ Fig. 2.143 Graph for $y = 2^{\{x\}}$ To retain graph between $x \in [0, 1)$. Fig. 2.144 96 (xx) y = f(x) transforms to $y = \{f(x)\}$ Here, plot the horizontal lines for all integral values of y and for the point of intersection on y = f(x) plot draw vertical lines and translate the graph for boundary y = 0 and y = 1. **EXAMPLE** (1) Sketch the curve $y = \{\sin x\}$. (where $\{\cdot\}$ denotes the fractional part of x). **SOLUTION** As we know the graph for $y = \sin x$. Shown as. Graph of $\sin x$: Fig. 2.145 As to retain the curve when $0 \le y < 1$; and shift other sections of graph between y = 0 to y = 1. **Graph for y = \{\sin x\}:** Fig. 2.146 **EXAMPLE** 2 Sketch the curve $y = \{x^2\}$. **SOLUTION** As we know the curve $y = x^2$, is shown as: Fig. 2.147 Fig. 2.148 **EXAMPLE** 3 Sketch the curve $y = \{e^x\}$. **SOLUTION** As we know the curve $y = e^x$; shown as: Graph for $y = \{e^x\}$: To retain the graph for $0 \le y < 1$ and transform the others to $0 \le y < 1$. rmations Fig. 2.150 (xxi) y = f(x) transforms to $y = \{f(\{x\})\}\$ Here, we have to follow two steps: - (i) Draw the graph for $y = f(\{x\})$. - (ii) $f(\lbrace x \rbrace) \longrightarrow \lbrace f(\lbrace x \rbrace) \rbrace$ **EXAMPLE** 1 Sketch the curve $y = \{e^{\{x\}}\}$. **SOLUTION** As we know the curve for $y = e^x$, is plotted as shown in Fig. 2.151. Graph for $y = e^x$: Fig. 2.151 Now to sketch $y = e^{\{x\}}$ retain the graph for $y = e^x$ between $0 \le x < 1$ and repeat for entire real x. Graph for $y = e^{\{x\}}$: Fig. 2.152 Graph for $y = \{e^{\{x\}}\}$: Fig. 2.153 Here, we know the graph for $y = e^{\{x\}}$, now to plot straight lines || to x-axis for integral values of y and retain the graph for $0 \le y < 1$ and transform the others between $0 \le y < 1$. **EXAMPLE** 2 Sketch the curve $y = {\sin\{x\}}$. **SOLUTION** As we know the curve $y = \sin x$; is plotted as; Graph for $y = \sin x$: 98 Graph for $y = \sin\{x\}$: Fig. 2.155 Graph for $y = \{\sin\{x\}\}$: From above figure $$y = \sin\{x\} \quad \Rightarrow \quad 0 \le y < 1.$$ Fig. 2.156 So, the graph of $y = \sin\{x\}$ and $y = \{\sin\{x\}\}$ are same. (xxii) y = f(x) transforms to $\{y\} = f(x)$ Here; retain the graph of y = f(x) only when y = f(x) lies between $y \in [0, 1)$ and neglect the graph for other values. Graphically it could be stated as; Fgi. 2.157 **SOLUTION** As we know the curve for $y = x^2$, is plotted as: Graph for $y = x^2$: Graph for $\{y\} = x^2$: Fig. 2.158 Fig. 2.159 **EXAMPLE** 2 Sketch the curve $\{y\} = \sin x$. **SOLUTION** As we know the curve $y = \sin x$, is plotted as shown in Fig. 2.160 and 2.161. Graph for $y = \sin x$: Fig. 2.160 Now to sketch $\{y\} = \sin x$: We retain the graph for $0 \le y < 1$ and neglect the graph for other values. Graph for $\{y\} = \sin x$: Fig. 2.161 **EXAMPLE** 1 Sketch the curve $\{y\} = \{x\}$. **SOLUTION** As we know the curve for y = x. Fig. 2.162 Graph for $y = \{x\}$: Fig. 2.163 mati ons **Graph for \{y\} = \{x\}:** From above figure we can see $y = \{x\}$ attains all values between [0, 1). Thus, graph remains same. Fig. 2.164 **EXAMPLE** 2 Sketch the curve $\{y\} = \{\cos x\}$.
SOLUTION As we know the curve $y = \{\cos x\}$ is plotted as shown in Fig. 2.165. Fig. 2.165 From above figure; $y = \{\cos x\}$ lies between [0, 1), which shows $y = \{\cos x\}$ and $\{y\} = \{\cos x\}$ are same. Thus, graph for $\{y\} = \{\cos x\}$: Fig. 2.166 (xxiv) y = f(x) transforms to $y = f^{-1}(x)$ As discussed in chapter 1. $y = f^{-1}(x)$ is the mirror image of y = f(x) about y = x. OR "Interchange x and y-axis when function is bijective." #### Graphically it could be stated as: Fig. 2.167 # 2.4 SKETCHING $h(x) = MAXIMUM \{f(x), g(x)\} AND h(x) = MINIMUM \{f(x), g(x)\}$ ### (i) $h(x) = maximum\{f(x), g(x)\}$ $$\Rightarrow$$ $$h(x) = \begin{cases} f(x); \text{ when } f(x) > g(x) \\ g(x); \text{ when } g(x) > f(x) \end{cases}$$ \therefore Sketch f(x) when its graph is above the graph of g(x) and sketch g(x) when its graph is above the graph of f(x). ### (ii) $h(x) = minimum\{f(x), g(x)\}$ $$h(x) = \begin{cases} f(x), & \text{when } f(x) < g(x) \\ g(x), & \text{when } g(x) < f(x) \end{cases}$$.. Sketch f(x) when its graph is lower and otherwise sketch g(x). 103 Note One must remember the formula we can write; $$\max\{f(x), \ g(x)\} = \frac{f(x) + g(x)}{2} + \left| \frac{f(x) - g(x)}{2} \right|$$ min $$\{f(x), g(x)\}=\frac{f(x)+g(x)}{2}-\left|\frac{f(x)-g(x)}{2}\right|$$ OR "To draw the graph of functions of the form $y = \max\{f(x), g(x)\}$ or $y = \min\{f(x), g(x)\}$." We first draw the graphs of both the functions f(x) and g(x) and their points of intersections. Then we find any two consecutive points of intersection. In between these points either f(x) > g(x) or f(x) < g(x), then, in order to $\max\{f(x), g(x)\}$ we take those segments of f(x) for which f(x) > g(x), between any two consecutive points of intersection of f(x) and g(x). Similarly, in order to min $\{f(x), g(x)\}\$, we take those segments of f(x) for which f(x) < g(x), between any two consecutive points of intersection of f(x) and g(x). **EXAMPLE** 1 Sketch the graph of $y = max \{ \sin x, \cos x \}, \forall x \in \left(-\pi, \frac{3\pi}{2} \right)$. **SOLUTION** First plot both $y = \sin x$ and $y = \cos x$ by a dotted curve as can be seen from the graph in the interval $\left(-\pi, \frac{3\pi}{2}\right)$ and then darken those dotted lines for which f(x) > g(x) or g(x) > f(x). From adjacent figure the point of intersections are A, B, C. Fig. 2.168 .. Graph of max (sin x, cos x) Fig. 2.169 **EXAMPLE** 2 Sketch the graph for $y = \min \{\tan x, \cot x\}$. **SOLUTION** First plot both $f(x) = \tan x$ and $g(x) = \cot x$ by a dotted curves as can be seen from the graph and then darken those dotted lines for which $f(x) \le g(x)$ and g(x) < f(x). Fig. 2.170 From above figure we obtain the graph of $\min\{\tan x, \cot x\}$. Graph of min $\{\tan x, \cot x\}$: Fig. 2.171 **EXAMPLE** 3 Sketch the curve $y = min\{|x|, |x-1|, |x+1|\}$. SOLUTION First plot the graph for: y = |x|, y = |x-1|, y = |x+1|by a dotted curve as can be seen from the graph and then darken those dotted lines for which $$|x| < {|x-1|, |x+1|};$$ $$|x-1|<\{|x|,|x+1|\}$$ and $$|x+1| < {|x|, |x-1|}.$$ Graph for $$y = |x|, y = |x - 1|, y = |x + 1|.$$ Fig. 2.172 As from the above curve graph for $y = \min\{|x-1|, |x|, |x+1|\}$ is plotted as; Fig. 2.173 From above figure; $$\min\{|x-1|,|x|,|x+1|\} = \begin{cases} -(x+1); & x \le -1 \\ (x+1); & -1 \le x \le -\frac{1}{2} \\ -(x); & -\frac{1}{2} \le x \le 0 \end{cases}$$ $$(x); & 0 \le x \le \frac{1}{2}$$ $$(1-x); & \frac{1}{2} \le x \le 1$$ $$(x-1); & x \ge 1$$ #### 2.5 WHEN $f(x), g(x) \longrightarrow f(x) + g(x) = h(x)$ There is no direct approach; but we can use following steps if minimum or maximum value of any one is known. **Step 1.** Find maximum and minimum value of g(x) say; $a \le g(x) \le b$. **Step 2.** Plot the curve h(x) = f(x) + g(x) between f(x) + a to f(x) + b. $f(x) + a \le h(x) \le f(x) + b$ **Step 3.** Check $g(x) = 0 \implies h(x) = f(x)$. **Step 4.** When $g(x) > 0 \implies h(x) > f(x)$. **Step 5.** When $g(x) < 0 \implies h(x) < f(x)$. #### **EXAMPLE** 1 Plot the curve $y = x + \sin x$. **SOLUTION** Here, $$y = x + \sin x = f(x) + g(x)$$ as we know; $$g(x) = \sin x \in [-1, 1]$$ $$\therefore \qquad \qquad x-1 \le y \le x+1 \qquad \qquad \dots (i)$$ \Rightarrow To sketch the curve between two parallel lines y = x + 1 and y = x - 1 (called bounded limits) dlso; $$g(x) = 0 \implies y = x \qquad ...(ii)$$ $$g(x) > 0 \implies y = x + \sin x > x \qquad ...(iii)$$ 105 $g(x) < 0 \implies y = x + \sin x < x$...(iv) Using Eqs. (i), (ii), (iii) and (iv), we get 2.6 WHEN $$f(x)$$, $g(x) \longrightarrow f(x) \cdot g(x) = h(x)$ There is no direct approach but we can use the following steps if minimum and maximum of any one is known. **Step 1.** Find the minimum and maximum of any one of them say $a \le g(x) \le b$. Step 2. From step 1; $a \cdot f(x) \le h(x) \le b \cdot f(x)$ Step 3. Check $g(x) = 0 \implies h(x) = 0$. **EXAMPLE** 1 Sketch the curve; $y = x \sin x$. **SOLUTION** Here; $y = x \sin x$; where, $-1 \le \sin x \le 1$ \Rightarrow $-x \le y \le x$...(i) also; $\sin x = 0$ $\Rightarrow x = -2\pi, -\pi, 0, \pi, 2\pi, \dots$ \therefore y = 0 when $x = -2\pi, -\pi, 0, \pi, ...$ Fig. 2.175 ## Some more Solved Examples ### SOME MORE SOLVED EXAMPLES **EXAMPLE** 1 Sketch the curves of the following: (i) $$y = \sqrt{x - [x]}$$ (i) $$y = \sqrt{x - [x]}$$ (ii) $y = [x] + \sqrt{x - [x]}$ (iii) $y = |[x] + \sqrt{x - [x]}|$; where $[\bullet]$ represent greatest integer function SOLUTION (i) As we know that; $$0 \le x - [x] < 1$$ for all $x \in R$. Also, for any $x \in [0, 1)$, we have $$x^2 \le x \le \sqrt{x}$$ $$x - [x] \le \sqrt{x - [x]}$$ Now, $$y = \sqrt{x - [x]} = \begin{cases} \sqrt{x + 1}, & \text{when } -1 \le x < 0 \\ \sqrt{x}, & \text{when } 0 \le x < 1 \\ \sqrt{x - 1}, & \text{when } 1 \le x < 2 \\ \sqrt{x - 2}, & \text{when } 2 \le x < 3 \dots \text{and so on.} \end{cases}$$ Thus, from above we have to plot; $$y = \sqrt{x}$$, when $0 \le x < 1$ $$y = \sqrt{x-1}$$, when $1 \le x < 2$ (i.e., same as shifting \sqrt{x} towards right by 1 unit.) (i.e., same as sh $$y = \sqrt{x-2}$$, when $2 \le x < 3$ (i.e., same as shifting \sqrt{x} towards right by 2 units) : the curve for $y = \sqrt{x - [x]}$ is periodic with period '1'. Shown as in Fig. 2.178. Fig. 2.178 $$y = [x] + \sqrt{x - [x]}$$ $$y = \begin{cases} -1 + \sqrt{x+1}, & \text{when } -1 \le x < 0 \end{cases}$$ $$\sqrt{x}, & \text{when } 0 \le x < 1$$ $$1 + \sqrt{x-1}, & \text{when } 1 \le x < 2$$ 109 Thus, the graph for $y = [x] + \sqrt{x - [x]}$ is obtained by the graph of $y = \sqrt{x - [x]}$ by translating it by [x] units in upward or downward direction according as [x] > 0 or [x] < 0. Thus, the curve for $$y = [x] + \sqrt{x - [x]}$$ Fig. 2.179 From above curve we could discuss that; $y = [x] + \sqrt{x - [x]}$ is continuous and differentiable for all x. (iii) The graph for $y = |x| + \sqrt{x - |x|}$ is obtained by reflecting the portion lying below x-axis of the graph of $y = |x| + \sqrt{x - |x|}$ about x-axis and keeping the portion lying above x-axis (as it is). Thus, the graph for $y = |x| + \sqrt{x - |x|}$. Fig. 2.180 #### **EXAMPLE** 2 Sketch the curve $y = (1 - x^{2/3})^{3/2}$. #### SOLUTION Here; (a) $$f(-x) = f(x)$$: even function or symmetric about y-axis $$x = 0 \implies y = 1$$ $$y = 0 \implies x = \pm 1$$ $$\frac{dy}{dx} > 0 \text{ when } x \in [-1, 0]$$ $$\frac{dy}{dx} < 0 \text{ when } x \in [0, 1]$$ $$\frac{d^2y}{dx^2} > 0$$ when $x \in [-1, 1]$ From above; Fig. 2.181 #### **EXAMPLE** 3 Sketch the graph for $y = (x-1)x^{2/3}$. #### **SOLUTION** In $y = (x - 1)x^{2/3}$ (a) Not symmetric about any axis or origin. ...(i) as $$x = 0 \Rightarrow y = 0$$ as $y = 0 \Rightarrow x = 0, 1$ (c) Domain $$\in R$$ Range $\in R$...(iii) (d) $$\frac{dy}{dx} = x^{2/3} + \frac{2(x-1)}{3x^{1/3}} = \frac{5x-2}{3x^{1/3}}$$ $$\frac{dy}{dx} > 0, \text{ when } x < 0 \text{ or } x > \frac{2}{5}$$ $$\frac{dy}{dx} < 0, \text{ when } 0 < x < \frac{2}{5}$$ $$\frac{7}{6} < 0$$, when $0 < x < \frac{2}{5}$...(iv) $$\Rightarrow \frac{\frac{d^2y}{dx^2} > 0, \text{ when } x < -\frac{2}{5} \text{ or } x > 0}{\frac{d^2y}{dx^2} < 0, \text{ when } -\frac{2}{5} < x < 0} \qquad \dots (v)$$ Thus, curve for $y = (x-1)x^{2/3}$ is shown in Fig. 2.182. Fig. 2.182 #### **EXAMPLE** 4 Draw the graph for: (i) $$y = |1 - |x - 1||$$ (ii) $$|y| = |1 - |x - 1||$$ **SOLUTION** As we know the graph for y = x - 1 Fig. 2.183 (a) $$y = (x-1) \longrightarrow y = |x-1|$$ (b) $$y = |x-1| \longrightarrow y = -|x-1|$$ Fig. 2.184 Fig. 2.185 (c) $y = -|x-1| \longrightarrow y = 1-|x-1|$ (d) $y = 1-|x-1| \longrightarrow y = |1-|x-1||$ Fig. 2.186 Fig. 2.188 **EXAMPLE** 5 Draw the graph for: (i) $$y = 2 - \frac{1}{|x-1|}$$ (ii) $$y = \left| 2 - \frac{1}{|x-1|} \right|$$ (i) $$y = 2 - \frac{1}{|x-1|}$$ (ii) $y = \left| 2 - \frac{1}{|x-1|} \right|$ (iii) $|y| = \left| 2 - \frac{1}{|x-1|} \right|$ **SOLUTION** We know the graph for $y = \frac{1}{x}$ is shown as; Fig. 2.189 (a) $$y = \frac{1}{x} \longrightarrow y = \frac{1}{x-1}$$ Fig. 2.190 (c) $$y = \frac{1}{|x-1|} \longrightarrow y = -\frac{1}{|x-1|}$$ Fig. 2.192 (e) $$y = 2 - \frac{1}{|x-1|} \longrightarrow y = \left| 2 - \frac{1}{|x-1|} \right|$$ x=1 Fig. 2.194 (b) $$y = \frac{1}{x-1} \longrightarrow y = \frac{1}{|x-1|}$$ Fig. 2.191 (d) $$y = -\frac{1}{|x-1|} \longrightarrow y = 2 - \frac{1}{|x-1|}$$ (f) $$y = \left| 2 - \frac{1}{|x-1|} \right| \longrightarrow |y| = \left| 2 - \frac{1}{|x-1|} \right|$$ Fig. 2.195 #### **EXAMPLE** 6 Sketch the graph for: (i) $$y = e^{|x|} - e^{-x}$$ (ii) $$y = |1 + e^{|x|} - e^{-x}|$$ (iii) $$|y| = |1 + e^{|x|} - e^{-x}|$$ (iv) $$|y| \le |1 + e^{|x|} - e^{-x}|$$ #### SOLUTION (i) Here $$y = e^{|x|} - e^{-x}$$ $$y = \begin{cases} e^{x} - e^{-x} ; & x \ge 0 \\ e^{-x} - e^{-x} ; & x < 0 \end{cases}$$ $$y = \begin{cases} e^{x} - e^{-x} ; & x \ge 0 \\ 0 & ; & x < 0 \end{cases}$$ To discuss; (i) when $$x=0 \Rightarrow y=0$$ (it passes through origin) (ii) when $$y = 0 \implies e^{2x} - 1 =
0 \implies x = 0$$ (iii) $$f(-x) = -f(x)$$ $$y = f(x) = e^x - e^{-x}$$ $$f(-x) = e^{-x} - e^{x} = -f(x)$$ (iii) f(-x) = -f(x)as $y = f(x) = e^x - e^{-x}$ $\Rightarrow f(-x) = e^{-x} - e^x = -f(x);$ it shows $y = f(x) = e^x - e^{-x}$ is **odd function, i.e., symmetric about origin.** (iv) $y = e^x - e^{-x}$ $\Rightarrow \frac{dy}{dx} = e^x + e^{-x} = \frac{e^{2x} + 1}{e^x} > 0$ for all $x \in R$. $$y = e^x - e^{-x}$$ $$\frac{dy}{dx} = e^x + e^{-x} = \frac{e^{2x} + 1}{e^x} > 0$$ for all $x \in R$. $$\frac{d^2y}{dx^2} = e^x - e^{-x} = \frac{e^{2x} - 1}{e^x}$$ $$\frac{d^2y}{dx^2} = e^x - e^{-x} = \frac{e^{2x} - 1}{e^x}$$ $$\Rightarrow \frac{d^2y}{dx^2} > 0$$ when $x > 0$; concave up and increasing. also $\frac{d^2y}{dx^2} < 0$ when x < 0; concave down and increasing from above discussion $v = e^x - e^{-x}$; is plotted as shown in Fig. 2.196. Fig. 2.196 $$y = e^{|x|} - e^{-x} = \begin{cases} e^x - e^{-x}; & x \ge 0 \\ 0; & x < 0. \end{cases}$$ Thus from Fig. 2.197. Fig. 2.197 #### (ii) Plotting of $y = |1 + e^{|x|} - e^{-x}|$ Fig. 2.198 Fig. 2.199 From above Fig. 2.198. $$y = e^{|x|} - e^{-x} \longrightarrow y = 1 + e^{|x|} - e^{-x}$$ $$y = \begin{cases} 1 + e^{x} - e^{-x}; & x \ge 0 \\ 1 & : x < 0 \end{cases}$$ \Rightarrow Thus, the graph for; $$y = |1 + e^{|x|} - e^{-x}|$$ is same as; $$y = 1 + e^{|x|} - e^{-x}$$ {as $y \ge 1$ for all $x \in R$ } :. Graph for $y = |1 + e^{|x|} - e^{-x}|$ is shown in Fig. 2.199. #### (iii) Plotting of $|y| = |1 + e^{|x|} - e^{-x}|$ ## lay with Graphs #### (iv) Plotting of $|y| \le |1 + e^{|x|} - e^{-x}|$ From above figure check any point say (0, 0) \Rightarrow 0 \leq | 1 | (True, thus to shade area towards (0, 0). From given figure shade part represents the area bounded between two curves. #### **EXAMPLE** 7 Sketch the curve of the following: (i) $$|x+y| \ge 1$$ (iii) $$|x|+|y| \leq 2$$ (ii) $$|x-y| \le 1$$ (iv) $$|x|-|y|\geq 1$$ #### SOLUTION #### (i) Here to sketch, $|x+y| \ge 1$ we know; $|x+y| \ge 1$ $$\Rightarrow \begin{cases} x+y \ge 1 \\ x+y \le -1 \end{cases}$$ or $$x+y\geq 1$$ and $$x+y \le -1$$ First we shall draw the graph for x+y=1 and x+y=-1, now we shall consider any fixed point say (0,0) and check $x+y \ge 1$ and $x+y \le -1$ holds or not. As; $$x+y \ge 1 \implies 0 \ge 1$$ (false). :. shaded part is away from origin. again as; $$x+y \le -1$$ $$\Rightarrow 0 \le -1 \quad \text{(false)}$$:. Shaded part is away from origin shown as in Fig. 2.202. Fig. 2.202 #### (ii) To sketch $|x-y| \le 1$ we know $$|x-y| \le 1$$ $\Rightarrow -1 \le x - y \le 1$ $$\Rightarrow -1-x \le -y \le 1-x$$ $$(x-1) \le y \le (x+1)$$ Thus, to plot y between (x-1) to (x+1). In figure shaded parts is towards origin as; putting any fixed point say (0, 0); in $|x - y| \le 1$. $$\Rightarrow |0-0| \le 1$$ ### Fig. 2.203 #### (iii) To sketch $|x|+|y| \le 2$ Here; |y| = 2 - |x| is plotted as; Fig. 2.204 From above graph of |y| = 2 - |x|, we can check shading of $$|y| \le 2 - |x| \qquad \text{or} \qquad$$ or $$|x|+|y|\leq 2$$. as at $$(0, 0) \Rightarrow 0 \le 2$$ (true) : shading towards origin; shown as in Fig. 2.205. #### Fig. 2.205 #### (iv) Sketching of $|x|-|y| \ge 1$ To sketch $|x| - |y| \ge 1$; we proceed as: $$y = (x-1) \rightarrow y = |x|-1 \rightarrow |y| = |x|-1 \rightarrow |x|-|y| \ge 1$$ Fig. 2.206 EXAMPLE 8 Sketch the curve; (i) $$|x+y|+|x-y| \le 4$$ (ii) $$|x+y|+|x-y| \ge 4$$ SOLUTION (i) As we know; $$|x-y| = \begin{cases} |x| - |y|; & |x| \ge |y| \\ -(|x| - |y|); & |x| \le |y| \end{cases}$$ Thus; $|x+y|+|x-y| \le 4$ $$\Rightarrow \begin{cases} x+y+x-y \le 4; |x| \ge |y| \\ x+y-x+y \le 4; |x| < |y| \end{cases}$$ $$\Rightarrow \begin{cases} 2x \le 4; |x| \ge |y| \\ 2y \le 4; |x| < |y| \end{cases}$$ or $$|x+y| + |x-y| \le 4$$ $$\Rightarrow$$ $|x| \le 2$ and $|y| \le 2$ Fig. 2.207 Thus, to shade the portion when $-2 \le x \le 2$ and $-2 \le y \le 2$. Shown as in Fig. 2.207. (ii) Again; $|x+y|+|x-y| \ge 4 \Rightarrow |x| \ge 2$ and $|y| \ge 2$ Thus, to shade the portion when $x \le -2$ or $x \ge 2$ and $y \le -2$ or $y \ge 2$. Shown as in Fig. 2.208. Fig. 2.208 (i) $$2^{|x|}|y| + 2^{|x|-1} \le 1$$ EXAMPLE Sketch the curve for; (i) $$2^{|x|}|y| + 2^{|x|-1} \le 1$$ (ii) $2^{|x|}|y| + 2^{|x|-1} \le 1$; $|x| \le \frac{1}{2}$ and $|y| \le \frac{1}{2}$. SOLUTION (i) Here $2^{|x|}|y| + 2^{|x|-1} \le 1 \implies 2^{|x|} \left\{ |y| + \frac{1}{2} \right\} \le 1$ $$\Rightarrow |y| + \frac{1}{2} \le 2^{-|x|}$$ Thus, to plot $|y| + \frac{1}{2} \le 2^{-|x|}$, we proceed as; $$|y| + \frac{1}{2} \le 2^{-|x|}$$ o plot $|y| + \frac{1}{2} \le 2^{-|x|}$, we proceed as; $$y = \left(2^{-x} - \frac{1}{2}\right) \longrightarrow y = 2^{-|x|} - \frac{1}{2} \longrightarrow |y| = 2^{-|x|} - \frac{1}{2} \longrightarrow |y| \le 2^{-|x|} - \frac{1}{2}$$ (i) (ii) (iii) (iv) Shown as; Fig. 2.209 Fig. 2.210 (i) $y = 2^{-x} - \frac{1}{2}$ (iii) $$|y| = 2^{-|x|} - \frac{1}{2}$$ (ii) $$y = 2^{-|x|} - \frac{1}{2}$$ (iv) $|y| \le 2^{-|x|} - \frac{1}{2}$ Here, figure (iv) is shaded towards origin as putting x = 0, y = 0 in $|y| \le 2^{-|x|} - \frac{1}{2}$. $\Rightarrow 0 \le 1 - \frac{1}{2}$ or $0 \le \frac{1}{2}$, which is true, therefore, shaded towards origin. (ii) Plotting of $2^{|x|}|y| + 2^{|x|-1} \le 1$; $$|x| \le \frac{1}{2}$$ and $|y| \le \frac{1}{2}$. from above figure; $$2^{|x|}|y| + 2^{|x|-1} \le 1$$ Fig. 2.211. Fig. 2.211 **EXAMPLE** (10) Sketch the graph of the function: SOLUTION Here, $$f(x) = \log_2(1 - x^2)$$ $\log_2(1 - x^2)$ exists when, $-1 < x < 1$ i.e., and $$doman \in (-1, 1)$$ $$range \in (-\infty, 0]$$...(i) $$x \longrightarrow \pm 1 \Rightarrow y \longrightarrow -\infty$$ differentiating we get $$x \longrightarrow \pm 1 \Rightarrow y \longrightarrow -\infty$$ $$y = \log_2(1 - x^2),$$ $$\frac{dy}{dx} = \frac{(-2x)}{1 - x^2} \cdot (\log_2 e) = 2\log_2 e \frac{x}{(x^2 - 1)}$$ Using number line rule; ...(iii) ...(ii) also, $\frac{d^2y}{dx^2} = \frac{-2\log_2 e(1+x^2)}{(1-x^2)^2} < 0$ for all $x \in (-1,1)$ $\therefore y = \log(1 - x^2)$ is concave down for $x \in (-1, 1)$...(iv) from above results we can draw $y = \log_2(1 - x^2)$ as shown in Fig. 2.212. Fig. 2.212 **EXAMPLE** 11 Sketch the graph of $y = \log(\sin x)$. #### SOLUTION Here; - (i) $y = \log(\sin x)$ is defined, when $\sin x > 0$ $\Rightarrow x \in (2n\pi, (2n+1)\pi).$ - (ii) Since, $\sin x$ is periodic with period 2π . \therefore to discuss $y = \log(\sin x)$, when $x \in (0, \pi)$ as exists when $x \in (0, \pi)$ and then plotted for entire number line. (iii) as $$x \longrightarrow 0 \Rightarrow y = \log(0) = -\infty$$. as $$y \longrightarrow 0$$ \Rightarrow $\sin x \longrightarrow 1$ \Rightarrow $x = \frac{\pi}{2}$ (iv) $$\frac{dy}{dx} = \frac{1}{\sin x} \cdot \cos x = \cot x$$ $$\Rightarrow \frac{dy}{dx} > 0 \text{ when } x \in \left(0, \frac{\pi}{2}\right)$$ $$\frac{dy}{dx} < 0, \text{ when } x \in \left(\frac{\pi}{2}, \pi\right)$$ (v) $$\frac{d^2y}{dx^2} = -\csc^2 x < 0 \quad \text{for all} \quad x \in (0, \pi)$$ Thus, increasing and concave down $x \in (0, \pi/2)$ decreasing and concave down $x \in (\pi/2, \pi)$. and to plot the curve only when $x \in (2n\pi, (2n+1)\pi)$. Shown as in Fig. 2.213. Fig. 2.213 **EXAMPLE** Sketch the graph for $$y = -\log_{\sin x} e.$$ **SOLUTION** (i) Here, $y = -\log_{\sin x} e = \frac{-1}{\log_e \sin x}$ is defined when, $$\sin x > 0$$ and $\sin x \neq 1$. i.e., $$x \in (2n\pi, (2n+1)\pi) - \{2n\pi + \pi/2\}; n \in \mathbb{N}$$...(i) (ii) $$y = \frac{-1}{\log_e \sin x}$$ is periodic with period 2π , : to discuss the graph for $x \in (0, \pi) - {\pi/2}$ and sketch for the entire number line. (iii) : $$\frac{dy}{dx} = +\frac{1}{(\log \sin x)^2} \cdot \frac{1}{\sin x} \cdot \cos x \quad \Rightarrow \quad \frac{dy}{dx} = +\frac{\cot x}{(\log \sin x)^2}$$ or $$\frac{dy}{dx} > 0$$ when $x \in \left(0, \frac{\pi}{2}\right)$ $$\frac{dy}{dx} < 0$$ when $x \in \left(\frac{\pi}{2}, \pi\right)$ (iv) $$\frac{d^2y}{dx^2} = + \left\{ \frac{(\log \sin x)^2 \cdot (-\csc^2 x) - \cot x \cdot 2 (\log \sin x) \cdot \cot x}{(\log \sin x)^4} \right\}$$ $$= -\frac{\{(\log \sin x)^2 \csc^2 x + 2 (\log \sin x) \cot^2 x\}}{(\log \sin x)^2}$$ $$\Rightarrow \frac{d^2y}{dx^2} > 0 \quad \text{for all} \quad x \in (0, \pi) - \left\{\frac{\pi}{2}\right\}$$ Thus, $$y = \frac{1}{\log \sin x} \Rightarrow \begin{cases} \text{increasing and concave up } x \in \left(\frac{\pi}{2}, \pi\right) \\ \text{decreasing and concave up } x \in \left(0, \frac{\pi}{2}\right) \end{cases}$$ Fig. 2.214 #### **EXAMPLE** Sketch the curve: (i) $[y] = \cos x$; $x \in [-2\pi, 2\pi]$ (ii) $[y] = [\cos x]$; $x \in [-2\pi, 2\pi]$; where $[\cdot]$ denotes greatest integer function. **SOLUTION** As we know; $y = \cos x$ could be plotted as; Fig. 2.215 #### (i) Sketching of $[y] = \cos x$ From above curve $\cos x = -1$, 0, 1 when $x = -2\pi$, $-\frac{3\pi}{2}$, $-\pi$, $-\frac{\pi}{2}$, 0, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π $$\Rightarrow$$ [y] = cos x is possible only when $$x \in \left\{ \pm 2\pi, \pm \frac{3\pi}{2}, \pm \pi, \pm \frac{\pi}{2}, 0 \right\}$$ Thus, $$\cos x = -1 \implies -1 \le y < 0$$ $$\cos x = 0 \implies 0 \le y < 0$$ $$\cos x = 1 \implies 1 \le y < 2$$ Thus, $[y] = \cos x$ is plotted as shown in Fig. 2.216. Fig. 2.216 #### (ii) Sketching of $[y] = [\cos x]$ First to plot $y = [\cos x]$. Shown as; Fig. 2.217 From above figure $$y = [\cos x]$$ $$y = \begin{cases} -1 ; & \frac{\pi}{2} < |x| < \frac{3\pi}{2} \\ 0 ; & 0 < |x| \le \frac{\pi}{2} \text{ and } \frac{3\pi}{2} \le |x| < 2\pi \\ 1 ; & |x| = 0, 2\pi \end{cases}$$ Thus, when $$y = 0$$ \Rightarrow $[y] \in [0, 1)$ $$y=1 \Rightarrow [y] \in [1,2)$$ $$y = -1 \qquad \Rightarrow \qquad [y] \in [-1, 0)$$ urvature and Fig. 2.218 **EXAMPLE** Sketch the curves (i) $$y = 4 - [x]$$ (ii) $$[y] = 4 - [x]$$ (iii) $$[|y|] = 4 - [|x|]$$ SOLUTION As we know; (i) y = 4 - [x] could be plotted with in two steps; $$y = 4 - x \longrightarrow y = 4 - [x]$$ Fig. 2.219 - (ii) Since, we know from above curve y = 4 [x] - \Rightarrow $y \in$ integer,
thus, on taking integral part, say $$[y] = I \implies I \le y < (I+1)$$ Graph for [y] = 4 - [x] Fig. 2.220 In above curve lower boundary are included and upper are excluded. #### (iii) To sketch [|y|] = 4 - [|x|] From above figure we can say; $$[y] = 4 - [x] \longrightarrow [y] = 4 - [|x|] \longrightarrow [|y|] = 4 - [|x|]$$ Fig. 2.221 **EXAMPLE** 15 Shade the region whose co-ordinates x and y satisfy the equation. $\cos x - \cos y > 0$ **SOLUTION** Here, $\cos x - \cos y > 0$ can be written as, $2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{y-x}{2}\right) > 0$ $$\Rightarrow \qquad \sin\left(\frac{x+y}{2}\right)\sin\left(\frac{y-x}{2}\right) > 0$$ This inequality holds true for all points, when $\sin\left(\frac{x+y}{2}\right)$ and $\sin\left(\frac{y-x}{2}\right)$ have same sign. i.e., $$\sin\left(\frac{x+y}{2}\right) > 0$$ and $\sin\left(\frac{y-x}{2}\right) > 0$ or $$\sin\left(\frac{x+y}{2}\right) < 0$$ and $\sin\left(\frac{y-x}{2}\right) < 0$ $$\Rightarrow x+y>2n\pi \text{ and } y-x>2n\pi$$ or $$x + y < 2n\pi$$ and $y - x < 2n\pi$ $$\Rightarrow \begin{cases} y > 2n\pi - x & \{y < 2n\pi - x \\ y > 2n\pi + x \end{cases} \quad \begin{cases} y < 2n\pi + x \text{ where } n \in \mathbb{Z} \end{cases}$$ Here, the equation $x + y = 2k\pi$ represents a system of parallel straight lines corresponding to different values of k. Say $$k=0,1 \Rightarrow y=-x \text{ and } y=-x+2\pi.$$ i.e., the set of points whose coordinates satisfy the inequality $$0 < x + y < 2\pi$$ Similarly, for general points: $2k\pi < x + y < (2k + 1)\pi$...(i) Now, the set of points which satisfy $\sin\left(\frac{x+y}{2}\right) > 0$. Fig. 2.222 ...(iii) $$\Rightarrow 2n\pi < \frac{x+y}{2} < (2n+1)\pi$$ $$\Rightarrow 2(2n\pi) < x+y < 2(2n+1)\pi \qquad ...(ii)$$ only those points of x, y which satisfy Eq. (ii). Similarly, $2(2p-1)\pi < y-x < 2(2p)\pi$ From above results, graph for $\cos x > \cos y$ is shown in Fig. 2.222. **EXAMPLE** (13) Sketch the curve $x^{2/3} + y^{2/3} = a^{2/3}$. - **SOLUTION** As to sketch, $x^{2/3} + y^{2/3} = a^{2/3}$. - (i) Curve is symmetric about y-axis (as when x is replaced by (-x) curve remains same) - (ii) Curve is symmetric about x-axis (as when y is replaced by (-y) curve remains same). - (iii) Curve is symmetric about origin (as when x is replaced by y and y by x curve remains same). - (iv) When, $x=0 \Rightarrow y=\pm a$ when, $y = 0 \implies x = \pm a.$ $y^{2/3} = (a^{2/3} - x^{2/3}),$ $y^2 = (a^{2/3} - x^{2/3})^3;$ (v) differentiating both sides, $2y \frac{dy}{dx} = 3(a^{2/3} - x^{2/3})^2 \cdot \left(-\frac{2}{3}x^{-1/3}\right)$ $\Rightarrow \frac{dy}{dx} < 0$ when x > 0, y > 0 [to discuss $0 < x \le a$ and to take symmetry for rest of graph $\Rightarrow \frac{dx}{dx}$ using Eqs. (i), (ii) and (iii)]. $y \frac{dy}{dx} = -x^{-1/3} (a^{2/3} - x^{2/3})^2$ (vi) From above Differentiating again, we get $$y \frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx}\right)^{2} = -x^{-1/3} \cdot 2(a^{2/3} - x^{2/3}) \cdot \left(-\frac{2}{3}x^{-1/3}\right) + \frac{1}{3}x^{-4/3} \cdot (a^{2/3} - x^{2/3})^{2}$$ $$= \frac{4}{3}x^{-2/3}(a^{2/3} - x^{2/3}) + \frac{1}{3}x^{-4/3}(a^{2/3} - x^{2/3})^{2}$$ $$= \frac{1}{3}x^{-2/3}(a^{2/3} - x^{2/3})\{4 + x^{-2/3}(a^{2/3} - x^{2/3})\}$$ $\frac{d^2y}{dx^2} = + \text{ we whenever}; \quad 0 < x \le a \quad \text{and} \quad y > 0.$ Thus; when $0 < x \le a$ and y > 0 $$\Rightarrow \frac{dy}{dx} < 0 \text{ and } \frac{d^2y}{dx^2} > 0,$$ i.e., decreasing and concave up. :. Graph for $$x^{2/3} + y^{2/3} = a^{2/3}$$ Fig. 2.223 Note Above curve is known as Astroid represented by the following parametric equations: $$x = a \cos^3 t$$ $$y = a \sin^3 t$$ $$0 \le t \le 2\pi, \ a > 0$$ Eliminating cos t and sin t from above equations, we get $x^{2/3} + y^{2/3} = a^{2/3}$. where the quantities x and y are defined for all values of t. But since, the functions $\cos^3 t$ and $\sin^3 t$ are periodic with period 2π , it is sufficient to discuss the curve for $t \in [0, 2\pi]$. Thus, Domain of function $$\in [0, 2\pi]$$...(i) Range of function $\in [-a, a]$ Now, $$\frac{dx}{dt} = -3a\cos^2 t \sin t$$ $$\frac{dy}{dt} = +3a\sin^2 t \cos t$$...(ii) Here, $$\frac{dx}{dt} = 0$$, $\frac{dy}{dx} = 0 \implies t = 0, \frac{\pi}{2}, 8\pi, \frac{3\pi}{2}, 2\pi$. $$\frac{dy}{dx} = -\tan t$$... (iii) $$\frac{d^2y}{dx^2} = \frac{1}{3a\cos^4t\sin t}$$...(iv) From Eqs. (i), (ii), (iii) and (iv), we construct a table; | Range of t | Domain (x) | Range (y) | Sign of $\frac{dy}{dx}$ | Sign of $\frac{d^2y}{dx^2}$ | |-----------------------------|---|------------|--|-----------------------------| | $0 < t < \frac{\pi}{2}$ | 0< x <a< td=""><td>0< y < a</td><td>i flat Trickies</td><td>j 22 (to)</td></a<> | 0< y < a | i flat Trickies | j 22 (to) | | $\frac{\pi}{2} < t < \pi$ | -a < x < 0 | 0< y < a | + | s den + 100 | | $\pi < t < \frac{3\pi}{2}$ | -a < x < 0 | -a < y < 0 | ng that the spring | 8881 80 <u>-</u> 3 | | $\frac{3\pi}{2} < t < 2\pi$ | 0< x <a< td=""><td>-a < y < 0</td><td>**************************************</td><td></td></a<> | -a < y < 0 | ************************************** | | On the basis of above information we can sketch $$x = a \cos^3 t$$ $$y = b \sin^3 t$$ Students are adviced to convert the cartesian into parametric if possible. Fig. 2.224 **EXAMPLE** 17 Sketch the curves: (i) $$y = \frac{e^x + e^{-x}}{2}$$ (ii) $$y = \frac{e^x - e^{-x}}{2}$$ (i) $$y = \frac{e^x + e^{-x}}{2}$$ (ii) $y = \frac{e^x - e^{-x}}{2}$ (iii) $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ (iv) $$y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$ SOLUTION (i) Sketching of $f(x) = y = \frac{e^x + e^{-x}}{2}$ (a) $$f(-x) = f(x)$$, \therefore even or symmetric about y-axis ...(ii) $$\frac{dy}{dx} = \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2e^x}$$ $$\frac{d^2y}{dx^2} = \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2e^x}$$ $$\frac{dy}{dx} > 0 \text{ whenever } x > 0$$ $$\frac{dy}{dx} < 0 \text{ whenever } x < 0$$ $$\frac{d^2y}{dx^2} > 0 \text{ for all } x$$... Thus, from Eqs. (i), (ii), (iii) and (iv) graph of $$y = \frac{e^x + e^{-x}}{2}$$ is; Fig. 2.225 ## (ii) Sketching $y = \frac{e^x - e^{-x}}{2}$ (a) $$f(-x) = -f(x)$$, (b) $$x = 0 \Rightarrow y = 0$$ (b) $$x = 0 \Rightarrow y = 0$$ (c) $\frac{dy}{dx} = \frac{e^x + e^{-x}}{2} > 0$ for all x (d) $$\frac{d^2y}{dx^2} = \frac{e^x - e^{-x}}{2}$$ $$\frac{dy}{dx^2} = \frac{3}{2}$$ $$\Rightarrow \frac{\frac{d^2y}{dx^2} > 0 \text{ when } x > 0}{\frac{d^2y}{dx^2} < 0 \text{ when } x < 0}$$ Fig. 2.226 From Eqs. (i), (iii), (iii) and (iv) graph of $$y = \frac{e^x - e^{-x}}{2}$$. ## (iii) Sketching of $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ (a) $$f(-x) = -f(x)$$, ... odd function or symmetric about origin as $$x=0 \Rightarrow y=0$$ Domain $$\in R$$ Range $\in (-1, 1)$ 129 $$\frac{dy}{dx} > 0$$ for all $x \in R$ From Eqs. (i), (ii), (iii), (iv) and (v) graph of $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ is shown as in Fig. 2.227. Fig. 2.227 (iv) Sketching $$y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$ (a) f(-x) = -f(x), : odd function or symmetric about origin ...(i) - as $x \longrightarrow 0$; $y \longrightarrow \infty$ as $y \longrightarrow 1$; $x \longrightarrow \infty$ * ...(ii) (b) $y \longrightarrow -1; x \longrightarrow -\infty$ - Domain $\in R \{0\}$ Range $\in R [-1, 1]$ (c) ...(iii) $\frac{dy}{dx}$ < 0 for all $x \in R - \{0\}$ - $\left. \frac{d^2y}{dx^2} > 0 \text{ for } x > 0 \right\}$ (e) From above information, graph for $y = \frac{e^x + e^{-x}}{e^x - e^{-x}}$ as shown in Fig. 2.228. In many applications we come across exponential functions of the form $\frac{1}{2}$ (e^x – e^{-x}) and $\frac{1}{2}$ (e^x+ e^{-x}) known as "hyperbolic functions" represented by; $$sin hx = \frac{e^x - e^{-x}}{2}$$ $$cos hx = \frac{e^x + e^{-x}}{2}$$...(i) called hyperbolic sine and hyperbolic cosine. $\tan hx = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ also, (d) $$\tan hx = \frac{e^{x} - e^{x}}{e^{x} + e^{-x}}$$ $$\cot hx = \frac{e^{x} + e^{-x}}{e^{x} - e^{-x}}$$...(ii) called hyperbolic tangent and hyperbolic cotangent. Where if; $x = \cos ht$, $y = \sin ht$ $x^2 - y^2 = \cos^2 ht - \sin^2 ht = 1$ {Using Eq. (i)} which is equation of hyperbola. Thus, $\sin hx = \frac{e^x - e^{-x}}{2}$ and $\cos hx = \frac{e^x + e^{-x}}{2}$ are hyperbolic functions. #### **EXAMPLE** Sketch the curve $y = 2\sin x + \cos 2x$. **Solution** Since, the function is periodic with period 2π , it is sufficient to investigate the function in the interval $[0, 2\pi]$. (a) $$\frac{dy}{dx} = 2\cos x - 2\sin 2x = 2(\cos x - 2\sin x \cos x)$$ $$\frac{dy}{dx} = 2\cos x(1 - 2\sin x)$$ Here, $$\frac{dy}{dx} = 0 \implies x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}$$ $$\frac{d^2y}{dx^2} = -2\sin x - 4\cos 2x$$ $$\frac{d^2y}{dx^2} = -2\sin x - 4\cos 2x$$ $$\left(\frac{d^2y}{dx^2}\right)_{\text{at } x = \frac{\pi}{6}} = -3 < 0 \quad \text{where} \quad y = \frac{3}{2}$$ $$\therefore \text{ at } x = \frac{\pi}{6} \text{ is maximum at } x = \frac{\pi}{6}. \qquad \left(\frac{d^2y}{dx^2}\right)_{\text{at } x = \frac{\pi}{2}} = 2 > 0;$$ $$\therefore$$ at $x = \frac{\pi}{2}$ is minimum at $x = \frac{\pi}{2}$, where $y = 1$ at $$x = \frac{5\pi}{6}$$ we have, $\frac{d^2y}{dx^2} = -3 < 0$ and $$y = \frac{3}{2}$$ (maximum) at $$x = \frac{3\pi}{2}$$, we have, $\frac{d^2y}{dx^2} = 6 > 0$ and $$y = -3$$ (minimum) Thus, curve for $y = 2\sin x + \cos 2x$; Fig. 2.229 #### **EXAMPLE** Sketch the curve $y = e^{-x^2}$ (Gaussian curve) #### **SOLUTION** As the curve $y = f(x) = e^{-x}$ (a) Symmetric about y-axis {as $$f(-x) = f(x)$$ } c about y-axis {as $$f(-x) = f(x)$$ } ...(i) (b) $$\begin{array}{c} \operatorname{as} x \longrightarrow 0 \Rightarrow y \longrightarrow 1 \\ \operatorname{as} y \longrightarrow 0 \Rightarrow x \longrightarrow \pm \infty \end{array}$$...(ii) (c) $$\frac{dy}{dx} = e^{-x^2} (-2x) \implies \begin{cases} \frac{dy}{dx} < 0 \implies x > 0 \\ \frac{dy}{dx} > 0 \implies
x < 0 \end{cases} \dots (iii)$$ # Play with Graphs (d) $$\frac{d^2y}{dx^2} = -2e^{-x^2} - 2x(-2xe^{-x^2}) = 2e^{x^2} (2x^2 - 1)$$ $$\Rightarrow \frac{d^2y}{dx^2} > 0 \Rightarrow x < -\frac{1}{\sqrt{2}} \text{ or } x > \frac{1}{\sqrt{2}}$$ $$\frac{d^2y}{dx^2} < 0 \Rightarrow -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$$...(iv) (e) $y = e^{-x^2}$ assumes maximum at $$x=0 \Rightarrow y=1$$ and Domain $\in R$ Range∈ (0, 1] From above discussion; Fig. 2.230 ## **EXAMPLE** Sketch the curve $y = \frac{x}{1+x^2}$. SOLUTION Here; (a) Domain $\in R$ Range $\in [-0.5, 0.5]$...(i) (b) $$f(-x) = -f(x)$$, hence, $f(x)$ is odd, symmetric about origin (c) When $$x=0 \Rightarrow y=0$$ $$\frac{dy}{dx} = \frac{1-x^2}{(1+x^2)^2}$$ or $$\frac{dy}{dx} > 0 \text{ when } -1 < x < 1$$ $$\frac{dy}{dx} < 0 \text{ when } x < -1 \text{ or } x > 1$$...(iv) From above maximum at x = 1 and minimum at x = -1 $$\frac{d^2y}{dx^2} = \frac{2^x(x^2-3)}{(1+x^2)^3}$$ ⇒ $$\frac{d^2y}{dx^2} > 0, \text{ when } x \in (-\sqrt{3}, 0) \text{ and } (\sqrt{3}, \infty)$$ $$\frac{d^2y}{dx^2} < 0, \text{ when } x \in (-\infty, -\sqrt{3}) \text{ and } (0, \sqrt{3})$$...(vi) From above conditions graph for $y = \frac{x}{1+x^2}$ In above figure : | x | dy/dx | d^2y/dx^2 | | |--|-----------------|-------------|--| | $-\infty < x < -\sqrt{3}$ | r . r = . | - | | | $-\sqrt{3} < x < -1$ | - · · | + | | | -1 < x < 0 | + | + | | | 0 <x<1< td=""><td>+</td><td>_</td></x<1<> | + | _ | | | $1 < x < \sqrt{3}$ | | _ | | | √3 <x<∞< td=""><td>ns 1572 py 1467</td><td>+</td></x<∞<> | ns 1572 py 1467 | + | | **EXAMPLE** 21 Sketch the curve $y^2 = x^3$. (Semicubical parabola). - SOLUTION To plot the curve we discuss; - (i) Symmetric about x-axis (as $y \longrightarrow -y$ curve remains same). - (ii) Domain ∈ [0, ∞) - (iii) Range $\in R$. Here, to plot $y^2 = x^3 \Rightarrow y = \sqrt{x^3}$ and $y = -\sqrt{x^3}$, we draw $y = \sqrt{x^3}$ and take image about x-axis for $y = -\sqrt{x^3}$. (i.e., to discuss curve when $x, y \ge 0$). (iv) $$\frac{dy}{dx} = \frac{3}{2}x^{1/2} = \frac{3}{2}\sqrt{x} > 0$$ for all $x, y > 0$. (v) $$\frac{d^2y}{dx^2} = \frac{3}{4\sqrt{x}} > 0$$ for all $x, y > 0$. \Rightarrow Increasing and concave up when x > 0. From Eqs. (i), (ii), (iii), (iv) and (v). | x | у | dy/dx | d^2y/dx^2 | |---|---|-------|-------------| | + | + | . + | + ** | | + | | _ | | 133 nsformations In above curve $y^2 = x^3$ (semicubical parabola). For x = 0 we have y = 0 and y' = 0, thus, the branch of the curve has a tangent at y = 0 at origin. The second branch of $y = -\sqrt{x^3}$ also passes through origin and has the same tangent y = 0. Thus, two different branches of the curve meet at origin, have the same tangent, and situated at different sides of origin. This is known **as cusp of first kind.** **EXAMPLE** Sketch the curve: $y^2 = x^4 - x^6$. **SOLUTION** Here; $$y = \pm x^2 \sqrt{1 - x^2}$$ Thus, to plot the curve for $y = x^2 \sqrt{1 - x^2}$ and take image about x-axis. - (i) Symmetric about x and y-axis. - (ii) Domain $\in [-1, 1]$ (iii) Range $$\in \left[-\frac{2}{3\sqrt{3}}, \frac{2}{3\sqrt{3}} \right]$$. (iv) When Note $$x=0 \Rightarrow y=0$$ $$y=0 \Rightarrow x=0,\pm 1.$$ (v) $$2y \frac{dy}{dx} = 4x^3 - 6x^5 = 2x^3(2 - 3x^2) = 2x^3(\sqrt{2} - \sqrt{3}x)(\sqrt{2} + \sqrt{3}x)$$ \Rightarrow $$\frac{dy}{dx} > 0$$ when; $0 < x < \sqrt{\frac{2}{3}}$ and $y > 0$. $$\frac{dy}{dx} < 0$$ when $\sqrt{\frac{2}{3}} < x < 1$ and $y > 0$. Here, we are sketching the curve only when $x, y \ge 0$ and then take image about x and y-axis. (vi) $$\frac{d^2y}{dx^2} > 0$$ when $0 < x < \sqrt{\frac{2}{5}}$ and $y > 0$. $$\frac{d^2y}{dx^2} < 0 \quad \text{when} \quad \sqrt{\frac{2}{5}} < x < 1 \quad \text{and} \quad y > 0.$$ From above discussion. At the origin (as the singular point) the two branches of the curve corresponding to plus and minus in front of the radical sign are mutually tangent. Known as point of osculation or tacnode or double cusp. ## EXERGISE - 1. Sketch the curves; (where [·] denotes the greatest integer function). - (i) y = |2 |x 1|| - (ii) $y = 2 \frac{4}{|x-1|}$ - (iii) $|y| = 2 \frac{4}{|x-1|}$ - (iv) $y = \left| 2 \frac{4}{|x 1|} \right|$ - (v) $|y| = \left| 2 \frac{4}{|x 1|} \right|$ - (vi) $y = |e^{|x|} 2|$ - (vii) $|y| = |e^{|x|} 2|$ - (viii) y = x [x] - (ix) $y = \sqrt{x [x]}$ - (x) $y = (x [x])^2$ - (xi) $|y| = \sqrt{x [x]}$ - (xii) $|y| = (x [x])^2$ - (xiii) y = |x 1| + |x + 1| - (xiv) |y| = |x 1| + |x + 1| - (xv) y = [|x 1|] - (xvi) |y| = [|x 1|] - (xvii) y = x + [x] - (xviii) y = |x| + [|x|] - (xix) |y| = x + [x] - (xx) |y| = |x| + [|x|] - 2. Sketch the curves; - (i) $y = \sqrt{\sin x}$ - (ii) $|y| = \sqrt{\sin x}$ - (iii) $y = |\sin x| + |\cos x|$ - (iv) $|y| = \cos x + |\cos x|$ - $(v) \quad y = \sin^2 x 2\sin x$ - (vi) $y = 2^{\sin x}$ - (vii) $y = \log_2(|\sin x|)$ - (viii) $|y| = \log_2 |\sin x|$ - (ix) $y = \log_{\sin x} \left(\frac{1}{2}\right)$ - (x) $|y| = \log_{\sin x} \left(\frac{1}{2}\right)$ - 3. Sketch the curve $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ - 4. Sketch the curve $y = \frac{2x}{x^2 + 1}$ - 5. Sketch the curves; - (i) $y = x^2 2|x|$ - (ii) $y = e^{-|x|}$ - (iii) $y = e^{|x|}$ - (iv) |y| = x - (v) $y = x^3 x$ - (vi) $y^2 = x 1$ - 6. Construct the graph of the function $$y = f(x-1) + f(x+1)$$ where $f(x) = \begin{cases} 1 - |x|, & \text{when } |x| \le 1 \\ 0, & \text{when } |x| > 1 \end{cases}$ - 7. Sketch the curves; - (i) $y = \frac{1}{x 2}$ - (ii) $y = \frac{1}{|x| 2}$ - (iii) $y = \left| \frac{1}{|x|-2} \right|$ - (iv) $|y| = \left| \frac{1}{|x| 2} \right|$ - 8. Find number of solutions of $2 \cos x = 1 \sin x$. When $x \in [0, 4\pi]$. - 9. Find the number of solutions of; $\sin \pi x = |\log x|$ 10. Sketch the curve $$y = \frac{\sin 2x}{2} + \cos x.$$ #### ANSWERS - 8. 2 solutions, - 9. 6 solutions. 135 ## Graph Tells us ## Graph Tells Us #### Remark 1 #### Remark 2 Fig. 2 #### Remark 3 The First derivative Test for Local Extreme Value (i) If f' changes from positive to negative at C(f' > 0 for x < c and f' < 0 for x > c), then f has a local maximum value at c. ## Chapter 3 ## Asymptotes, Singular Points and Curve Tracing ## ASYMPTOTES, SINGULAR POINTS AND CURVE TRACING #### In this chapter we shall study: - Plotting of Rational and Irrational functions. - Intersection of Curve and Straight line at Infinity. A straight line, at a finite distance from origin, is said to be an asymptote of the curve y = f(x), if the perpendicular distance of the point P on the curve from the line tends to zero when x or y both tends to infinity. #### OR A straight line A is called an asymptote to a curve, if the distance δ from the variable point M of the curve to this straight line approaches zero as the point M tends to infinity. Shown as: ASSITE OF STATE ST Fig. 3.1 #### Mathematically Let y = f(x) be a curve and let (x, y) be a point on it. Tanget at (x, y) is given by; $$Y - y = \frac{dy}{dx} (X - x)$$ $$Y = \frac{dy}{dx} \cdot X + \left(Y - x \frac{dy}{dx}\right) \qquad \dots(i)$$ Say \therefore Eq. (i) reduces to, Y = mX + c is asymptote of equation. #### Now we shall discuss the following cases - (i) Asymptote parallel to x-axis. - (ii) Asymptote parallel to y-axis. - (iii) Asymptote of algebraic curves or oblique asymptotes. - (iv) Asymptote by inspection. - (v) Intersection of curve and its Asymptotes. - (vi) Asymptote by Expansion. - (vii) The position of the curve with respect to asymptote. #### 3.1 (i) Asymptote parallel to x-axis Let the equation of curve be, $$(a_0x^n + a_1x^{n-1}y + a_2x^{n-2}y^2 + \dots + a_ny^n) + (b_1x^{n-1} + b_2x^{n-2}y + \dots + b_ny^{n-1}) + (c_2x^{n-2} + c_3x^{n-2}y + \dots + c_ny^{n-2}) + \dots + \dots = 0 \qquad \dots (i)$$ then it can be arranged in descending powers of x as follows: $$a_0 x^n + (a_1 y + b_1) x^{n-1} + (a_2 y^2 + b_2 y + c_2) x^{n-2} + \dots = 0$$...(ii) oints 9 urye e Ta ō Now, if $a_0 = 0$, i.e., the term consisting x^n is absent, then $a_1y + b_1 = 0$, i.e., coefficient of $x^{n-1} = 0$ will make two roots of Eq. (i) infinite as coefficients of both x^n and x^{n-1} are zero. Hence, $a_1y + b_1 = 0$ is an asymptote parallel to x-axis. Again if; both x^n and x^{n-1} are absent, then $a_2y^2 + b_2y + c_2 = 0$, i.e., coefficient of x^{n-2} being zero will make three roots of Eq. (ii) infinite hence, $a_2y^2 + b_2y + c_2 = 0$ will give two asymptote parallel to x-axis. Method to find asymptote parallel to x-axis To find the asymptote parallel to x-axis equate the coefficient of highest power of x to zero. If the coefficient is constant, then there is no asymptote parallel to x-axis (horizontal). #### 3.1 (ii) Asymptote parallel to y-axis From above article, if we need an asymptote parallel to y-axis, equate the coefficient of highest power of y to zero. If this coefficient is constant, then there is no asymptote parallel to y-axis (vertical). **EXAMPLE** Sketch the curve $y = \frac{1}{x-5}$ SOLUTION Here; y(x-5)=1 :. Asymptote parallel to x-axis. (equating highest power of x = 0) Asymptote parallel to y-axis. (equating highest power of y = 0) x = 5 Thus, x = 5 and y-axis are asymptotes shown as in figure. Fig. 3.2 **EXAMPLE** 2 Show the curve $y = \tan x$ has an infinite number of vertical asymptote. #### SOLUTION here $$y = \tan x$$ $$y \to \pm \infty$$ as $x \to \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$ $$\tan x \to \infty$$ as $x \to \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$ *i.e.*, equating highest power of y = 0. (as $$y = \tan x \implies y \cot x = 1$$, where $\cot x \rightarrow 0$). Shown as: **EXAMPLE** 3 Show the curve $y = e^{1/x}$ has a vertical and horizontal asymptote. SOLUTION Here $$v = e^{1/3}$$ $$\Rightarrow$$ $$y \cdot e^{-1/x} = 0$$ $$x \to 0$$ (Since, $$\lim_{x\to 0} e^{-1/x} \to 0$$) $$y = e^{1/x}$$ $$\frac{1}{x} = \log y$$ $$\Rightarrow \qquad x = \frac{1}{\log y}$$ which shows $x(\log y) = 1$ has an asymptote parallel to x-axis as $$\log y = 0
\quad \Rightarrow \quad y = 1.$$ Thus, $y = e^{1/x}$ has two asymptote $$x = 0$$ and $y = 1$. Fig. 3.4 #### 3.1 (iii) Asymptote of algebraic curves or oblique asymptote An asymptote which is not parallel to y-axis is called an oblique asymptote. Let y = mx + c be an asymptote of y = f(x), then $$m = \lim_{\substack{x \to \infty \\ \text{or } x \to -\infty}} \frac{y}{x}$$ and $c = \lim_{\substack{x \to \infty \\ \text{or } x \to -\infty}} (y - mx)$ #### Method to find oblique asymptote Suppose y = mx + c is an asymptote of the curve. Put y = mx + c in the equation of the curve and arrange it in descending powers of x. Equate to zero the coefficients of two highest degree terms. Solve these two equations, find m and c. Put them in y = mx + c to get asymptotes. Note 1. Here, we will find non-parallel or non repeated asymptote only. 2. Neglect all imaginary values of m. **EXAMPLE** I Find the asymptotes to the curve $y = x + \frac{1}{x}$ and then sketch. **SOLUTION** Here, the given curve $y = x + \frac{1}{x}$ $$\Rightarrow xy = x^2 + x^2 - xy + 1 = 0$$ #### (i) Asymptote parallel to x-axis Equating highest power coefficient of x to zero in $x^2 - xy + 1 = 0$ $$\Rightarrow$$ 1 = 0 (which is not true) .. no asymptote parallel to x-axis. #### (ii) Asymptote parallel to y-axis Equating highest power coefficient of y to zero in $$x^2 - xy + 1 = 0$$ or $$x = 0$$ (i.e., y-axis) is asymptote for $y = x + \frac{1}{x}$ #### (iii) Oblique asymptote Let $$y = mx + c$$ in $x^2 - xy + 1 = 0$ i.e., $$x^2 - mx^2 - xc + 1 = 0$$ $$\Rightarrow x^2(1-m)-(c)x+1=0$$ Equating highest and second highest power of x to zero i.e., $$1-m=0 \text{ and } c=0$$ $$m=1$$ and $c=0$ $$y = x$$ is oblique asymptote to $y = x + \frac{1}{x}$. #### Now to trace the curve; - (iv) Symmetric about origin (as odd function) - (v) Domain $\in R \{0\}$. - (vi) Range $\in (-\infty, -2] \cup [2, \infty)$ (vii) $$\frac{dy}{dx} = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$$ {using number line rule, $$\frac{dy}{dx} > 0$$, when $x < -1$ or $x > 1$ $$\frac{dy}{dx}$$ < 0, when -1 < x < 1 - {0} which shows $$y_{\text{max}}$$ at $x = -1$ $$y_{\min}$$ at $x = 1$ (viii) Also, $$\frac{d^2y}{dx^2} = \frac{2}{3}$$ $$\Rightarrow \frac{d^2y}{dx^2} > 0, \text{ when } x > 0$$ (concave up) $$\frac{d^2y}{dx^2} > 0, \text{ when } x > 0$$ (concave up) $$\frac{d^2y}{dx^2} < 0, \text{ when } x < 0$$ (concave down) Using above information we can trace $y = x + \frac{1}{x}$ as: **EXAMPLE** Find the asymptotes of the curve $y = \frac{x^2 + 2x - 1}{x}$ and hence, sketch. SOLUTION Here, the curve $y = \frac{x^2 + 2x - 1}{x}$ could be written as; $x^2 + 2x - yx - 1 = 0$...(i) - (i) No asymptote parallel to x-axis. - (ii) Asymptote parallel to y-axis. $\Rightarrow x = 0$. - (iii) Oblique asymptote Let y = mx + c be oblique asymptote $$x^{2} + 2x - x(mx + c) - 1 = 0$$ $$x^{2} - mx^{2} + 2x - cx - 1 = 0$$ $$\Rightarrow x^{2}(1 - m) + x(2 - c) - 1 = 0$$ For oblique asymptote equate highest power and second highest power of x to zero. i.e., Coefficient of $$x^2 = 0 \implies m = 1$$ Coefficient of $x = 0 \implies c = 2$ $$y = x + 2 \text{ is oblique asymptote to } y = x - \frac{1}{x} + 2$$ - (iv) Neither symmetric about axis nor about origin. - (v) Domain $\in R \{0\}$. - (vi) Range $\in R$. (vi) Range $$\in R$$. (vii) $$\frac{dy}{dx} = 1 + \frac{1}{x^2}$$ $$\Rightarrow \frac{dy}{dx} > 0, \text{ for all } x \in R - \{0\}.$$ (viii) $$\frac{d^2y}{dx^2} = -\frac{2}{x^3}$$ $$\Rightarrow \frac{d^2y}{dx^2} > 0, \text{ when } x < 0$$ $$\frac{d^2y}{dx^2} < 0, \text{ when } x > 0$$ (viii) $$\frac{d^2y}{dx^2} = -\frac{2}{x^3}$$ $$\Rightarrow \frac{d^2y}{dx^2} > 0, \text{ when } x < 0$$ (concave down) $$\frac{d^2y}{dx^2} < 0, \text{ when } x > 0$$ (concave up) Using above information, we can plot the curve $y = x - \frac{1}{x} + 2$ as; #### 3.1 (iv) Asymptote by inspection If the equation of the curve be of the form $F_n + F_{n-2} = 0$, where F_n and F_{n-2} are expressions in xand y such that degree of $F_n = n$ and degree of $F_{n-2} \le n-2$, then every linear factor equated to zero will give an asymptote if no two straight lines represented by any other factor of F_n is parallel or coincident with it. **EXAMPLE** 1 Find the asymptote of the curve $x^2y + xy^2 = a^3$. SOLUTION Here, the given curve is. $$x^2y + xy^2 = a^3$$ or $x^2y + xy^2 - a^3 = 0$ This equation is of the form $$F_n + F_{n-2} = 0$$ Here, $F_3 = x^2y + xy^2$ and $F_0 = -a^2$:. By inspection the asymptotes are given by $$x^2y + xy^2 = 0$$ or $xy(x+y) = 0$ \therefore The asymptotes are x = 0, y = 0, x + y = 0. **EXAMPLE** 2 Find the asymptote of the curve $y = x + \frac{1}{x}$ (by Inspection). **SOLUTION** Here, the given curve is $x^2 - xy + 1 = 0$ This equation is of the form $$F_n + F_{n-2} = 0$$ Here $F_2 = x^2 - xy$ $$F_0 = 1$$ By inspection the asymptotes are given by $$x^2 - xy = 0 \qquad \text{or} \qquad x(x - y) = 0$$ The asymptotes are x = 0 and x - y = 0. #### 3.1 (v) Intersection of curve and its asymptote An asymptote of curve of nth degree cut the curve in (n-2) points provided the asymptote is not parallel to any asymptote. Hence, if there be N asymptotes of the curve, then they cut the curve in N(n-2) points. Note The number of asymptotes of an algebraic curve of nth degree can not be more than n. **EXAMPLE** 1 Show the asymptote of the curve $xy(x^2-y^2)+x^2+y^2-1=0$ cut at 8 **SOLUTION** The equation of the curve is, $$xy(x^2-y^2)+x^2+y^2-1=0$$...(i) Here n=4 $F_n + F_{n-2} = 0$ This equation is of the type $$F_n = xy(x^2 - y^2) = xy(x - y)(x + y)$$ Hence, $$F_{n-2} = x^2 + y^2 - 1$$ $$F_{n}=0$$ \Rightarrow x = 0, y = 0, x - y = 0 and x + y = 0 are the equations of asymptotes. The combined equation of the asymptotes is, $$xy(x-y)(x+y) = 0$$...(ii) $x^2 + y^2 - 1 = 0$ Thus, intersection of curve and asymptotes lie on this curve since, there are 4 asymptotes, i.e., N = 4. $\therefore \text{ Point of intersection of curve and asymptotes} = 4(4-2) = 8.$ #### 3.1 (vi) Asymptote by expansion If the equation of the curve is of the form $$y = mx + c + \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \dots$$ Then y = mx + c will be an asymptote of the given curve. **EXAMPLE** 1 Find the asymptote of the curve $y^3 = x^2(x-a)$. **SOLUTION** The curve is, $$y^3 = x^2(x-a) = x^3\left(1 - \frac{a}{x}\right)$$ ⇒ $$y = x \left(1 - \frac{a}{x}\right)^{1/3}$$ or $y = x \left(1 - \frac{1}{3} \frac{a}{x} - \frac{1}{9} \frac{a^2}{x^2} ...\right)$ or $$y = x - \frac{a}{3} - \frac{1}{9} \frac{a^2}{x} \dots$$ which is of the form $$y = mx + c + \frac{A}{x} + \frac{B}{x^2} + \dots$$ y = mx + c is asymptote Hence, $y = x - \frac{a}{3}$ is asymptote of the given curve. **EXAMPLE** 2 Find the asymptote for $y = x + \frac{1}{x}$. **SOLUTION** Here; $y = x + \frac{1}{x}$ is of the form, $$y = mx + c + \frac{A}{x} + \frac{B}{x^2} + \dots$$ \Rightarrow y = x is asymptote of the curve $$y=x+\frac{1}{x}.$$ **Note** Above method is useful to find oblique asymptote. Thus, students are adviced to find vertical and horizontal asymptote (i.e., asymptote parallel to x-axis and y-axis). #### 3.1 (vii) The position of the curve with respect to an asymptote Let the equation of the curve is of the form; $$y = mx + c + \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + ...$$, then (i) $A \neq 0$ and, A and x have same signs nd t had one ugg a to then the or (ii) $$A = 0$$, $B > 0$ or (iii) $$A = 0$$, $B = 0$, $C \neq 0$ and C and x have same signs and #### (b) The curve lies below the asymptote if (i) $A \neq 0$ and, A and x have opposite signs. or (ii) $$A = 0$$, $B < 0$ or (iii) $$A = 0$$, $B = 0$, $C \neq 0$ and C and x have opposite signs. #### **EXAMPLE** 1 For the curve $y^5 = x^5 + 2x^4$; show; (i) The curve lies above the asymptote $$y = x + \frac{2}{5}$$, wiff $x < 0$ (ii) The curve lies below the asymptote $$y = x + \frac{2}{5}$$, if $x > 0$ **SOLUTION** The given curve is, $$y^5 = x^5 + 2x^6$$ $$y^5 = x^5 \left(1 + \frac{2}{x}\right)$$ The given curve is, $$y^5 = x^5 \left(1 + \frac{2}{x}\right)$$ The given curve is, $$y^5 = x^5 \left(1 + \frac{2}{x}\right)$$ The given curve is, $$y^5 = x^5 \left(1 + \frac{2}{x}\right)$$ The given curve is, $$y^5 = x^5 \left(1 + \frac{2}{x}\right)$$ The given curve is, $$y^5 = x^5 \left(1 + \frac{2}{x}\right)$$ The given curve is, $$y^5 = x^5 \left(1 + \frac{2}{x}\right)$$ The given curve is, $$y^5 = x^5 \left(1 + \frac{2}{x}\right)$$ The given curve is a sum of t $$y = x \left(1 + \frac{2}{x} \right)^{1/5}$$ $$y = x \left(1 + \frac{2}{5} \cdot \frac{1}{x} - \frac{8}{25} \cdot \frac{1}{x^2} \dots \right) = x + \frac{2}{5} - \frac{8}{25x} + \dots$$:. The asymptote is $$y=x+\frac{2}{5};$$ - (i) Now if $A = -\frac{8}{25}$ and x have same sign \Rightarrow x < 0. Then the curve lie above the - asymptote. (ii) Now if $A = -\frac{8}{25}$ and x have opposite sign $\Rightarrow x > 0$. Then the curve lie below the asymptote. # **EXAMPLE** 2 For the curve $y = x + \frac{1}{x}$ show, - (i) The curve lies above the asymptote y = x, if x > 0 - (ii) The curve lies below the asymptote y = x, if x < 0 **SOLUTION** The given curve is, $y = x + \frac{1}{x}$, is of the form $$y = mx + c + \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} \dots$$ Thus, y = x is the asymptote to $y = x + \frac{1}{x}$. - (i) Now if A = 1 and x have same sign $\Rightarrow x > 0$, then the curve lies above the asymptote. - (ii) Now if A=1 and x have opposite sign $\Rightarrow x < 0$, then the curve lies below the asymptote. ### 3.2 SINGULAR POINTS Here, we shall discuss the following - (i) Multiple points - (ii) Double points Types of double points: - (a) Node - (b) Cusp - (c) Isolated point - (iii) Tangent at the origin. - (iv) Necessary conditions for existence of double points. - (v) Types of cusps. #### 3.2 (i) Multiple points A point on a curve is said to be a multiple point of order r, if r branches of the curve pass through this point. If P is the multiple point of order r, then there will be r tangents at P,
one of each of the r branches. These r tangents may be real, imaginary, distinct, coincident. #### 3.2 (ii) Double points A point on a curve is said to be a double point of the curve, if two branches of the curve pass through this point. Double points have two tangents, they may be real, imaginary, distinct or coincident. Types of Double points #### (a) Node If the two branches of a curve pass through the double point and the tangents to them at the point are real and distinct, then the double point is called **a node** as shown in Fig. 3.7. Fig. 3.7 Fig. 3.8 #### (b) Cusp If the two branches of the curve pass through the double point and the tangent to them are the point is real and coincident, then the double point is called **cusp** as shown in Fig. 3.8. 1. $$\lim_{x \to c^{-}} f'(x) = \infty$$ and $\lim_{x \to c^{+}} f'(x) = -\infty$ OR 2. $$\lim_{x\to c^-} f'(x) = -\infty$$ and $\lim_{x\to c^+} f'(x) = \infty$ shown as: 1. $$\lim_{x\to c^-} f'(x) = \infty$$ and $\lim_{x\to c^+} f'(x) = -\infty$ Fig. 3.9 Fig. 3.10 Note A cusp can either be a local maximum (1) or a local minima as in (2). #### (c) Isolated point If there are no real point on the curve in the neighbourhood of a point *P* is called an **isolated or a conjugate point**. Fig. 3.11 #### 3.2 (iii) Tangent at the origin If an algebraic curve passes through the origin, the equation of tangent or tangents at the origin is obtained by equating to zero the lowest degree terms in the equation of the curve. **EXAMPLE** 1 Show that the curve $y^2 = 4x^2 + 9x^4$ has a node at origin and hence, sketch. **SOLUTION** The equation of the curve is, It passes through the origin. Now, equating to zero the lowest degree terms of the given curve, i.e., $$y^2 - 4x^2 = 0$$ $$y = 2x$$ and $y = -2x$ There are two real and distinct tangents y = 2x and y = -2x. Thus, two branches of curve passes through origin (0, 0). : origin is node. Now to sketch: - (iii) Symmetric about x-axis, y-axis and origin. - (iv) As $x \to 0 \Rightarrow y \to 0$ - (v) Domain $\in R$. - (vi) Range $\in R$. Here, we shall discuss the behaviour of $y = x\sqrt{4+9x^2}$, $x \ge 0$ and use symmetry to construct $y^2 = x^2(4 + 9x^2)$. (vii) $$2y \frac{dy}{dx} = 8x + 36x^3 = 4x(2 + 9x^2)$$ $$\Rightarrow \frac{dy}{dx} > 0 \quad \text{for all} \quad x, y > 0$$ (viii) Also, $$\left(\frac{dy}{dx}\right)^2 + y\frac{d^2y}{dx^2} = 4 + 54x^2$$ $$\Rightarrow \frac{d^2y}{dx^2} > 0 \text{ for all } x$$ Thus, the graph for $y^2 = x^2(4+9x^2)$ Fig. 3.12 #### **EXAMPLE** Show origin is a conjugate point for $$x^4 + y^3 + 2x^2 + 3y^2 = 0$$ SOLUTION The given curve is, $$x^4 + y^3 + 2x^2 + 3y^2 = 0$$ It passes through origin. :. To find equation of tangent at origin equating the lowest degree term to zero. $$2x^2 + 3y^2 = 0$$ $$y = \pm i \sqrt{\frac{2}{3}} x$$ which are imaginary tangents. Hence, origin is a conjugate point of the curve. #### 3.2 (iv) Necessary conditions for the existence of double points Let (x, y) be a point on the given curve f(x, y) = 0. The necessary and sufficient conditions for $$(x, y)$$ to be a double points are: $f = 0$, $\frac{\partial f}{\partial x} = 0$, $\frac{\partial f}{\partial y} = 0$ at (x, y) Now, if $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 f}{\partial y^2}$ are not all zero, then, (i) Double point will be a node if $$\left(\frac{\partial^2 f}{\partial x \, \partial y}\right)^2 - \left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) > 0$$ $$f_{xy}^2 - f_{xx}f_{yy} > 0$$ (ii) The double point will be an isolated point, if $$f_{xy}^2 - f_{xx} f_{yy} < 0$$ (iii) The double point will be a cusp if $$f_{xy}^2 - f_{xx} f_{yy} = 0.$$ Here, if $f_{xx} = f_{xy} = f_{yy} = 0$ at (x, y), then it will be a multiple point of order greater than 2. **EXAMPLE** 1 For the curve $x^3 + x^2 + y^2 - x - 4y + 3 = 0$, find the double point and hence, whether the point is node or isolated point. **SOLUTION** Let $$f(x, y) = x^3 + x^2 + y^2 - x - 4y + 3 = 0$$ $$f_x = 3x^2 + 2x - 1$$ for a double point $$f_{v} = 0$$, $f_{v} = 0$ $$x = \frac{1}{2}, -1$$ $$f_x = 3x + 2x - 1$$ $$f_y = 2y - 4 \qquad \text{for a double point} \quad f_x = 0, \quad f_y = 0$$ $$f_x = 0 \quad \Rightarrow \quad 3x^2 + 2x - 1 = 0$$ $$x = \frac{1}{3}, \quad -1$$ $$f_y = 0 \quad \Rightarrow \quad 2y - 4 = 0 \quad \Rightarrow \quad y = 2$$ \therefore Possible double points are $\left(\frac{1}{3}, 2\right)$, (-1, 2) $$f(\frac{1}{3}, 2) \neq 0$$ and $f(-1, 2) = 0$ f(-1,2) is a double point. $$f_{xx} = 6x + 2$$ \Rightarrow f_{xx} at $(-1, 2) = -4$ $f_{xy} = 0$ \Rightarrow f_{xy} at $(-1, 2) = 0$ $f_{yy} = 2$ \Rightarrow f_{yy} at $(-1, 2) = 2$ $f_{xy} - f_{xx} f_{yy} = 0 - (-4)(2) = 8 > 0$ $$f_{xy} - f_{xx} f_{yy} = 0 - (-4)(2) = 8 > 0$$ ∴ (- 1, 2) may be node. For shifting origin to (-1, 2), substitute x = X - 1, y = Y + 2 in the given equation, $$X^3 - 2X^2 + Y^2 = 0$$ $$Y = \pm X\sqrt{2-X}$$ For numerically small values of X, Y is real. :. (-1, 2) is a node on the given curve. **EXAMPLE** For the curve $x^3 + 2x^2 + 2xy - y^2 + 5x - 2y = 0$, find the double point and hence, check whether node, cusp or isolated point. SOLUTION Let $$f(x, y) = x^3 + 2x^2 + 2xy - y^2 + 5x - 2y = 0$$...(i) $$f_x = \frac{\partial f}{\partial x} = 3x^2 + 4x + 2y + 5$$ $$f_{y} = \frac{\partial f}{\partial y} = 2x - 2y - 2$$ $$f_{xx} = \frac{\partial^2 f}{\partial x^2} = 6x + 4$$ $$f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = 2$$ $$f_{yy} = \frac{\partial^2 f}{\partial y \partial x} = -2$$ $$f_{xy} = \frac{\partial^2 f}{\partial x \, \partial y} = 2$$ $$f_{yy} = \frac{\partial^2 f}{\partial y \, \partial x} = -2$$ For double points $$f_{\mathbf{r}} = f_{\mathbf{v}} = f = 0$$ $$f_x = f_y = f = 0$$ $f_x = 0 \implies 3x^2 + 4x + 2y + 5 = 0$...(ii) $f_y = 0 \implies 2x - 2y - 2 = 0$...(iii) $2y = 2x - 2$...(iii) $$f_v = 0 \implies 2x - 2y - 2 = 0$$ $$2y = 2x - 2$$...(iii) Solving Eqs. (ii) and (iii), we get $3x^2 + 4x + 2x - 2 + 5 = 0$ also $$x = -1, y = -2$$ x = -1, y = -2 satisfies the given equation. ∴ (- 1, - 2) is a double point. At $$(-1, -2)$$, $$f_{xx} = 6(-1) + 4 = -2$$ $$f_{xy} = 2$$, $f_{yy} = -2$ $f_{xy}^2 - f_{xx} f_{yy}$ at $(-1, -2) = 0$ $$f_{\rm ry}^2 - f_{\rm rr} f_{\rm ry}$$ at ∴ (-1, -2) may be a cusp. For shifting the origin to (-1, -2) substitute x = X - 1, y = Y - 2 in the given equation. or $$(X-1)^3 + 2(X-1)^2 + 2(X-1)(Y-2) - (Y-2)^2 + 5(X-1) - 2(Y-2) = 0$$ $$Y = X \pm X\sqrt{X}$$...(iv Y is real for all positive value of X. - .. Two branches of (iv) pass through origin. - \therefore Two branches of (i) pass through (-1, -2). - \Rightarrow (-1, -2) is a cusp. # **EXAMPLE** 3 Find for the curve $y^2 = x \sin x$ origin is node, cusp or isolated point. SOLUTION Let $$f(x, y) = y^{2} - x \sin x$$ $$f_{x} = -\sin x - x \cos x$$ $$f_{y} = 2y$$ $$f_{xx} = -\cos x + x \sin x - \cos x$$ Curve 153 $$f_{xy} = 0$$ $$f_{yy} = 2$$ $$\therefore \text{ at } x = 0: f_{xx} = -2, f_{xy} = 0, f_{yy} = 2$$ $$\therefore f_{xy}^2 - f_{xx} f_{yy} \text{ at } (0, 0)$$ $$\Rightarrow 0 + 2(2) = 4 > 0$$ $$f_{xy}^2 - f_{xx} f_{yy} > 0$$ origin is node. #### 3.2 (v) Types of cusps When two branches of a curve pass through a cusp and the tangents at cusp are coincident. Therefore, normal to the branches at a cusp would also be coincident. #### Cusp can be of five kinds #### (a) Single cusp If the branches of the curve lie on the same side of the common normal, then the cusp is called a single cusp. Fig. 3.13 #### (b) Double cusp If the branches of the curve lie on the both sides of the common normal, then the cusp is called double cusp. 90. no. id - Domain s Here, both the branches of the curve lie on the both sides of common tangent, then the cusp is of first kind. Also if, the branches of the curve lie on the same side of the common tangent, then the cusp is called cusp of second species or Ramphoid cusp. Fig. 3.14 Fig. 3.15 #### (c) Point of oscu-inflexion A double cusp of both the species is called a point of oscu-inflexion. Fig. 3.16 **EXAMPLE** 1 Sketch the curve $y^2(a+x) = x^2(a-x)$. #### SOLUTION Here, the curve is $$y^{2}(a+x) = x^{2}(a-x)$$...(i) - 1. The curve is symmetrical about x-axis. - 2. Curve passes through origin and cuts the x-axis at a point (a, 0). - 3. Equating to zero the lowest degree terms of Eq. (i), we get the tangents at origin. $$y^2 = x^2$$ or $y = \pm x$ - ∴ origin is node. - 4. Equating to zero the highest degree term, we get the asymptote $$x + a = 0$$, i.e., $x = -a$. 5. From Eq. (i) $$y = \pm x \sqrt{\frac{a - x}{a + x}}$$ - \therefore y exists when $-a < x \le a \Rightarrow Domain \in (-a, a]$. - **6.** As x increases from 0 to $a \Rightarrow y$ increases upto a point then decreases to zero. - \Rightarrow y increases when $x \in [0, a]$ - y decreases when $x \in (-a, 0]$ - Thus, $y^2(a+x) = x^2(a-x)$ could be plotted as; Fig. 3.17 #### 1. Check symmetry. - (a) A curve is symmetrical about x-axis, i.e., y is replaced by -y and curve remains same. - (b) A curve is symmetrical about y-axis, i.e., f(-x) = f(x). - (c) A curve is symmetrical about y = x, i.e., on interchanging x and y curve remains same. - (d) A curve is symmetrical about y = -x. i.e., on interchanging x by -y and y by -x curve remains same. - (e) The curve is symmetrical in opposite quadrants, i.e., f(-x) = -f(x). #### 2. Check for origin Find whether origin lies on the curve or not. If yes, check for multiple points (See Art. 3.2). #### 3. Point of intersection with x-axis and y-axis Put x = 0 and find y, put y = 0 and find x. Also obtain the tangents at such points. #### 4. Asymptotes Find the point at which asymptote meets the curve and equation of asymptote (see Art. 3.1) #### 5. Domain and range To check in which part the curve lies. #### 6. Monotonicity and maxima minima Find $\frac{dy}{dx}$ and check the interval in which y increases or decreases and the point at which it attains maximum or minimum. ####
7. Concavity and convexity The interval in which, $$\frac{d^2y}{dx^2} > 0$$ $$\frac{d^2y}{dx^2} = 0$$ and Using all the above results we can sketch the curve $$y = f(x)$$. # Some more Solved Examples # -SOME MORE SOLVED EXAMPLES EXAMPLE Sketch the curve $$y^{2}(a^{2}+x^{2})=x^{2}(a^{2}-x^{2})$$ SOLUTION Here, the curve is $$y^2 = \frac{x^2(a^2 - x^2)}{(a^2 + x^2)}$$ - 1. The curve is symmetric about x-axis and y-axis (as on replacing y by y curve remains same and on replacing x by -x curve remains same thus, symmetric about x and y-axis respectively). - **2.** It passes through origin and $y = \pm x$ are two tangents at origin. Thus, the origin is node. - 3. It meets x-axis at (a, 0), (0, 0) and (-a, 0) and meets y-axis at (0, 0) only. The tangents at (a, 0) and (-a, 0) are x = a and x = -a respectively. - 4. The curve has no asymptote. 5. Here, $$y = \pm x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}}$$ Domain $\in [-a, a]$ 6. $$\frac{dy}{dx} = \frac{a^4 - 2a^2x^2 - x^4}{(a^2 + x^2)^{3/2}(a^2 - x^2)^{1/2}}$$ $$\frac{dy}{dx} \to \infty \quad \text{as} \quad x \to \pm a$$ Also $$\frac{dy}{dx} = 0$$ when $a^4 - 2a^2x^2 - x^4 = 0$ i.e., $$\frac{dy}{dx} = 0 \qquad \text{when} \quad a^4 - 2a^4$$ $$\frac{dy}{dx} = \frac{a^4 - 2a^2x^2 - x^4}{(a^2 + x^2)^{3/2}(a^2 - x^2)^{1/2}}$$ $$= \frac{-\{x^4 + 2a^2x^2 + a^4 - 2a^4\}}{(a^2 + x^2)^{3/2}(a^2 - x^2)^{1/2}}$$ $$= \frac{-\{(x^2 + a^2)^2 - (\sqrt{2}a^2)^2\}}{(a^2 + x^2)^{3/2}(a^2 - x^2)^{1/2}}$$ $$= \frac{-\{x - \sqrt{(-1 + \sqrt{2})}a\}\{x + \sqrt{(-1 + \sqrt{2})}a\}\{x^2 + (1 + \sqrt{2})a^2\}}{(a^2 + x^2)^{3/2}(a^2 - x^2)^{1/2}}$$ $$\frac{dy}{dx} = \begin{cases} 0, & x = \pm \sqrt{(-1 + \sqrt{2})} \ a \\ + \text{ve}, & x \in (-\sqrt{(-1 + \sqrt{2})} \ a, \sqrt{(-1 + \sqrt{2})} \ a) \\ - \text{ve}, & x \in (-a, -\sqrt{(-1 + \sqrt{2})} \ a) \text{ or } (\sqrt{(-1 + \sqrt{2})} \ a, a) \end{cases}$$ i.e., y increasing when $x \in (-\sqrt{(-1+\sqrt{2})} a, \sqrt{(-1+\sqrt{2})} a)$ and y decreases when $x \in (-a, -\sqrt{(-1+\sqrt{2})}a)$ or $(\sqrt{(-1+\sqrt{2})}a, a)$ $\frac{dy}{dx} > 0$, when $x \in (-(0.6) a, (0.6) a)$ $\frac{dy}{dx}$ < 0, when $x \in (-a, -(0.6)a)$ or ((0.6)a, a) where $$\sqrt{-1+\sqrt{2}} = (0.6)_{approx}$$ $$y^{2}(a^{2}+x^{2}) = x^{2}(a^{2}-x^{2})$$ Thus, the curve for Fig. 3.18 $y^{2}(x-a) = x^{2}(a+x)$. EXAMPLE (2) Sketch the curve **SOLUTION** Here, the curve is given by $y^2 = \frac{x^2(a+x)}{(x-a)}$ 1. Symmetrical about x-axis only. 2. It passes through origin and $y^2 + x^2 = 0$, i.e., $y = \pm ix$ are two imaginary tangents at origin. Thus, origin is isolated point. 3. It meets x-axis at (-a, 0), (0, 0) and y-axis at (0, 0). The tangent at (-a, 0) is x = -a. **4.** $y = \pm (x - a)$ and x = a are three asymptote. 5. $$y^2 = \frac{x^2(x+a)}{(x-a)} \implies y = \pm x \sqrt{\frac{x+a}{x-a}}$$ Thus, for domain; $$\frac{x+a}{x-a} \ge 0 \quad \text{and} \quad x \ne a$$ $$x \le -a$$ and $x > a$ or Domain $$\in (-\infty, -a] \cup (a, \infty) \cup \{0\}$$ or $$\frac{dy}{dx} = \pm \frac{x^2 - ax - a^2}{(x - a)^{3/2} (x + a)^{1/2}} = \pm \frac{\left\{x - \frac{1}{2}(1 + \sqrt{5})a\right\} \left\{x - \frac{1}{2}(1 - \sqrt{5})a\right\}}{(x - a)^{3/2} (x + a)^{1/2}}$$ $$\Rightarrow \frac{dy}{dx} > 0, \quad \text{when} \quad x \in (-\infty, -a] \cup \left[\frac{1}{2}(1 + \sqrt{5})a, \infty\right)$$ $$\frac{dy}{dx} < 0$$, when $x \in \left(a, \frac{1}{2}(1 + \sqrt{5}) a\right)$ Thus, the curve; Fig. 3.19 **EXAMPLE** 3 Sketch the curve $y^2 = (x-1)(x-2)(x-3)$ **SOLUTION** Here, $y^2 = (x-1)(x-2)(x-3)$ - 1. Symmetrical about x-axis. - 2. It does not pass through origin. - 3. It meets x-axis at (1, 0) (2, 0) and (3, 0) but it does not meet y-axis. - 4. No asymptote. $$(x-1)(x-2)(x-3) \ge 0$$ **Domain** ∈ [1, 2] ∪ [3, ∞) $$y = \pm \sqrt{(x-1)(x-2)(x-3)}$$ 6. $$\frac{dy}{dx} = \pm \frac{(3x^2 - 12x + 11)}{2\sqrt{(x - 1)(x - 2)(x - 3)}} = \pm \frac{3\left(x - \frac{6 - \sqrt{3}}{3}\right)\left(x - \frac{6 + \sqrt{3}}{3}\right)}{2\sqrt{(x - 1)(x - 2)(x - 3)}}$$ $$= \pm \frac{3(x - 1.42)(x - 2.5)}{2\sqrt{(x - 1)(x - 2)(x - 3)}} \qquad \left\{ as \frac{6 - \sqrt{3}}{3} = 1.42 \text{ and } \frac{6 + \sqrt{3}}{3} = 2.5/\text{approx} \right\}$$ $$\frac{dy}{dx}$$ > 0, when x ∈ (1, 1.42) ∪ (3, ∞) $\frac{dy}{dx}$ < 0, when x ∈ (1.42, 2) $$\frac{dy}{dx}$$ < 0, when $x \in (1.42, 2)$ Fig. 3.20 **EXAMPLE** 4 Sketch the curve $y^2x^2 = x^2 - a^2$. SOLUTION Here, $$y^2 = \frac{x^2 - a^2}{r^2}$$ - 1. Symmetrical about both the axis. - 2. It does not pass through origin. - 3. x-intercepts are (a, 0) and (-a, 0)The tangent at (a, 0) is x = a and the tangent at (-a, 0) is x = -a. - **4.** $y = \pm 1$ are the two asymptotes. Domain $\in (-\infty, -a] \cup [a, \infty)$ $$\frac{dy}{dx} = \pm \frac{a^2}{x^2 \sqrt{x^2 - a^2}}$$ Thus, the curve for $y^2 = \frac{x^2 - a^2}{x^2}$ is, **EXAMPLE** 5 Sketch the curve $$y^2(x^2-1)=2x-1$$ **SOLUTION** Here, $$y^2 = \frac{2x-1}{x^2-1}$$ - 1. Symmetrical about x-axis. - 2. It does not pass through origin. - 1. It meets x-axis in $\left(\frac{1}{2},0\right)$ and y-axis in (0,1) and (0,-1) respectively. The tangent at $\left(\frac{1}{2}, 0\right)$ is $x = \frac{1}{2}$. $$5. y^2 = \frac{2x-1}{x^2-1}$$ **4.** $$x = 1$$, $x = -1$ and $y = 0$ are three asymptotes. **5.** $y^2 = \frac{2x - 1}{x^2 - 1}$ \Rightarrow Domain $\in \left(-1, \frac{1}{2}\right] \cup (1, \infty)$ **6.** $$y = \pm \sqrt{\frac{2x-1}{x^2-1}}$$ 6. $$y = \pm \sqrt{\frac{2x-1}{x^2-1}}$$ $\Rightarrow \frac{dy}{dx} = \pm \left(\frac{-x^2 + x + 1}{(2x-1)^{1/2}(x^2-1)^{3/2}}\right)$ $\Rightarrow \frac{dy}{dx} < 0 \text{ when } x \in \left(-1, \frac{1}{2}\right] \cup (1, \infty)$ $$\frac{dy}{dx} < 0$$ when $x \in \left(-1, \frac{1}{2}\right] \cup (1, \infty)$:. y is decreasing in its domain. Thus, the graph for $y^2 = \frac{2x-1}{x^2-1}$ is, #### EXAMPLE 6 Sketch the curve : $$(x^2+y^2)x-a(x^2-y^2)=0; (a>0)$$ $(x^2 + y^2)x - a(x^2 - y^2) = 0; (a > 0)$ SOLUTION Here, $y^2 = x^2 \left(\frac{a - x}{a + x}\right)$ - 1. Symmetric about x-axis. - 2. Origin lies on the curve and $y = \pm x$ are two tangents at origin. So, origin is node. - **3.** x-intercept are (0, 0) and (a, 0). The tangent at (a, 0) is x = a. - **4.** x = -a is the only asymptote. $$y = \pm x \sqrt{\frac{a - x}{a + x}}$$ Domain $$\in (-a, a]$$ $$\frac{dy}{dx} = \pm \frac{a^2 - ax - x^2}{(a+x)\sqrt{a^2 - x^2}}$$ $$\Rightarrow \frac{dy}{dx} > 0$$, when $x \in \left(-a, \frac{-1 + \sqrt{5}}{2}a\right)$. $$\Rightarrow \frac{dy}{dx} < 0$$, when $x \in \left(\frac{-1 + \sqrt{5}}{2}a, a\right)$. Thus, the graph for $$y^2 = x^2 \left(\frac{a-x}{a+x} \right)$$ as shown in Fig. 3.23. Fig. 3:23 #### **EXAMPLE** Sketch the curve $x^3 + y^3 = 3ax^2$ (a > 0). - **SOLUTION** Here, $x^3 + y^3 = 3ax^2$ - 1. No line of symmetry. - **2.** Origin is cusp and x = 0 is tangent. - **3.** *x*-intercept, (0, 0) (3*a*, 0) The tangent at (3a, 0) is x = 3a. - **4.** y = a x is asymptote and the curve meets asymptote at $\left(\frac{a}{3}, \frac{2a}{3}\right)$. $$x^3 + y^3 = 3ax^2$$ $$3ax^2 > 0$$ $$x^3 + y^3 > 0$$ i.e., x and y both cannot be negative (thus, curve would not lie in third quadrant). $$y^2 \frac{dy}{dx} = x (2a - x)$$ $$\rightarrow$$ $$\frac{dy}{dx} > 0$$, when $x \in (0, 2a)$ $$\frac{dy}{dx} > 0, \text{ when } x \in (0, 2a)$$ $$\frac{dy}{dx} < 0, \text{ when } x \in (-\infty, 0) \cup (2a, \infty)$$ Thus, the curve $y^3 + x^3 = 3ax^2$ is, Fig. 3.24 EXAMPLE (3) Sketch the curve with parametric equation θ . $$x = a(\theta + \sin \theta), \quad y = a(1 + \cos \theta); \quad x \in (-\pi, \pi).$$ **SOLUTION** Here, $x = a(\theta + \sin \theta)$ and $y = a(1 + \cos \theta)$ gives the following table for x and y with θ . | θ. | - π | 0 | π | |----|------|----|----------| | x | - απ | 0 | απ | | у | . 0 | 2a | 0 in 0 0 | So, that we have, $$-\pi \le \theta \le 0$$ \Rightarrow (x, y) starting from (- $a\pi$, 0) moves to the right and upwards to (0, 2a). $$0 \le \theta \le \pi$$ the point (x, y) starting from (0, 2a) moves to the right and downward to $(a\pi, 0)$. Also $$\frac{dx}{d\theta} = a(1 + \cos\theta)$$ and $$\frac{dy}{d\theta} = -a\sin\theta$$ Now, $\frac{dx}{d\theta} = 0$ if $\theta = \pi, -\pi$ $$\frac{dy}{dx} = -\frac{\tan \theta}{2}$$ except for the values $\mp \pi$ of θ for which $\frac{dx}{d\theta} = 0$. Also, tangent at $\theta = \pi$ and $\theta = -\pi$ are $x = \pi$ and $x = -\pi$. Thus, the curve for $x = a (\theta + \sin \theta)$ and $y = a (1 + \cos \theta)$. THE SON Fig. 3.25 ## **EXAMPLE** 9 Sketch the curve: $x^5 + y^5 = 5a^2xy^2$ #### SOLUTION Here; 1. The curve is symmetrical in opposite quadrants. 2. The curve passes through origin and x = 0, y = 0 are tangents. Thus, origin is node. 3. It meets coordinate axis at origin. **4.** x + y = 0 is an asymptote. 5. On transfering to polar coordinates, we get. $$r^2 = \frac{5a^2 \cos\theta \sin\theta}{\cos^5\theta + \sin^5\theta}$$ when, $\theta = 0$, r = 0 when, $\theta = \frac{\pi}{2}$, r = 0 As θ increases from $\frac{\pi}{2}$ to $\frac{3\pi}{4}$, r^2 is negative and hence, r is imaginary. \therefore no portion of the curve lies in this region. At $\theta = \frac{3\pi}{4}$, $r = \infty$ as θ increases from $\frac{3\pi}{4}$ to $\pi \Rightarrow r$ decreases from ∞ to 0. :. Curve $x^5 + y^5 = 5a^2xy^2$ Fig. 3.26 **EXAMPLE** Sketch the curve $y^4 - x^4 + xy = 0$. SOLUTION Here, $$y^4 - x^4 + xy = 0$$ - 1. No line of symmetry. - 2. It passes through origin two tangents at (0, 0) as x = 0 and y = 0, \therefore origin is node. - 3. It cuts the coordinate axes at the origin only. - **4.** y = x, y = -x are its asymptotes. - 5. Converting into polar coordinates, $$r^2 = \frac{1}{2} \tan 2\theta$$ **6.** When, $0 < \theta < \frac{\pi}{4}$ or $0 < 2\theta < \frac{\pi}{2} \Rightarrow r^2$ increases from 0 to ∞ . When, $\frac{\pi}{4} < \theta < \frac{\pi}{2}$ or $\frac{\pi}{2} < 2\theta < \pi \implies r^2$ is negative, \therefore no curve when $\frac{\pi}{4} < \theta < \frac{\pi}{2}$. Hence, the curve Fig. 3.27
Exercise 1. $$y = 1 + x^2 - \frac{1}{2}x^4$$. 2. $$y = (x + 1)(x - 2)^2$$ 3. $$y = \frac{2}{5}x - \frac{1}{2}x^3 + \frac{1}{10}x^5$$. 4. $$y = (1 - x^2)^{-1}$$ 5. $$y = \frac{x^4}{(1+x)^3}$$ 6. $$y = \frac{(1+x)^4}{(1-x)^4}$$ 7. $$y = \frac{x^2(x-1)}{(x+1)^2}$$ 8. $$y = \frac{x}{(1-x^2)^2}$$ 9. $$y = 2x - 1 + \frac{1}{(x+1)}$$ 10. $$y = \frac{x^2 + 1}{x^2 - 1}$$ 11. $$y = \frac{a^2x}{a^2 + x^2}$$ $$12. \quad y^2 = x^2 \left(\frac{a+x}{b-x} \right)$$ 13. $$y = \frac{8a^3}{x^2 + 4a^2}$$ 14. $$y = \frac{\cos x}{\cos 2x}$$ 15. $$y = \arccos\left(\frac{1-x^2}{1+x^2}\right) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$ 16. $$y = \arcsin(\sin x) = \sin^{-1}(\sin x)$$ 17. $$y = \sin(\arcsin x)$$ 18. $$y = \arctan(\tan x)$$ 19. $$y = \arctan\left(\frac{1}{x}\right)$$ **20.** $$y = (x+2)e^{1/x}$$ 21. $$y = \frac{1}{2}(\sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1})$$ 22. $$y = \sqrt{x^2 + 1} - \sqrt{x^2 - 1}$$ **23.** $$y = (x+2)^{2/3} - (x-2)^{2/3}$$ 24. $$y = (x + 1)^{2/3} + (x - 1)^{2/3}$$ 25. $$y^2 = 8x^2 - x^4$$ **26.** $$y^2 = (x-1)(x-2)(x-3)$$ 27. $$y^2 = \frac{x-1}{x+1}$$ 28. $$y^2 = \frac{x^2(1-x)}{(1+x)^2}$$ 29. $$v^2 = x^4(x+1)$$ 29. $$y^2 = x^4(x+1)$$ 30. $x^2(y-2)^2 + 2xy - y^2 = 0$ 31. $$x = \frac{1}{4}(t+1)^2$$, $y = \frac{1}{4}(t-1)^2$ **32.** $$x = \frac{t^2}{1-t^2}$$, $y = \frac{1}{1+t^2}$ **33.** $$x = \frac{t^2}{t-1}$$, $y = \frac{t}{t^2-1}$ 34. $$x = -5t^2 + 2t^5$$, $y = -3t^2 + 2t^3$ **35.** $$x = \frac{t^2 + 1}{4(1 - t)}, y = \frac{t}{t + 1}$$ 36. $$x = \frac{(t+2)^2}{(t+1)}, y = \frac{(t-2)^2}{t-1}$$ 37. $$x = \frac{t - t^2}{1 + t^2}$$, $y = \frac{t^2 - t^3}{1 + t^2}$ 38. $$x^3 + y^3 = 3 axy$$, where $a > 0$. 39. $$(x-a)^2(x^2+y^2)=b^2x^2$$, where $a,b>0$. **40.** $$x^{2/3} + y^{2/3} = a^{2/3}$$, where $a > 0$ **41.** $$x^6 + 2x^3y = y^3$$ **42.** $$4y^2 = 4x^2y + x^5$$ 43. $$x^4 + 2y^3 = 4x^2y$$ 44. $$x^3 - 2x^2y - y^2 = 0$$ **45.** $$x^2y^2 + y = 1$$ **46.** $$x^3 + y^3 = 3x^2$$ 47. $$y^5 + x^4 = xy^2$$ **48.** $$x^4 - y^4 + xy = 0$$ **49.** $$x^5 + y^5 = xy^2$$ **50.** $$x = a \sin 2\theta (1 + \cos 2\theta)$$, $$y = a \cos 2\theta (1 - \cos 2\theta)$$ Singular Points and Curve # Hints and Solutions #### INTRODUCTION OF GRAPHS 1. (i) (ii) **2.** (i) (ii) Here; f(x) = (iv) Here, $$f(x) = \begin{cases} -x; & -1 \le x < 0 \\ -x+1; & 0 \le x < 1 \end{cases}$$ $$x; & 1 \le x < 2 \\ x+1; & 2 \le x < 3 \\ 5; & x=3 \end{cases}$$ $$f(x) = \begin{cases} x^4; & -1 < x < 1 \\ x; & x \le -1 \text{ or } x \ge 1 \end{cases}$$ $$y = x^2 + x + 1$$ is shown as; Graph for f(x) From above figures it is clear that the graph would exists only when; $x \ge -\frac{1}{2}$. i.e., inverse for $f(x) = x^2 + x + 1$ would exist only when $x \ge -\frac{1}{2}$. 4. Here, $$f(x) = \begin{cases} 2x^2; & x \ge 0 \\ 0; & x \le 0 \end{cases}$$ Here, $$f(x) = [[x] - x] = [x] + [-x]$$ $$= \begin{cases} x - x; & x \in \text{integer} \\ [x] + (-1 - [x]); & x \notin \text{integer} \end{cases}$$ $$= \begin{cases} 0; & x \in \text{integer} \\ -1; & x \notin \text{integer} \end{cases}$$ 6. From figure; Slope of OP < Slope of OQ. $$\Rightarrow \frac{\frac{\pi}{4} - 0}{1 - 0} < \frac{\tan^{-1} \alpha - 0}{\alpha - 0}$$ $$\Rightarrow \frac{\tan^{-1}\alpha}{\alpha} > \frac{\pi}{4}.$$ # Play with Graphs Clearly, the above curves intersect at 5 points; number of solutions = 5. R. From above figure, number of solutions is infinite. 9. Clearly; $$\frac{x^2}{x-1} \le 1$$ or $$x^2 \le |x-1|$$ $$\Rightarrow \qquad x \in \left[\frac{-1 - \sqrt{5}}{2}, \ \frac{-1 + \sqrt{5}}{2} \right]$$ **10.** Here, $$x^3 = 3 + [x]$$ $$\therefore$$ to sketch $f(x) = x^3$ $$g(x) = 3 + [x]$$ Clearly; from figure the two curves f(x) and g(x) intersects when g(x) = 4. $$f(x) = 4$$ $$\Rightarrow$$ $$x^3 = 4$$ $$x=2^{2/3}.$$ #### **CURVATURE AND TRANSFORMATIONS** (iii) (iv) (viii) (xii) ## (ii) (iii) (v) (vi) 6. (ii) (iii) (iv) 8. 9. Since, $2\cos x$ and $|\sin x|$, intersects at two points for $x \in [0, 2\pi]$. From above figure we have six solutions. \therefore number of solutions are four when $x \in [0, 4\pi]$. | x | 0 | π/6 | π/2 | 5π/6 | x ₂ | $\left(x_2, \frac{3\pi}{2}\right)$ | $\frac{3\pi}{2}$ | $\left(\frac{3\pi}{2}, x_4\right)$ | <i>x</i> ₄ | | 2π | |----|---|------------------------|-----|-----------------------|----------------|------------------------------------|---------------------|------------------------------------|-------------------------------|---------|----| | y' | | 0 | - 2 | 0 | 9/8 | Say year | 0 | l l | 9/8 | 1 | | | y | | $\frac{-3\sqrt{3}}{2}$ | 0 | $\frac{3\sqrt{3}}{2}$ | 0 | - | 0 | +. | 0 | - | | | у | 1 | 3√3 4 | | to | _ > | $-\frac{3\sqrt{3}}{4}$ | - <u>3√15</u>
16 | - | $-\sqrt{\frac{3\sqrt{1}}{1}}$ | 15
6 | 1 | $$y = \frac{1}{2} \sin 2x + \cos x$$, periodic with **period** 2π . 1. 2. 3. 22. 23. 25. 26. 27. 28. 38. 40. 41. 42. 43. # Skills in Mathematics for All Engineering Entrance Examinations # Play with Graphs Sometimes the visual understanding of a mathematical problem is quite helpful in solving it fast and correctly. **Play with Graphs** is an attempt to ease the minds of all mathematics lovers and Engineering aspirants who wish to solve the tricky and knotty math problems involving functional approach. This book helps you make intuitive connections between the graphs of the functions in the problem with the exact solution of the problem. The book starts with a discussion of the properties of various standard functions with the help of their graphs and later takes up the topics such as curvature and transformations, asymptotes, the singular points, and finally the idea of curve tracing. Recommended to all those who sincerely desire to master problem-solving in Mathematics... 9788188 222230 Code: B019 ₹175