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PREFACE 

The objective of the book is to draw the readers' atten-
tion to the basic laws of mechanics, that is, to the laws of 
motion and to the laws of conservation of energy, momen-
tum and angular momentum, as well as to show how these 
laws are to be applied in solving various specific problems. 
At the same time the author has excluded all things of 
minor importance in order to concentrate on the questions 
which are the hardest to comprehend. 

The book consists of two parts: (1) classical mechanics 
and (2) relativistic mechanics. In the first part the laws of 
mechanics are treated in the Newtonian approximation, i.e. 
when motion velocities are much less than the velocity of 
light, while in the second part of the book velocities com-
parable to that of light are considered. 

Each chapter opens with a theoretical essay followed by 
a number of the most instructive and interesting examples 
and problems, with solutions provided. There are about 
80 problems altogether; being closely associated with the 
introductory text, they develop and supplement it and 
therefore their examination is of equal importance. 

A few corrections and refinements have been made in the 
present edition to stress the physical essence of the prob-
lems studied. This holds true primarily for Newton's second 
law and the conservation laws. Some new examples and 
problems have been provided. 

The book is intended for first-year students of physics 
but can also be useful to senior students and lecturers. 

I. E. Irodov 





NOTATION 

Vectors are designated by roman bold-face type (e.g. r, F); 
the same italicized letters (r, F) designate the norm of a 
vector. 

Mean values are indicated by crotchets ( ), e.g. (v), 
(N). 

The symbols A, d, 6 (when put in front of a quantity) 
signify: 
A, a finite increment of a quantity, i.e. a difference between 
its final and initial values, e.g. Ar = r2 — r1, AU= U, — Ut ; 
d, a differential (an infinitesimal increment), e.g. dr, dU; 
6, an elementary value of a quantity, e.g. SA is an elemen-
tary work. 

Unit vectors: 
j, k are unit vectors of the Cartesian coordinates x, y, z; 

ep, e,, ez  are unit vectors of the cylindrical coordinates 
z; 

n, i are unit vectors of a normal and a tangent to a path. 

Reference frames are denoted by the italic letters K, K' 
and C. 

The C frame is a reference frame fixed to the centre of 
inertia and translating relative to inertial frames. All quan-
tities in the C frame are marked with a tilde, e.g. r), E. 

A, work, 
c, velocity of light in vacuo, 
E, total mechanical energy, the total energy, 
E, electric field strength, 
e, elementary electric charge, 
F, force, 
G, field strength, 
g, free fall acceleration, 

moment of inertia, 
L, angular momentum with respect to a point, 
z, angular momentum with respect to an axis, 
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1, arc coordinate, the arm of a vector, 
M, moment of a force with respect to a point, 

Mz, moment of a force with respect to an axis, 
m, mass, relativistic mass, mo  rest mass, 
N, power, 
p, momentum, 
q, electric charge, 
r, radius vector, 
s, path, interval, 
t, time, 

T, kinetic energy, 
U, potential energy, 
v, velocity of a point or a particle, 

w, acceleration of a point or a particle, 
(3, angular acceleration, 
(3, velocity expressed in units of the velocity of light, 
y, gravitational constant, the Lorentz factor, 
a, energy of a photon, 
x, elastic (quasi-elastic) force constant, 

reduced mass, 
p, curvature radius, radius vector of the shortest distance 

to an axis, density, 
y, azimuth angle, potential, 
w, angular velocity, 
S2, solid angle. 



INTRODUCTION 

Mechanics is a branch of physics treating the simplest 
form of motion of matter, mechanical motion, that is, the 
motion of bodies in space and time. The occurrence of mechan-
ical phenomena in space and time can be seen in any mechan-
ical law involving, explicitly or implicitly, space-time 
relations, i.e. distances and time intervals. 

The position of a body in space can be determined only 
with respect to other bodies. The same is true for the motion 
of a body, i.e. for the change in its position over time. The 
body (or the system of mutually immobile bodies) serving 
to define the position of a particular body is identified as 
the reference body. 

For practical purposes, a certain coordinate system, e.g. 
the Cartesian system, is fixed to the reference body when-
ever motion is described. The coordinates of a body permit 
its' position in space to be established. Next, motion occurs 
not only in space but also in time, and therefore the descrip-
tion of the motion presupposes time measurements as well. 
This is done by means of a clock of one or another type. 

A reference body to which coordinates are fixed and mu-
tually synchronized clocks form the so-called reference frame. 
The notion of a reference frame is fundamental in physics. 
A space-time description of motion based on distances and 
time intervals is possible only when a definite reference 
frame is chosen. 

Space and time by themselves are also physical objects, 
just as any others, even though immeasurably more impor- 
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tant. The properties of space and time can be investigated 
by observing bodies moving in them. By studying the char-
acter of the motion of bodies we determine the properties 
of space and time. 

Experience shows that as long as the velocities of bodies 
are small in comparison with the velocity of light, linear 
scales and time intervals remain invariable on transition 
from one reference frame to another, i.e. they do not depend 
on the choice of a reference frame. This fact finds expres-
sion in the Newtonian concepts of absolute space and time. 
Mechanics treating the motion of bodies in such cases is 
referred to as classical. 

When we pass to velocities comparable to that of light, it 
becomes obvious that the character of the motion of bodies 
changes radically. Linear scales and time intervals become 
dependent on the choice of a reference frame and are differ-
ent in different reference frames. Mechanics based on these 
concepts is referred to as relativistic. Naturally, relativistic 
mechanics is more general and becomes classical in the case 
of small velocities. 

The actual motion characteristics of bodies are so complex 
that to investigate them we have to neglect all insignificant 
factors, otherwise the problem would get so complicated as 
to render it practically insoluble. For this purpose notions 
(or abstractions) are employed whose application depends 
on the specific nature of the problem in question and on the 
accuracy of the result that we expect to get. A particularly 
important role is played by the notions of a mass point and 
of a perfectly rigid body. 

A mass point, or, briefly, a particle, is a body whose dimen-
sions can be neglected under the conditions of a given prob-
lem. It is clear that the same body can be treated'as a mass 
point in some cases and as an extended'object idothers. 

A perfectly rigid body, or, briefly, a solid, is a system of 
mass points separated by distances which do not vary dur-
ing its motion. A real body can be treated as a perfectly 
rigid:7one provided its deformations are negligible under 
the conditions of the problem considered. 

Mechanics tackles two fundamental problems: 
1. The investigation of various motions and the general-

ization of the results obtained in the form of laws of mo- 
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tion, i.e. laws that can be employed in predicting the 
character of motion in each specific case. 

2. The search for general properties that are typical of 
any system regardless of the specific interactions between 
the bodies of the system. 

The solution of the first problem ended up with the so-
called dynamic laws established by Newton and Einstein, 
while the solution of the second problem resulted in the 
discovery of the laws of conservation for such fundamental 
quantities as energy, momentum and angular momentum. 

The dynamic laws and the laws of conservation of energy, 
momentum and angular momentum represent the basic laws 
of mechanics. The investigation of these laws constitutes 
the subject matter of this book. 



PART ONE 

CLASSICAL MECHANICS 

CHAPTER 1 

ESSENTIALS OF KINEMATICS 

Kinematics is the subdivision of mechanics treating ways 
of describing motion regardless of the causes inducing it. 
Three problems will be considered in this chapter: kinematics 
of a point, kinematics of a solid, and the transformation of 
velocity and acceleration on transition from one reference 
frame to another. 

§ 1.1. Kinematics of a Point 

There are three ways to describe the motion of a point: 
the first employs vectors, the second coordinates, and the 
third is referred to as natural. Let us examine them in 
order. 

The vector method. With this method the location of a 
given point A is defined by a radius vector r drawn from 
a certain stationary point 0 of a chosen reference frame to 
that point A. The motion of the point A makes its radius 
vector vary in the general case both in magnitude and in 
direction, i.e. the radius vector r depends on time t. The locus 
of the end points of the radius vector r is referred to as the 
path of the point A. 

Let us introduce the notion of the velocity of a point. 
Suppose the point A travels from point 1 to point 2 in the 
time interval At (Fig. 1). It is seen from the figure that 
the displacement vector Ar of the point A represents the 
increment of the radius vector r in the time At: Ar = r2  — 
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— r1 . The ratio Ar/At,-  is called the mean velocity vector (v) 
during the time interval At. The direction of the vector 
(v) coincides with that of Ar. Now let us define the veloc-
ity vector v of the point at a given moment of time as the 
limit of the ratio Ar/At as At 0, i.e. 

Ar 	dr 
v = iim — 

	

=—
dt

. 	 (1.1) 
At-* 0 At  

This means that the velocity vector v of the point at a given 
moment of time is equal to the derivative of the radius 
vector r with respect to time, and its direction, like that of 

Fig. 1 

the vector dr, along the tangent to the path at a given point 
coincides with the direction of motion of the point A. The 
modulus of the vector v is equal to* 

v=IvI=Idr/dtI. 

The motion of a point is also characterized by acceleration. 
The acceleration vector w defines the rate at which the ve-
locity vector of a point varies with time: 

w = dv/dt, 	 (1.2) 

i.e. it is equal to the derivative of the velocity vector with 
respect to time. The direction of the vector w coincides with 
the direction of the vector dv which is the increment of the 
vector v during the time interval dt. The modulus of the 

* Note that in the general case I dr I 	dr, where r is the modulus 
of the radius vector r, and v 	drldt. For example, when r changes 
only in direction, that is the point moves in a circle, then r = const, 
dr = 0, but I dr I r  0. 
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vector w is defined in much the same way as that of the 
vector v. 

Example. The radius vector of a point depends on time t as 

r = at + bt2/2, 

where a and b are constant vectors. Let us find the velocity v of the 
point and its acceleration w: 

v = drldt = a + bt, w = dvIdt = b = const. 

The modulus of the velocity vector 

VV2 =Va2+2abt+b2t 2 . 

Thus, knowing the function r (t), one can find the velocity 
v of a point and its acceleration w at any moment of time. 

Here the reverse problem arises: can we find v (t) and 
r (t) if the time dependence of the acceleration w (t) is 
known? 

It turns out that the dependence w (t) is not sufficient to 
get a single-valued solution of this problem; one needs also 
to know the so-called initial conditions, namely, the veloc-
ity vc, of the point and its radius vector r0  at a certain 
initial moment t = 0. To make sure, let us examine the 
simple case when the acceleration of the point remains con-
stant in the course of time. 

First, let us determine the velocity v (t) of the point. In 
accordance with Eq. (1.2) the elementary velocity incre-
ment during the time interval dt is equal to dv = w dt. 
Integrating this relation with respect to time between 
t = 0 and t, we obtain the velocity vector increment dur-
ing this interval: 

Av = w dt =wt. 

However, the quantity Av is not the required velocity v. 
To find v, we must know the velocity vo  at the initial mo-
ment of time. Then v = vo  Av, or 

v = vo  wt. 

The radius vector r (t) of the point is found in a similar 
manner. According to Eq. (1.1) the elementary increment of 
the radius vector during the time interval dt is dr = v dt. 
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Integrating this relation with respect to the function v (t), 
we obtain the increment of the radius vector during the 
interval from t = 0 to t: 

Ar = v (t) dt = vot wt2  /2 . 

To find the radius vector r (t), the location r0  of the point 
at the initial moment of time must be known. Then r 
= 	Ar, or 

r = ro  vot wt2/2. 

Let us consider, for example, the motion of a stone thrown 
with the initial velocity vo  at an angle to the horizontal. 
Assuming the stone to move 'with the constant acceleration 
w = g, its location relative 
to the point 1.0  = 0 from which 
the stone was thrown is de-
fined by the radius vector 

r = vot gt2/ 2, 

i.e. in this case r represents 
the sum of two vectors as 
shown in Fig. 2. 

Thus, the complete solu- 
tion of the problem of a moving 
point, that is, the determination of its vcleoity v and its 
location r as functions of time, requires knowing not only 
the dependence w (t), but also the initial conditions, i.e. the 
velocity vo  and the location r0  of the point at the initial 
moment of time. 

The method of coordinates. In this method a certain coor-
dinate system (Cartesian, oblique-angled or curvilinear) 
is fixed to a chosen reference body. The choice of a coordinate 
system is stipulated by various considerations: the char-
acter or the symmetry of the problem, the formulation of 
the problem, the quest for a simpler solution. We shall 
confine ourselves here* to Cartesian coordinates x, y, z. 

* The motion of a point in polar coordinates is considered 
in Appendix 1. 

2-0539 
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Let us write the projections of the radius vector r (t) 
on the axes x, y, z to characterize the position of the point 
in question relative to the origin 0 at the moment t: 

x = x (t); 	y = y (t); z = z (t). 

Knowing the dependence of these coordinates on time, that 
is, the law of motion of the point, we can find the position 
of the point at any moment of time, as well as its velocity 
and acceleration. Indeed, from Eqs. (1.1) and (1.2) we can 
easily obtain the formulae defining the projections of the 
velocity vector and the acceleration vector on the x axis: 

vx  = dxIdt, 	 (1.3) 

where dx is the projection of the displacement vector dr on 
the x axis; 

wx =dvx1di r d2x/dt2, 	 (1.4) 

where dux  is the projection of the velocity increment vector 
dv on the x axis. Similar relations are obtained for y and z 
projections of the respective vectors. It is seen from these 
formulae that the velocity and acceleration vector projec-
tions are equal respectively to the first and second time de-
rivatives of the coordinates. 

Thus, the functions x (t), y (t), z (t), in essence, complete-
ly define the motion of a point. Knowing them, one can 
find not only the position of a point, but also the projections 
of its velocity and acceleration, and, consequently, the 
magnitude and direction of vectors v and w at any moment 
of time. For example, the modulus of the velocity vector 

v = v1+ vD 

the direction of the vector v is defined by the directional co-
sines as follows: 

cos a = vx/v; cos p = vytv;  cos y = vz/v, 

where a, p, y are the angles formed by the vector v with the 
axes x, y, z respectively. Similar formulae define the mag-
nitude and direction of the acceleration vector. 

Besides, some more questions can be solved: one can de-
termine the path of a point, the dependence of the distance 
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covered on time, the dependence of the velocity on the 
position of a point etc. 

The reverse problem, that is, the determination of the 
velocity and the law of motion of a point from a given accel-
eration, is solved, as in the vector method, by integration 
(in this case, integration of acceleration projections with 
respect to time); this problem also has a single-valued solu-
tion provided that in addition to the acceleration the initial 
conditions are also available, i.e. velocity projections and 
the coordinates of a point at the initial moment. 

The "natural" method. This method is employed when 
the path of a point is known in advance. The location of 
a point A is defined by the arc coordi-
nate 1, that is, the distance from the 
chosen origin 0 measured along the 
path (Fig. 3). In so doing, the pos-
itive] direction of the coordinate 
1 is adopted at will (e.g. as shown 
by an arrow in the figure). 

The motion of a point is deter-
mined provided we know its path, 
the origin 0, the positive direction of the arc coordinate 1 and 
the law of motion of the point, i.e. the function 1 (t). 

Velocity of a point. Let us introduce the unit vector t 
fixed to the moving point A and oriented along a tangent to 
the path in the direction of growing values of the arc coordi-
nate 1 (Fig. 3). It is obvious that T is a variable vector since 
it depends on 1. The velocity vector v of the point A is 
oriented along a tangent to the path and therefore can be 
represented as follows: 

/14, I 	(1.5) 

where v, = dl/dt is the projection of the vector v on the 
direction of the vector t, with v, being an algebraic quan-
tity. Besides, it is obvious that 

= Iv! =v. 

Acceleration of a point. Let us differentiate Eq. (1.5) 
with respect to time: 

dv 	dv, 	dv 
w= 	+ — 	 (1.6) at = dt 	VT  dt • 

2* 
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Then transform the last term of this expression: 

	

dt 	dr dl 

	

, 	7, 

	

2 	 2 dt 

	

Vt  dt 	VT  dl dt 	dl 	dl 

Let us determine the increment of the vector T in the inter-
val dl (Fig. 4). It can be strictly shown that when point 2 
approaches point 1, the segment of the path between them 
tends to turn into an arc of a circle with centre at some 

(1.7) 

dr 

Fig. 4 

point 0. The point 0 is referred to as the centre of curvature 
of the path at the given point, and the radius p of the cor-
responding circle as the radius of curvature of the path at 
the same point. 

It is seen from Fig. 4 that the angle 6a = I dl 1/p = 
= 1 d'c 1/1, whence 

drldl I = 1/p; 

at the same time, if dl —4-0, then di J T. Introducing a unit 
vector n of the normal to the path at point 1 directed toward 
the centre of curvature, we write the last equality in a vec-
tor form: 

chid/ = n/p. 	 (1.8) 

Now let us substitute Eq. (1.8) into Eq. (1.7) and then 
the expression obtained into Eq. (1.6). Finally we get 

(1.9) 
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Here the first term is called the tangential acceleration vv., 
and the second one, the normal (centripetal) acceleration wn: 

w,=(dvtldt)T; 	Wy, = (v2/p) n. 	(1.10) 

Thus, the total acceleration w of a point can be represent-
ed as the sum of the tangen-
tial w, and normal w„ accele-
rations. 

The magnitude of the total 
acceleration of a point is 

w = w4 	= 

= li(dv/dt)2+ (v2/p)2 . 

Example. Point A travels along 
an arc of a circle of radius •p 
(Fig. 5). Its velocity depends on 
the arc coordinate 1 as v = a in 
where a is a constant. Let us calculate the angle a between the vec-
tors of the total acceleration and of the velocity of the point as a func-
tion of the coordinate 1. 

It is seen from Fig. 5 that the angle a can be found by means of 
the formula tan a = wn/w,. Let us find wn  and w.r: 

v2 	a21 
wn=— =— ; 

P 	p 

Whence tan a = 21/p. 

dmr 	do, dl 	a 	- a2  / = 	 = 	_al 11=
2 • dt 	did 	2 V 

§ 1.2. Kinematics of a Solid 

Being important by itself, the theory of motion of a solid 
is also essential in another respect. It is well known that 
a reference frame used for describing various kinds of mo-
tion in space and time can be fixed to a solid. Therefore, 
the study of motion of solids is actually equivalent to the 
study of motion of corresponding reference frames. The 
results to be obtained in this section will be repeatedly used 
hereafter. 

Five kinds of motion of a solid are identified: (1) trans-
lation, (2) rotation about a stationary axis, (3) plane motion, 
(4) motion about a stationary point, and (5) free motion. 
The first two kinds of motion, that is, translation and rota-
tion about a stationary axis, are the basic kinds of motion 
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of a solid. All the other kinds of motion of a solid prove to be 
reducible to one of the basic motions or to their combina- 
tion. This will be shown by the example of plane motion. 

In this section we shall deal with the first three kinds of 
motion and with the problem of summing angular veloci-
ties. 

Translation. In this kind of motion of a solid any straight 
line fixed to it remains parallel to its initial orientation 

all the time. Examples: a car 
01 	 travelling along a straight sec- 

tion of a road, a Ferris wheel 
dy 	 cage, etc. 

When moving translationa-
ry, all points of a solid tra-
verse equal distances in the 
same time interval. Therefore 
velocities, as well as accelera-
tions, are of the same value 
at all points of the body at the 
given moment of time. This 
fact allows the study of trans-
lation of a solid to be reduced 

Fig. 6 	 to the study of motion of an 
individual point belonging to 

that solid, i.e. to the problem of kinematics of a point. 
Thus, the translation of a solid can be comprehensively 

described provided the dependence of the radius vector on 
time r (t) for any point of that body is available as well as 
the position of that body at the initial moment. 

Rotation about a stationary axis. Suppose a solid, while 
rotating about an axis 00' which is stationary in a given 
reference frame, accomplishes an infinitesimal rotation 
during the time interval dt. We shall describe the corre-
sponding rotation angle by the vector chp whose modulus is 
equal to the rotation angle and whose direction coincides 
with the axis 00', with the rotation direction obeying the 
right-hand screw rule with respect to the direction of the 
vector thp (Fig. 6). 

Now let us find the elementary displacement of any point 
A of the solid resulting from such a rotation. The location 
of the point A is specified by the radius vector r drawn from 
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a certain point 0 on the rotation axis. Then the linear dis-
placement of the end point of the radius vector r is associ-
ated with the rotation angle dy by the relation (Fig. 6) 

dr I = r sin 0 4, 

or in a vector form 

dr = [4, r]. 	 (1.11) 

Note that this equality holds only for an infinitesimal 
rotation chp. In other words, only infinitesimal rotations 
can be treated as vectors.* 

Moreover, the vector introduced (4) can be shown to 
satisfy the basic property of vectors, that is, vector addition. 
Indeed, imagine—a solid performing two elementary rota-
tions, 41  and chp,, about different axes crossing at a sta-
tionary point 0. Then the resultant displacement dr of 
an arbitrary point A of the body, whose radius vector with 
respect to the point 0 is equal to r, can be represented as 
follows: 

dr = dr1 	dr2  = 141, r1 	[42, r] 	fd(p, r , 

where 
4 = dcpi'+ 42, 	 (1.12) 

i.e. the two given rotations, 41  and dcp2, are equivalent to 
one rotation through the angle 4 = dpi + dwz  about the 
axis coinciding with the vector dcp and passing through 
the point 0. 

Note that in treating such quantities as radius vector r, 
velocity v, acceleration w we did not hesitate over the choice 
of their direction: it naturally followed from the properties 
of the quantities themselves. Such vectors are referred to 
as polar. As distinct from them, such vectors as dc whose 

* In the case of a finite rotation through the angleIAT the linear 
displacement of the point A can be found from Fig. 6: 

Ar = r sin 0.2 sin (AT/2). 

Whence it is immediately seen that the displacement Ar cannot 
be represented as a vector cross product of AT and r. It is only pos-
sible in the case of an infinitesimal rotation clw when the radius vec-
tor r can be regarded invariable. 
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direction is specified by the rotation direction are galled 
axial. 

Now let us introduce the vectors of angular velocity and 
angular acceleration. The angular velocity vector co is 
defined as 

	

= dqVdt, 	 (1.13) 

where dt is the time interval during which a body performs 
the rotation dcp. The vector co is axial and its direction coin-
cides with that of the vector dq. 

The time variation of the vector co is defined by the angu-
lar acceleration vector fr 

	

[3 = dcoldt. 	 (1.14) 

The direction of the vector f coincides with the direction of 
dove, the increment of the vector co. Both vectors, p and co, 
are axial. 

The representation of angular velocity'and angular accel- 
eration in a vector' form proves to be very beneficial, espe- 

cially in the study of more complicated kinds 

lz
of motion'of a solid. In many cases this makes 
a problem more explicit, drastically simplifies 
the analysis of motion and the corresponding 
calculations. 

Let us write the expressions for angular ve- 
locity and angular acceleration via projec- 

	

Fig. 7 	tions on the rotation 	axis z whose positive 
direction is associated with the positive di-

rection of the coordinate cp, the rotation angle, in accordance 
with the right-hand screw rule (Fig. 7). Then the projections 

z and 13 z of the vectors o and on the z axis are defined by 
the following formulae: 

	

co, = dcpldt, 	 (1.15) 

	

p, = dco zldt. 	 (1.16) 

Here cl), and 	are algebraic quantities. Their sign specifies 
the direction of the corresponding vector. For example, if 
co z  > 0, then the direction-of the vector o coincides with 
the positive direction of the z axis; and if co, < 0, then the 
vector co has the opposite direction. The same is true for 
angular acceleration. 



(Fig. 8 
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Thus, knowing the function q  (t), the law of rotation of 
a body, we can find the angular velocity and angular accel-
eration at each moment of time by means of Eqs. (1.15) and 
(1.16) On the other hand, knowing the time dependence of 
angular acceleration and the initial conditions, i.e. the 
angular velocity co, and the angle co  at the initial moment of 
time, we can find co (t) and cp (t). 

Example. A solid rotates about a stationary axis in accordance 
with the law p = at — bt2I2 where a and b are positive constants. 
Let us determine the motion characteristics of this body. 

In accordance with Eqs. (1.15) and (1.16) 
coZ  = a — bt; Sz  = — b = const. 

Whence it is seen that the body performs a uniformly decelerated 
rotation (13, < 0), comes to a standstill at the moment to  = alb 
and then reverses its rotation direction (due to coz7changing its sign 
to the opposite). 

Note that the solution of'all problems on rotation of a solid 
about a stationary axis is similar in form to that of:prob-
lems on rectilinear motion of a 
point. It is sufficient to replace the 
linear quantities x, vx  and w, by the 
corresponding angular quantities q), 
co Z  and p z  in order to obtain all 
characteristics and relationships for 
the case of a rotating body. 

Relationship between linear and 
angular quantities. Let us find the 
velocity v of an arbitrary point A of 
a solid rotating about a stationary 
axis 00' at an angular velocity co. 
Let the location of the point A rel-
ative to some point O'of the rota-
tion axis be defined by the radius 
vector r (Fig. 8). Dividing both 
sides of Eq.r(1.11) by the correspond-
ing i time intervall dt and taking into account that 
drldt = v and 41 dt = co, we obtain 

v = [tor], I 	(1.17) 

i.e. the velocity v of any point A of a solid rotating about 
some, axis at an angular velocity co is equal to the cross 
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product of]co and the'radius vector r of the point A relative to 
an arbitrary point 0 of the rotation axis (Fig. 8). 

The modulus of the vector (1.17) is v = cor sin 0, or 

v = cop, 

where p is the radius of the circle which the point A circum- 
scribes. Having differentiated Eq. (1.17) with respect to 

	

Fig. 9 
	

Fig. 10 

time, we find the acceleration w of the point A: 

	

w 	r] + 1w, drldtl 
or 

w 	[co [coi]]. I 	 (1.18) 

In this case (when the rotation axis is stationary) 1311 co, 
and therefore the vector [fir] represents the'tangential accel-
eration wT. The vector [co [eo]] is the normal acceleration 
wn. The moduli of these vectors are 

Iwt1=13P; 	wit = OP, 

whence the modulus of the total acceleration w is equal to 

/41. = P 1/132  + (04. 
Plane motion of a solid. In this kind of motion each point 

of a solid moves in a plane which is parallel to a certain 
stationary (in a given reference frame) plane. In this case 
the plane figure (13 formed as a result of cutting the solid by 
that stationary plane P (Fig. 9) remains in that plane all 
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the time during the motion. Example: a cylinder rolling 
along a plane without slipping (in a similar case a cone per-
forms a much more complicated motion). 

It is easy to infer that the position of a solid in plane mo-
tion is unambiguously determined by the position of the 
plane figure 0 within the stationary plane P. The study of 
the plane motion of a solid thus reduces to the study of 
motion of a plane figure within its plane. 

Let the plane figure 0 move within its plane P, which 
is stationary in the K reference frame (Fig. 10). The posi-
tion of the figure 0 in the plane can be defined by specify-
ing the radius vector 1.0  of an arbitrary point 0' of the figure 
and the angle cp between the radius vector r' rigidly fixed 
to the figure and a certain selected direction in the K refer-
ence frame. The plane motion of the solid is then described 
by the two equations 

1.0  = 1.0  (t); 	p = cp (t). 
It is clear that if the radius vector r' of the point A 

(Fig. 10) turns through the angle dq during the time inter-
val dt, then any segment fixed to the figure will turn through 
the same angle. In other words, the rotation of the figure 
through the angle dcp does not depend on the choice of the 
point 0'. This means that the angular velocity co of the 
figure does not depend on the choice of the point 0', and 
we have the right to call co the angular velocity of the solid 
per se. 

Now let us find the velocity v of an arbitrary point A 
of a solid in plane motion. Let us introduce the auxiliary 
reference frame K' which is rigidly fixed to the point 0' 
of the solid and translates relative to the K frame (Fig. 10). 
Then the elementary displacement dr of the point A in the K 
frame can be written in the following form: 

dr = dro  + dr', 

where dro  is the displacement of the K' frame, or the point 
0', and dr' is the displacement of the point A relative to 
the K' frame. The translation dr' is caused by the rotation 
of the solid about the axis which is at rest in the K' frame 
and passes through the point 0'; according to Eq. (1.11) 
dr' = [d(p, r']. Substituting this relation into the previous 
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one and dividing both sides of the expression obtained by 
dt, we get 

v = vo + korl, 	 (1A9) 

i.e. the velocity of any point A of a solid in plane motion* 
comprises the velocity vc, of an arbitrary point 0' of that 
solid and the velocity v' = [or'] caused by rotation of the 
solid about the axis passing through the point 0'. Once 
again we would like to stress that v' is the velocity of the 
point A relative to the translating reference frame K' which 

K 	
is rigidly fixed to the point 0'. 

In other words, plane motion 
of a solid can ';be represented as 
a combination of two basic kinds 
of motion: translation (together 
with an arbitrary point 0' of the 
solid) and rotation (around an 
axis passing through the point 
0'). 

Now we shall demonstrate 
Fig. 11 	 that plane motion can be re- 

duced to a purely rotational mo- 
tion. Indeed, in plane motion 

the velocity vo  of the arbitrary point 0' `of the solid 
is normal to the vector co which means that we can always 
find a certain point M which is rigidly fixed to the solid** 
and whose velocity v = 0 at a given moment. The location 
of the point M, i.e. its radius vector 6/  relative to the 
point 0' (Fig. 11), can be found from the condition 0 = 
= vc, + [corm]. The vector 64  is perpendicular to co and 
vo, its direction corresponding to the vector cross product 
vo  = --koriul and its magnitude rju. = vo/co. 

The point M defines the position of another important 
axis (coinciding with the direction of the vector co). At 
a given moment of time the motion of a solid represents 
a pure rotation about this axis. Such an axis is referred to as 
an instantaneous rotation axis. 

* Note that Eq. (1.19) also holds for any complex motion of 
a solid. 

** The point M may turn out to be outside the solid. 
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Generally speaking, the position of the instantaneous axis 
varies with time. For example, in the case of a cylinder roll-
ing over a plane surface the instantaneous axis coincides at 
any moment with the line of contact between the cylinder 
and the plane. 

Angular velocity summation. Let us analyse the motion 
of a solid rotating simultaneously about two intersecting 
axes. We shall set into rotation a cer-
tain solid at the angular velocity cu' 
about the axis OA (Fig. 12), and then 
we shall set this axis into rotation 
with the angular velocity coo  about 
the axis OB which is stationary in the 
K reference frame. Let us find the re-
sultant motion in the K frame. 

We shall introduce an auxiliary ref-
erence frame K' fixed rigidly to the 
axes OA and OB. It is clear that this 
frame rotates with the angular velocity coo  while the 
solid rotates relative to this frame with the angular 
velocity co'. 

During the time interval dt the solid will turn through 
an angle dq; about the axis OA in the K' frame and simul-
taneously through dq)0  about the axis OB together with the 
K' frame. The cumulative rotation follows from Eq. (1.12): 
dcp = dcr . Dividing both sides of this equality by 
dt, we obtain 

= wo + 0)" 
	

(1.20) 

Thus, the resultant motion of the solid in the K frame is 
a pure rotation with the angular velocity w about an axis 
coinciding at each moment with the vector co and passing 
through the point 0 (Fig. 12). This axis is displaced relative 
to the K frame: it rotates together with the OA axis about 
the axis OB at the angular velocity coo. 

It is not difficult to infer that even when the angular 
velocities co' and wo  do not change their magnitudes, the 
body in the K frame will possess the angular acceleration 

directed, according to Eq. (1.14), beyond the plane 
(Fig. 12). The angular acceleration of a solid is analysed in 
detail in Problem 1.10. 
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And here is one more remark. Since the angular velocity 
vector (9 satisfies the basic property of vectors, vector sum-
mation, (f) can be expanded into a sum of vector components 
projected on definite directions, i.e. o) = + (1)2  • • • , 
where all vectors belong to the same reference frame. This 
convenient and beneficial routine is frequently employed 
to analyse complex motions of a solid. 

§ 1.3. Transformation of Velocity and Acceleration 
on Transition to Another Reference Frame 

Prior to entering upon the study of this problem we should 
recall that within the bounds of classical mechanics the 
length of scales and time are considered absolute. A scale 
is the same in different reference frames, i.e. it does not 
change during motion. This is also true of time running 
uniformly throughout all frames. 

Formulation of the problem. There are two arbitrary 
reference frames K and K' moving relative to each other 
in a definite manner. The velocity v and the acceleration w 

of a point A in the K frame are 
known. What are the correspond-
ing values v' and w' of this 
point in the K' frame? 

We shall examine the three 
most significant cases of relative 
motion of two reference frames 
in succession. 

1. The K' frame translates 
relative to the K frame. 

Suppose the origin of the 
Fig. 13 	 K' frame is determined by the 

radius vector r0  in the K frame, 
and its velocity and accele-

ration by the vectors vo  and w0. If the location of the point 
A in the K frame is determined by the radius vector r and 
in the K' frame by the radius vector r', then apparently 
r = rc, r' (Fig. 13). Next, let during the time interval dt 
the point A accomplish the elementary displacement dr 
in the K frame. This displacement is made up of the displace-
ment dro  (together with the K' frame) and the displace- 
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ment dr' relative to the K' frame: dr = dro  + dr'. Dividing 
this expression by dt, we obtain the following formula for 
the velocity transformation: 

(1.21) 

Differentiating Eq. (1.21) with respect to time, we immedia-
tely get the acceleration transformation formula: 

(1.22) w = wo w'• 

Whence it is seen, specifically, that if wo  = 0 and w = w', 
i.e. when the K' frame moves without acceleration, the 
acceleration of the point A relative to the K frame will be 
the same in both frames. 

2. The K' frame rotates at the constant angu-
lar velocity w about an axis which is station-
ary in the K frame. 

Let us assume the origins of the reference frames K and K' 
to be located at an arbitrary point 0 on the rotation axis 

Fig. 14 

(Fig. 14a). Then the radius vector of the point A will be 
the same in both reference frames: r = r'. 

If the point A is at rest in the K' frame, this means that 
its displacement dr in the K frame during the time interval 
dt is caused only by the rotation of the radius vector r 
through the angle dip (together with the K' frame) and in 
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accordance with Eq. (1.11) is equaljto the vector cross 
product Edq), rl. 

If the point A moves at the velocity v' relative to the K' 
frame, it will cover an additional distance v'dt during the 
time interval dt (Fig. 14a), so that 

	

dr = v'dt 	[thp, r]. 	 (1.23) 

Dividing this expression by dt, we obtain the velocity 
transformation formula as follows: 

v=v'+[(or], I 	(1.24) 

where v and v' are the velocity values which characterize 
the motion of the point A in the K and K' frames respec-
tively. 

Now let us pass over to acceleration. In accordance with 
Eq. (1.24) the increment dv of the vector v during the time 
interval dt in the K frame must comprise the sum of the 
increments of the vectors v' and [on], i.e. 

	

dv = dv' 	[6), dr]. 	 (1.25) 

Let us find dv'. If the point A moves in the K' frame with 
a constant velocity (v' = const), the increment of this vec-
tor in the K frame is caused only by this vector turning 
through the angle ciw (together with the K' frame) and is 
equal, as in the case of r, to the:vector cross product Edcp, v']. 
To make sure of this, let us position the beginning of the 
vector v' on the rotation axis (Fig. 14b). But if the point A 
moves with the acceleration w' in the K' frame, the vector 
v' will get an additional increment w'dt during the time 
interval dt, and consequently 

	

dv' = w'dt 	[d(p, v'l. 	 (1.26) 

Now let us substitute Eqs. (1.26) and (1.23) into Eq. (1.25) 
and then divide the expression obtained by dt. Thus we 
shall get the acceleration transformation formula: 

w = w' -I- 2 fory'l 	[end], 	(1.27) 

where w and w' are the acceleration values of the point A 
observed in the K and K' frames. The second term on the 
right-hand side of this formula is referred to as the Coriolis 
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acceleration Arca, and the third term is the axipetal accel-
eration wap  directed toward the axis* 

wcor = 2  kov'l, 	wap = [0) 	 (1.28) 

Thus, the acceleration w of the point relative to the K 
frame is equal to the sum of three accelerations: the accel-
eration w' relative to the K' frame, the Coriolis acceleration 
wcar  and the axipetal acceleration wap• 

The axipetal acceleration can be represented in the form 
wap  = ---(14 where p is the radius vector which is normal 
to the rotation axis and describes the position of the point A 
relative to this axis. Then Eq. (1.27) can be written as fol-
lows: 

I w= w' +2 kov'l—co2p.1 	(1.29) 

3. The K' frame rotates with the constant an-
gular velocity w about the axis translating 
with the velocity vo  and acceleration wo  rela-
tive to the K frame. 

This case combines the two previous ones. Let us intro-
duce an auxiliary S frame which is rigidly fixed to the rota-
tion axis of the K' frame and translates in the K frame. 
Suppose v and vs  are the velocity values of the point A in 
the K and S frames; then in accordance with Eq. (1.21) 
v = vo  ± vs. Replacing vs  in accordance with Eq. (1.24) 
by vs  = v' [wr], where r is the radius vector of the 
point A relative to the arbitrary point on the rotation axis 
of the K' frame, we obtain the following velocity transfor-
mation formula: 

I v =vi +vo +kor.1.1 	 (1.30) 

* This axipetal acceleration should not be confused with conven-
tional (centripetal) acceleration. 

3-0539 
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In a similar fashion, using Eqs. (1.22) and (1.29), we obtain 
the acceleration transformation formula*: 

w = w' wo  + 2 kov'l — w2p. I 	(1.31) 

Recall that in the last two formulae v, v' and w, w' are the 
velocities and accelerations of the point A in the K and K' 
frames respectively, vo  and wo  are the velocity and accele-
ration of the rotation axis of the K' frame in the K frame, r 
is the radius vector of the point A relative to an arbitrary 
point on the rotation axis of the K' frame, and p is the 
radius vector perpendicular to the rotation axis and describ-
ing the location of the point A relative to this axis. 

In conclusion, let us examine the following example. 

Example. kdisCrotates with Cconstant-angularvelocity w about 
an axis fixed to the table. Nint A moves along the disc with 
the constant velocity v relative to the table. Find the velocity v' 
and acceleration w' of the point A relative to the disc at the moment 
when the radius vector describing its position relative to the rota-
tion axis is equal to p. 

In accordance with Eq. (1.24) the velocity v' of the point A is 
equal to 

Problems to Chapter 1 

•1.1. The radius vector describing the position of the particle A 
relative to the stationary point 0 changes with time according to the 
following law: 

r = a sin cot 	b cos cot, 

where a and b are constant vectors, with a 	 co_L b;  is a positive constant. 
Find the acceleration w of the particle and the equation of its path 
y (x), assuming the x and y axes to coincide with the directions of 
the vectors a and b respectively and to have the origin at the point 0. 

* Note that in the most general case when e) 	const, the right- 
hand side of Eq. (1.31) will feature one more term, namely [k], 
where 13 is the angular acceleration of the K' frame, r is the radius 
vector describing the position of the point located on the rotation 
axis and taken for the origin in the K' frame. 

v' = v — [cop]. 

The acceleration w' can be found from Eq. (1.29), taking into account 
that in this case w = 0 since v = const. Then w' = —2 [covl 

co2p. Substituting the expression for v' into this formula we obtain 

w' = 2 [v co] — 
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Solution. Differentiating r with respect to time twice, we obtain 

w = --co2  (a sin cot + b cos cot) = 

i.e. the vector w is always oriented toward the point 0 while its mag-
nitude is proportional to the distance between the particle and the 
point 0. 

Now let us determine the trajectory equation. Projecting r on the 
x and y axes, we obtain 

x = a sin cot, 	y = b cos wt. 

Eliminating cot from these two equations, we get 

,2/a2 	y2/b2 == 1.  

This is the equation of an ellipse, and a and b are its semi-axes (see 
Fig. 15; the arrow shows the direction of motion of the particle A). 

Fig. 15 Fig. 16 

• 1.2.1Displacement and! distance. At the moment t =- 0 a,, par-
tick is set in motion at the velocity vc, whereupon its velocity begins 
changing with time in accordance with the law 

v = vo  (1 — tit), 

where x is a positive constant. Find: 
(1) the displacement vector Ar of the particle, and 
(2) the distance s covered by it in the first t seconds of motion. 
Solution. 1. In accordance with Eq. (1.1) dr = v dt = vo  (1 -

- tit) dt. Integrating this equation with respect to time between 0 
and t, we obtain 

Ar = vot (1 — ti2t). 

2. The distance s covered by the particle in the time t is deter-
mined by 

t
r  

s= v dt, 

0 

3* 
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where v is the modulus of the vector v. In this case 

v=v011—t/t1={ 
v
° 
 (1—t/t), if t...<T, 

Vo  (t/ti —1), if t 

From this it follows that if t > .cthe integral for calculating the 
distance should be subdivided into two parts: between 0 and T and 
between T and t. Integrating in the two cases (t < T and t > 
we obtain 

vot (1— Oat), if t--<:t. 
s= 

vOT [1+ (1— t/T)2]/2, if t>x. 

Fig. 16 illustrates the plots v (t) and s (t). The dotted lines show 
the time dependences of the projections v, and Ax of the vectors v 
and Ar on the x axis oriented along the vector v0. 

• 1.3. A street car moves rectilinearly from station A, to the next 
stop B with an acceleration varying according to the law w = a — bx 
where a and b are positive constants and x is its distance from sta-
tion A. Find the distance between these stations and the maximum 
velocity of the street car. 

Solution. First we shall find how the velocity depends on x. During 
the time interval dt the velocity increment dv = w dt. Making use 
of the equation dt = dxIv, we reduce the last expression to the form 
which is convenient to integrate: 

v dv = (a — bx) dx. 

Integrating this equation (the left-hand side between 0 and v and 
the right-hand side between 0 and x), we get 

v2/2 = ax — bx2/2 or v = V(2a — bx) x. 

From this equation it can be immediately seen that the distance 
between the stations, that is, the value x, corresponding to v = 0 
is equal to x, = 2aIb. The maximum velocity can be found from the 
condition dv/dx = 0, or, simply, from the condition for the maximum 
value of the radicand. The value xm  corresponding to vmax  is equal 
to xm  = alb and vmax  

• L4. A particle moves in the x, y plane from the point x = y =- 0 
with the velocity v = ai 	bxj, where a and b are constants and i 
and j are the unit vectors of the x and y axes. Find the equation of 
its path y (x). 

Solution. Let us write the increments of the x and y coordinates 
of the particle in the time interval dt: dy = vv  dt, dx = vx  dt, where 
vu=bx, 1), = a. Taking their ratio, we get 

dy = (bIa) x dx. 
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Integrating this expression, we obtain the following equation: 

x
r  

y = (b a) x dx = (b/2a) x2, 

0 

i.e. the path of the point is a parabola. 
1.5. The motion law for the point A of the rim of a wheel rolling 

uniformly along a horizontal path (the x axis) has the form 

x = a (cot — sin cot); 	y = a (1 — cos cot), 

where a and co are positive constants. Find the velocity v of the point 
A , the distance .9 which it traverses between two successive contacts 
with the roadbed, as well as the magnitude and the direction of the 
acceleration w of the point A. 

Solution. The velocity v of the point A and the distance s it covers 
are determined by the formulae 

v 	x 	y v2  --=aw V2 (1—cos cot) = 2aco sin (ot/2), 

it 

s= f v (t) dt =- 4a [1 — cos (0)412)1, 

where t1  is the time interval between two successive contacts. From 
y (t) we find that y (t1) = 0 at coti  = 2a. Therefore, s = 8a. 

The acceleration of the point A 

Let us show that the vector w, constant in its magnitude, is always 
directed toward the centre of the wheel, the point C. In fact, in the 
K' frame fixed to the point C and translating uniformly relative 
to the roadbed the point A moves uniformly along a circle about the 
point C. Consequently, its acceleration in the K' frame is directed 
toward the centre of the wheel. And since the K' frame moves uniform-
ly, the vector w is the same relative to the roadbed. 

51.6. A point moves along a circle of radius r with deceleration; 
at any moment the magnitudes of its tangential and normal accelera-
tions are equal. The point was set in motion with the velocity vo. 
Find the velocity v and the magnitude of the total acceleration w 
of the point as a function of the distance s covered by it. 

Solution. By the hypothesis, dv/dt = — v2/r. Replacing dt by ds1 v, 
we reduce the initial equation to the form 

dv/v = —ds/r. 

The integration of this expression with regard to the initial velocity 
yields the following result: 

v= voe-s/r. 
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In this case I w, I 	wn, and therefore the total acceleration 
w = 	wn  = li2 v2/r, or 

w = (2 v2,/re2s/r. 

• 1.7. A point moves along a plane path so that its tangential 
acceleration w, = a and the normal acceleration wn  = bt4, where 
a and b are positive constants and t is time. The point started moving 
at the moment t = 0. Find the curvature radius p of its path and its 
total acceleration w as a function of the distance s covered by the point. 

Solution. The elementary velocity increment of the point dv 
w.1  dt. Integrating this equation, we get v = at. The distance 

covered s = at2/2. 
In accordance with Eq. (1.10) the curvature radius of the path 

can be represented as p = v2/w, = a2/bt2, or 

p = a312bs. 

w -1/ + to,:= a 1/ 1+ (4b s2  1 a 3)2  

• 1 .8. A particle moves uniformly with the velocity v along a para-
bolic path y = ax2, where a is a positive constant. Find the accel-
eration w of the particle at the point x = 0. 

Solution. Let us differentiate twice the path equation with respect 
to time: 

dy 	dx 	 dx \ 	 d2x 1 
T/T =2ax —

dt '
• 	

d
d

2
t
y
2 

= 2a [ 
dt 

2  x 
dt2  j • 

Since the particle moves uniformly, its acceleration at all points 
of the path is purely normal and at the point x = 0 it coincides with 
the derivative d2yldt2  at that point. Keeping in mind that at the 
point x = 0 dx/dt 1 = v, we get 

,,==(d2y1,112)x_o__ 2av2. 

Note that in this solution method we have avoided calculating the 
curvature radius of the path at the point x = 0, which is usually 
needed to determine the normal acceleration (wn  = v2/p). 

11 .9. Rotation of a solid. A solid starts rotating about a station-
ary axis with the angular acceleration fl = po  cos cp, where [30  is 
a constant vector and cp is the angle of rotation of the solid from the 
initial position. Find the angular velocity co, of the solid as a func-
tion of (p. 

Solution. Let us choose the positive direction of the z axis along 
the vector /30. In accordance with Eq. (1.16) do), = 13z  dt. Using 
Eq. (1.15) to replace dt by dcp/coz, we reduce the previous equation 
to the following form: 

toz  dcoz  = 130  cos IT dy. 

The total acceleration 
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The integration of this expression with regard to the initial condition 
(co, = 0 at q = 0) yields a1/2 = Po  sin cp. From this it follows that 

co, = ± 0130  sin cp. 

The plot con, (q) is shown in Fig. 17. It can be seen that as the angle cp 
grows, the vector co first increases, coinciding with the direction of 
the vector 130  (co, > 0), reaches the maximum at cp = n/2, then starts 
decreasing and finally turns into zero at cp = n. After that the body 
starts rotating in the opposite direction in a similar fashion (co., < 0). 
As a result, the body will oscillate;:about:therposition q = a/2iwith 
an amplitude equal to n/2. 

• 1.10. A round cone having the height h and the base7radius r 
rolls without..slipping-along-the table surface as shown in Fig. 18. 

• 0' 

Fig. 17 Fig. 18 

The cone apex is hinged at the point 0 which is exactly level with 
the point C, the cone base centre. The point C moves at the constant 
velocity v. Find: 

(1) the angular velocity co and 
(2) the angular acceleration fl of the cone relative to the table. 
Solution. 1. In accordance with Eq. (1.20) co = coo  + where 

coo  and co' are the angular velocities of rotation about the axes 00' 
and OC respectively. The magnitudes of the vectors coo  and o' can be 
easily found from Fig. 18: 

wo=v1h, Co' =v1r. 

Their ratio coo/co' = rlh. It follows that the vector co coincides at 
any moment with the cone generatrix which passes through the con-
tact point A. 

The magnitude of the vector co is equal to 

(0 = li(08+6)'2 = (v1 r) 17 1+ (7' I /0 2  • 
2. In accordance with Eq. (1.14) the angular acceleration II of the 

cone is represented by the derivative of the vector co with respect 
to time. Since coo  = const, then 

= clai/dt = dcoVdt. 
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The vector (1.; rotating about the 00' axis with the angular velocity 
coo  retains its magnitude. Its increment in the time interval dt is 
equal to 1 dco' 1=co' •coo  dt , or in vector form to cho'=[ coo  o)'] dt. Thus, 

p = [moon 

The magnitude of this vector 0 is equal to I -- = v2/rh. 
• 1.11. Velocity and acceleration transformation. A horizontal 

bar rotates with the constant angular velocity (.1.) about a vertical 
axis which is fixed to a table and passes through one of the ends of 
that bar. A small coupling moves along the bar. Its velocity relative 
to the bar obeys the law v' = ar where a is a constant and r is the 
radius vector determining the distance between the coupling and the 
rotation axis. Find: 

(1) the velocity v and the acceleration w of the coupling relative 
to the table and depending on r; 

(2) the angle between the vectors v and w in the process of motion. 
Solution. 1. In accordance with Eq. (1.24) 

v = ar + [ for]. 

The magnitude of this vector v = r 3/a2  + w2. 
The acceleration w is found from Eq. (1.29) where in this case 

w' = °iv' Idt = a2r. Then 
w = (a2  — w2) r + 2a [ wr]. 

The magnitude of this vector w = (a2 + (02) r. 
2. To calculate the angle a between the vectors v and w, we shall 

make use of their scalar product, from which it follows that cos a = 
= vw/vw. After the requisite transformations we obtain 

cos a =1/V1+ (cola)2. 

It is seen from this formula that in this case the angle a remains 
constant during the motion. 



CHAPTER 2 

THE BASIC EQUATION OF DYNAMICS 

§ 2.1. Inertial Reference Frames 

The law of inertia.`Kinematics, being concerned with de-
scribing motion irrespective of its causes, makes no essential 
difference between various reference frames and regards 
them as equivalent. It is quite different with dynamics, 
which deals with laws of motion. Here we detect the intrin-
sic difference between various reference frames and identify 
the advantages of one class of frames over others. 

Basically, we can use any one of the infinite number 
of reference frames. But the laws of mechanics have, gener-
ally speaking,' a different form in different reference frames; 
it may then happen that in an arbitrary reference frame the 
laws governing simple phenomena prove to be very complicat-
ed. Thus, we face the problem of choosing a reference frame 
in which the laws of mechanics take the simplest form. Such 
a reference frame is obviously most suitable for describing 
mechanical phenomena. 

With this aim in view let us consider acceleration of a 
mass point relative to an arbitrary reference frame. What 
causes the acceleration? Experience shows that it can be 
due to some definite bodies acting on this point, as well as 
to the properties of the reference frame itsels (in fact, in the 
general case the acceleration is different relative to differ-
ent reference frames). 

We can, however, assume that there is a reference frame 
in which acceleration of a mass point arises solely due to its 
interaction with other bodies. Then a free mass point exper-
iencing no action from any other bodies moves rectili-
nearly and uniformly, relative to such a frame, or, in other 
words, due to inertia. Such a reference frame is called inertial. 

The statement of the existence of inertial reference 
frames formulates the content of the first law of classical me-
chanics, the law of inertia of Galileo and Newton. 

The existence of inertial frames is corroborated by exper-
iments. By early tests it was established that the Earth 
represents such a frame. Subsequently, the more accurate 
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experiments (Foucault's experiment and the like) argued 
that this reference frame is not totally inertial*, viz., some 
kinds of acceleration were detected whose occurrence can-
not be explained by any definite bodies acting in this frame. 
At the same time the observation of acceleration of planets 
proved the inertial character of the heliocentric reference 
frame fixed to the centre of the sun and "stationary" stars. 
At the present time the inertial character of the heliocentric 
reference frame is confirmed by the whole totality of exper-
imental facts. 

Any other reference frame moving rectilinearly and uni-
formly relative to the heliocentric frame is also inertial. 
In fact, if the acceleration of a body is equal to zero in 
the heliocentric reference frame, it will be equal to zero 
in any other of these reference frames. 

Thus, there is a vast number of inertial reference frames 
moving relative to one another rectilinearly and uniformly. 
Reference frames executing accelerated motion relative to 
inertial ones are called non-inertial. 

On symmetry properties of time and space. An important 
feature of inertial frames consists in the fact that time and 
space possess definite symmetry properties with respect to 
them. Specifically, experience shows that in such frames 
time is uniform while space is both uniform and isotropic. 

The uniformity of time signifies that physical phenomena 
proceed identically at different moments when observed 
under the same conditions. In other words, different moments 
of time are equivalent in terms of their physical properties. 

The uniformity and isotropy of space mean that the prop-
erties of space are identical at all points (uniformity) 
and in all directions at each point (isotropy). 

Note that space is non-uniform and anisotropic with re-
spect to non-inertial reference frames. This means that if 
a certain body does not interact with any other bodies, its 
different orientations are still not equivalent in mechanical 
terms. In the general case this is also true for time which is 
non-uniform, i.e. different moments of time are not equiva- 

* It should be pointed out that in many cases the reference frame 
fixed to the Earth can be regarded practically inertial. 
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lent. It is clear that such properties of space and time would 
complicate the description of mechanical phenomena very 
much. For example, a body experiencing no action from 
other bodies could not be at rest: even though its velocity 
is equal to zero at an initial moment of time, the next mo-
ment the body would start moving in a definite direction. 

Galilean relativity. In inertial reference frames the fol-
lowing principle of relativity is valid: all inertial frames 
are equivalent in their mechanical properties. This means 
that no mechanical tests performed "inside" a given inertial 
frame can detect whether that frame moves or not. Through-
out all inertial reference 
frames the properties of 	yAK 	,,LK1  
space and time, as well as 	 9 
all laws of mechanics, are , 
identical. 

This statement formu-
lates the content of the 
Galilean principle of relativ-
ity, one of the most impor- 
tant principles of classical 	 x 
mechanics. This principle 
is a generalization of prac- 
tice and is confirmed by 	 Fig. 19  
all multiform applications 
of classical mechanics to motion of bodies whose veloc-
ity is considerably less than that of light. 

Everything that was said above clearly demonstrates the 
exceptional nature of inertial reference frames, which as a 
rule makes them indispensable in studies of mechanical 
phenomena. 

the Galilean transformation. Let us find the coordinate 
transformation formulae describing a transition from one 
inertial frame to another. Suppose the inertial frame K' 
moves relative to the inertial frame K with the velocity V. 
Let us take the x', y', z' coordinate axes of the K' frame 
parallel to the respective x, y, z axes of the K frame, so 
that the axes x and x' coincide and are directed along the 
vector V (Fig. 19). The moment when the origins 0' and 0 
coincide is to be taken for the initial reading of time. Let 
us write the relation between the radius vectors r' and r 
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of the same point A in the K' and K frames: 

	

r' = r — Vt 	 (2.1) 
and, besides, 

	

t' = t. 	 (2.2) 

The length of rods and time rate are assumed to be indepen-
dent of motion here and, consequently, are identical in the 
two reference frames. The assumption that space and time 
are absolute underlies the concepts of classical mechanics, 
which are based on extensive experimental data pertaining 
to the study of motion whose velocity is substantially less 
than that of light. 

The relations (2.1) and (2.2) are referred to as the Galilean 
transformations. These transformations can be written in 
a coordinate form as follows: 

x' = x —Vt, y' y, z' = z, t' = t. I 	(2.3) 

Differentiating Eq. (2.1) with respect to time, we get the 
classical law of velocity transformation for a point on tran-
sition from one inertial reference frame to another: 

 

17' = V — V. 

 

(2.4) 

    

Differentiating this expression with respect to time and 
taking into acocunt that V = const, we obtain w' = w, 
i.e. the point accelerates equally in all inertial reference 
frames. 

§ 2.2. The Fundamental Laws of Newtonian 
Dynamics 

Investigating various kinds of motion in practice, we 
discover that in inertial reference frames any acceleration 
of a body is caused by some other bodies acting on it. The 
degree of influence (action) of each of the surrounding bodies 
on the state of motion of the body A in question is a prob-
lem whose solution in a concrete case can be obtained through 
experiment. 
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The influence of another body (or bodies) causing the accel-
eration of the body A is referred to as a force. Therefore, 
a body accelerates due to a force acting on it. 

One of the most significant features of a force is its mate-
rial origin. When speaking of a force, we always implicitly 
assume that in the absence of extraneous bodies the force 
acting on the body in question is equal to zero. If it be-
comes evident that a force is present, we try to identify its 
origin as one or another concrete body or bodies. 

All the forces which are treated in mechanics are usually 
subdivided into the forces emerging due to the direct con-
tact between bodies (forces of pressure, friction) and the 
forces arising due to the fields generated by interacting bodies 
(gravitational and electromagnetic forces). We should point 
out, however, that such a classification of forces is condition-
al: the interacting forces in a direct contact are essentially 
produced by some kind of field generated by molecules and 
atoms of bodies. Consequently, in the final analysis all for-
ces of interaction between bodies are caused by fields. The 
analysis of the nature of interaction forces lies outside the 
scope of mechanics and is considered in other divisions of 
physics. 

Mass. Experience shows that every body "resists" any 
effort to change its velocity, both in magnitude and direc-
tion. This property expressing the degree of unsusceptibili-
ty of a body to any change in its velocity is called inertness. 
Different bodies reveal this property in different degrees. 
A measure of inertness is provided by the quantity called 
mass. A body possessing a greater mass is more inert, and 
vice versa. 

Let us introduce the notion of mass m by defining the 
ratio of masses of two different bodies via the inverse ratio 
of accelerations imparted to them by equal forces: 

ml/m2  = w2/vi. 	 (2.5) 

Note that this definition does not require any preliminary 
measurements of the forces. It is sufficient to meet the crite-
rion of equality of forces. For example, if two different bodies 
lying on a smooth horizontal surface are pulled in succes-
sion by the same spring oriented horizontally and stretched 
to the same length, the influence of the spring on the bodies 
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is equal in both cases, i.e. the force is identical in both 
cases. 

Consequently, a comparison of the masses of two bodies 
experiencing the action of the same force reduces to the 
comparison of accelerations of these bodies. Having adopted 
a certain body for a mass standard, we may compare the 
mass of any body against the standard. 

Experience shows that in terms of Newtonian mechanics 
a mass determined that way possesses the following two 
important properties: 

(1) mass is an additive quantity, i.e. the mass of a compo-
site body is equal to the sum of the masses of its constituents; 

(2) the mass of a body proper is a constant quantity, re-
maining invariable in the process of motion. 

Force. Let us get back to the experiment in which 
we compared the accelerations of two different bodies sub-
jected to the action of an equally stretched spring. The fact 
that the spring was stretched equally in both cases permit-
ted us to claim an identical force exerted by the 
spring. 

On the other hand, a force makes a body accelerate. The 
accelerations of different bodies under the action of the same 
equally stretched spring are different. Our task is to define 
a force in such a way as to make it the same despite the differ-
ence in accelerations of different bodies in the case consid-
ered. 

To do this, we have to clear up the following thing first: 
what quantity is the same in this experiment? The answer 
is obvious: it is the product mw. It is then natural to adopt 
this quantity for a definition of force. Besides, taking into 
account that acceleration is a vectorial quantity, we shall 
also assume a force to be a vector coinciding in its direction 
with the acceleration vector w. 

Thus, in Newtonian mechanics a force acting on a body of 
mass in is defined as a product mw. Apart from the maximum 
simplicity and convenience, this definition of a force is 
of course justified only by the subsequent analysis of all 
consequences following from it. 

Newton's second law. Examining in practice the interac-
tion of various mass points with surrounding bodies, we 
observe that mw depends on the quantities characterizing 



The Basic Equation of Dynamics 	 47 

both the state of the mass point itself and the state of sur-
rounding bodies. 

This significant physical fact underlies one of the most 
fundamental generalizations of Newtonian mechanics, New-
ton's second law: 

the product of the mass of a mass point by its acceleration 
is a function of the position of this point relative to surround-
ing bodies, and sometimes a function of its velocity as well. 
This function is denoted by F and is called a force. 

This is exactly what constitutes the actual content of 
Newton's second law, which is usually formulated in a brief 
form as follows: 

the product of the mass of a mass point by its acceleration 
is equal to the force acting on it, i.e. 

mw = F. I 	(2.6) 

This equation is referred to as the motion equation of a 
mass point. 

It should be immediately emphasized that Newton's 
second law and Eq. (2.6) acquire specific meaning only after 
the function F is established, that is, its dependence on the 
quantities involved, or the law of force, is known. Determin-
ing the law of force in each specific case is one of the basic 
problems of physical mechanics. 

The definition of a force as mw (Eq. (2.6)) has the remar-
kable merit of presenting the laws of force in a very simple 
form. The study of motions at relativistic veloc-
ities, however, showed that the laws of force should be 
modified to make the forces dependent on the velocity of a 
mass point in an intricate way. The theory would thus turn 
out to be cumbersome and confusing. 

However, there is an easy way to dispose of the problem; 
the definition of a force should be slightly modified as fol-
lows: a force is a derivative of the momentum p of a mass point 
with respect to time, that is, dp/dt; Eq. (2.6) should then be 
rewritten as dpldt = F. 

In Newtonian mechanics this definition of a force is iden-
tical to mw since p = my, m = const and dpldt = mw, 
while in relativistic mechanics, as we shall see, momentum 
depends on the velocity of a mass point in a more complicat- 
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ed way. But something different is important here. When 
force is defined as dp/dt, the laws of forces prove to remain 
the same in the relativistic case as well. Thus, the simple 
expression of a given force via the physical surrounding 
should not be changed on transition to relativistic mechan-
ics. This fact will be employed later. 

On summation of forces. Under the given specific condi-
tions any mass point experiences, strictly speaking, only 
one force F whose magnitude and direction are specified 
by the position of that point relative to all surrounding 
bodies, and sometimes by its velocity as well. And still 
very often it is convenient to depict this force F as a cumu-
lative action of individual bodies, or a sum of the forces F1, 
F2, . . Experience shows that if the bodies acting as 
sources of force exert no influence on each other and so do 
not change their state in the presence of other bodies, then 

F =- 	+ F2 . . 

where Fi  is the force which the ith body exerts on the given 
mass point in the absence of other bodies. 

If that is the case, the forces F1, F2,. . . are said to obey 
the principle of superposition.This statement should be regard-
ed as a generalization of experimental data. 

Newton's third law. In all experiments involving only 
two bodies A and B, body A imparting acceleration to B, it 
turns out that B imparts acceleration to A. Hence, we come 
to the conclusion that the action of bodies on one another 
is of an interactive nature. 

Newton postulated the following general property of all 
interaction forces, Newton's third law: 

two mass points act on each other with forces which are always 
equal in magnitude and oppositely directed along a straight 
line connecting these points, i.e. 

I F12=  --F21. 	 (2.7) 

This implies that interaction forces always appear in pairs. 
The two forces are applied to different mass points; besides, 
they are the forces of the same nature. 

The law (2.7) holds true for systems comprising any num-
ber of mass points. We proceed from the assumption that 
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in this case as well the interaction reduces to the forces 
of paired interaction between mass points. 

In Newton's third law both forces are assumed to be equal 
in magnitude at any moment of time regardless of the motion 
of the points. This statement corresponds to the Newtonian 
idea about the instantaneous propagation of interactions, 
an assumption which is identified in classical mechanics as 
the principle of long-range action. In accordance with this 
principle the interaction between bodies propagates in space 
at an infinite velocity. In other words, having changed 
the position (state) of one body, we can immediately detect 
at least a slight variation in the other bodies interacting 
with it, however far they may be located. 

Now we know that this is actually not the case: there does 
exist a finite maximum velocity of interaction propagation, 
being equal to the velocity of light in vacuo. Accordingly, 
Newton's third law (as well as the second one) is valid only 
within certain bounds. However, in classical mechanics, 
treating bodies moving with velocities substantially lower 
than the velocity of light, both laws hold true with a very 
high accuracy. This is evidenced, for example, by orbits of 
planets and artificial satelliteg computed with an "astro-
nomical" accuracy by the use of Newton's laws. 

Newton's laws are the fundamental laws of classical me-
chanics. They make it possible, at least in principle, to 
solve any mechanical problem. Besides, all the other laws 
of classical mechanics can be derived from Newton's 
laws. 

In accordance with the Galilean principle of relativity 
the laws of mechanics are identical throughout all inertial 
reference frames. This means, specifically, that Eq. (2.6) 
will have the same form in any inertial reference frame. In 
fact, the mass m of a mass point per se does not depend on 
velocity, i.e. is the same in all reference frames. Moreover, 
in all inertial reference frames the acceleration w of a point 
is also identical. The force F is also independent of the 
choice of a reference frame since it is determined only by 
the position and velocity of a mass point relative to sur-
rounding bodies, and in accordance with non-relativistic 
kinematics these quantities are equal in different inertial 
reference frames. 
4-0539 
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Thus, the three quantities m, w and F appearing in 
Eq. (2.6) do not change on transition from one inertial refer-
ence frame to another, and therefore Eq. (2.6) does not 
change either. In other words, the equation mw = F is 
invariant with respect to the Galilean transformation. 

§ 2.3. Laws of Forces 

In accordance with Eq. (2.6) the motion laws of a particle 
can be determined in strictly mathematical terms provided 
we know the laws of forces acting on this particle, that is, 
the dependence of the force on the quantities determining it. 
In the final analysis, each law of this kind is obtained from 
the processing of experimental data, and, basically, always 
rests on Eq. (2.6) as a definition of force. 

Gravitational and electrical forces are the most fundamen-
tal forces underlying all mechanical phenomena. Let us 
describe briefly these forces in the simplest form when inter-
acting masses (charges) are at rest or move with a low 
(non-relativistic) velocity. 

The gravitational force acting between two mass points. 
In accordance with the law of universal gravitation this force 
is proportional to the product of the masses of points m1  and 
m2, inversely proportional to the square of the distance r 
between them and directed along the straight line connect-
ing these points: 

F = y  m172 	 (2.8) 

where y is the gravitation constant. 
The masses involved in this law are called gravitational 

in distinction to inert masses entering Newton's second law. 
It was established from experience, however, that a gravi-
tational mass and an inert mass of any body are strictly 
proportional to each other. Consequently, we can regard 
them equal (i.e. to take the same standard for measuring 
the two masses) and speak just of mass, whether it appears 
as a measure of inertness of a body or as a measure of gravi-
tational attraction. 
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The Coulomb force acting between two point charges 
q1  and q 2, 

F =k  gigs  r2 	7 

where r is the distance between the charges and k is a pro-
portionality constant dependent on the choice of a system 
of units. As distinct from the gravitational force Coulomb's 
force can be both attractive and repulsive. 

It should be pointed out that Coulomb's law (2.9) does not 
hold precisely when the charges move. The electrical inter-
action of moving charges turns out to be dependent on 
their motion in a complicated way. One part of that inter-
action which is caused by motion is referred to as magnetic 
force (hence, another name of this interaction: the electro-
magnetic one). At low (non-relativistic) velocities the magnet-
ic force constitutes a negligible part of an electric interac-
tion, which is described by the law (2.9) with a high degree 
of accuracy. 

In spite of the fact that gravitational and electrical inter-
actions underlie all innumerable mechanical phenomena, 
the analysis of these phenomena, especially macroscopic 
ones, would prove to be very complicated if we proceeded 
in all cases from these fundamental interactions. Therefore, 
it is convenient to introduce some other, approximate, laws 
of forces which can in principle be obtained from the funda-
mental forces. This way we can simplify the problem in mathe-
matical terms and to turn it into a practically soluble one. 

With this in mind, the following forces can be, for example, 
introduced. 

The uniform force of gravity 

	

F = mg, 	 (2.10) 

where m is the mass of a body and g is gravity acceleration.* 
The elastic force is proportional to a displacement of a 

mass point from the equilibrium position and directed to- 

* Note that in contrast to the force of gravity the weight P is 
the force which a body exerts on a support or a suspension which is 
motionless relative to this body. For example, if a body with its sup-
port (suspension) is at rest with respect to the Earth, the weight P 
coincides with the gravity force. Otherwise, P = m (g — w), where w 
is the acceleration of the body (with the support) relative to the Earth. 

(2.9) 

4* 
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ward the equilibrium position: 

F = —xr, 	 (2.11) 

where r is the radius vector describing the displacement of 
a particle from the equilibrium position; and x is a positive 
constant characterizing the "elastic" properties of a particu-
lar force. An example of such a force is that of elastic defor-
mation arising from an extension (constriction) of a spring 
or a bar. In accordance with Hooke's law this force is defined 
as F = xA/, where A/ is the magnitude of elastic deforma-
tion. 

The sliding friction force, emerging when a given body 
slides over the surface of another body 

F = kRn , 	 (2.12) 

where k is the sliding friction coefficient depending on the 
nature and condition of the contacting surfaces (specifically, 
their roughness), and Rn  is the force of the normal pressure 
squeezing the rubbing surfaces together. The force F is 
directed oppositely to the motion of a given body relative 
to another body. 

The resistance force acting on a body during its transla-
tion through fluid. This force depends on the velocity v of 
a body relative to a medium and is directed oppositely 
to the v vector: 

F = —kv, 	 (2.13) 

where k is a positive coefficient intrinsic to a given body 
and a given medium. Generally speaking, this coefficient 
depends on the velocity v, but in many cases at low veloci-
ties it can be regarded practically constant. 

§ 2.4. The Fundamental Equation of Dynamics 

The fundamental equation of dynamics of a mass point 
is nothing but a mathematical expression of Newton's 
second law: 

(2.14) 
dv 

m = E . 
dt 
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Basically, Eq. (2.14) is a differential equation of motion 
of a point in vector form. Its solution constitutes the basic 
problem of dynamics of a mass point. Two antithetic formu-
lations of the problem are possible here: 

(1) to find the force F acting on a point if the mass m of 
the point and the time dependence of its radius vector 
r (t) are known, and 

(2) to find the motion law of a point, i.e. the time depend-
ence of its radius vector r (t), if the mass m of the point 
and the force F (or the forces FL ) are known together with 
the initial conditions, the velocity v„ and the position r, 
of the point at the initial moment of time. 

In the first case the problem reduces to differentiating 
r (t) with respect to time and in the second to integrating 
Eq. (2.14). The mathematical aspects of this problem were 
discussed at length when we treated kinematics of a point. 

Depending on the nature and formulation of a specific 
problem Eq. (2.14) is solved either in vector form or in 
coordinates or in projections on the tangent and on the 
normal to the trajectory at a given point. Let us see how 
Eq. (2.14) is written in the last two cases. 

In projections on the Cartesian coordinate axes. Projecting 
both sides of Eq. (2.14) on the x, y, z axes, we get three dif-
ferential equations 

m 
du
' F 	

dt 
dv 	 dv 

dt 
FY7 M  dtz= Fz' (2.15) 

where F,,F y,F, are the projections of the vector F on the 
x, y, z axes. It should be borne in mind that these projec- 
tions are algebraic quantities: depending on the orientation 
of the vector F they may be both positive and negative. The 
sign of the projection of the resultant force F also defines 
the sign of the projection of the acceleration vector. 

Let us show a concrete example of the standard method 
of solving problems through the use of Eq. (2.15). 

Example. A small bar of mass ni slides down an inclined plane 
forming an angle a with the horizontal. The friction coefficient is 
equal to k. Find the acceleration of the bar relative to the plane. (This 
reference frame is assumed to be inertial.) 

First of all we should depict all the forces acting on the bar: the 
force of gravity mg, the normal force of reaction R of the plane and 
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the friction force Fir  (Fig. 20) directed oppositely to the motion of 
the bar. 

After that let us fix the coordinate system x, y, z to the "inclined-
plane" reference frame. Generally speaking, a coordinate system can 
be oriented at will, but in many cases (and in this one, in particular) 
the direction of the:axes is specified by the character of motion. In this 
case, for example, the direction in which the bar moves is known 
in advance, and therefore the coordinate axes should be so laid out 
that one of them coincides with the motion direction. Then the prob-
lem reduces to the solution of only one of the equations (2.15). Thus, 

let us choose the x axis as shown 
in Fig. 20, and indicate its po- 
sitive direction by an arrow. 

And only now we can set about 
Fir working out Eq. (2.15): the left-

hand side contains the product of 
the mass m of the bar by the pro-
jection of its acceleration wx, and 
the right-hand side the projections 
of all forces on the x axis: 

mwx=mgx+Rx+Ffrx• 
In this case gx  = g sin a, Rs  = 
=0 and Fir x=— Fir, and therefore 

Fig. 20 	 mwx = mg sin a—Fir. 

Since the bar moves only along the 
x axis, the sum of projections of 

all forces on any direction perpendicular to the x axis is equal to zero 
in accordance with Newton's second law. Taking the y axis as such 
a direction (Fig. 20), we obtain 

R = mg cos a and Fir  = kR = kmg cos a. 

And finally, 
minx = mg sin a — kmg cos a. 

If the right-hand side of this equation is positive, then also 
and consequently the vector w is directed down along the 
plane, and vice versa. 

In projections on the tangent and the normal to the trajec-
tory at a given point. Projecting both sides of Eq. (2.14) 
on the travelling unit vectors x.  and n (Fig. 21) and making 
use of the tangential and normal accelerations appearing 
in Eq. (1.10), we can write 

dVx 	 vz 

di =PT, in 
P = F (2.16) 

g 

wx > 0, 
inclined 
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where F and Fr, are the projections of the vector F on the 
unit vectors i and n. In Fig. 21 both projections are posi-
tive. The vectors FT  and F, are referred to as the tangential 
and normal components of the force F. 

Recall that the unit vector r is oriented in the direction 
of growing arc coordinate / while the unit vector n is directed 
to the centre of curvature of the trajectory at a given point. 

Eqs. (2.16) are convenient to use provided the trajectory 
of a mass point is known. 

Example. A small body A slides off the top of a smooth sphere 
of radius r. Find the velocity of the body at the moment, it loses con-
tact with the surface of the sphere if its initial velocity is negligible. 

Fig. 22 

Let us depict the forces acting on the body A (which are the force 
of gravity mg and the normal force of reaction R) and write Eqs. (2.16) 
via projections on the unit vectors r and n (Fig. 22): 

m-dv/dt = mg sin 0, 

mv2/r = mg cos 0 — R; 

since the subindex ti is inessential here, it has been omitted. 
The first equation should be transformed to make it more conven-

ient to integrate. Taking into consideration that dt = v = r dO/v 
where dl is an elementary path the body A covers during the time 
interval dt, we shall write the first equation in the following form: 

v dv = gr sin 0 dO. 

Integrating the left-hand side of this expression between the limits 0 
and v and the right-hand side between 0 and 0, we find 

v2  = 2gr (1 — cos 0). 

Next, at the moment the body loses contact with the surface R = 0, 
and therefore the second initial equation takes the form 

= gr cos 0. 
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where v and 0 correspond to the moment when the body loses contact 
with the surface. Eliminating cos 0 from the last two equalities, we 
obtain v = 2grI3. 

§ 2.5. Non-inertial Reference Frames. 
Inertial Forces 

The fundamental equation of dynamics in a non-inertial 
frame. As mentioned above, the fundamental equation of 
dynamics holds true only in inertial reference frames. Still 
there are many cases when a specific problem needs to be 
solved in a non-inertial reference frame (e.g. motion of a 
simple pendulum in a carriage moving with an accelera-
tion, motion of a satellite relative to the Earth surface etc.). 
Hence, the following question arises: how to modify the 
fundamental equation of dynamics to make it valid in non-
inertial reference frames? 

With this in mind let us consider two reference frames: 
the inertial frame K and non-inertial frame K'. Suppose 
that we know the mass m of a particle, the force F exerted 
on this particle by surrounding bodies and the character 
of motion of the K' frame relative to the K frame. 

Let us examine a sufficiently general case when the K' 
frame rotates with a constant angular velocity w about an 
axis which translates relative to the K frame with the accel-
eration wo . We shall employ the acceleration transforma-
tion formula (1.31), from which it follows that the accelera-
tion of the particle in the K' frame is 

w' = w — wo  (1)2p + 2 iv'coj, 	(2.17) 

where v' is the velocity of the particle relative to the K' 
frame and p is the radius vector perpendicular to the rota-
tion axis and describing the position ofthis particle with 
respect to this axis. 

Multiplying both sides of Eq. (2.17) by the mass m of 
the particle and taking into account that in an inertial 
reference frame mw = F, we obtain 

I mws = F— mwo  mco2p + 2m [vie)]. 	(2.18) 

This is the fundamental equation of dynamics in a non-inertial 
reference frame rotating with a constant angular velocity (.0 



The Basic Equation of Dynamics 	 57 

about an axis translating with the acceleration wo. It indi-
cates that even if F = 0, the particle will move in this 
frame with an acceleration (which in the general case 
differs from zero), as if under the influence of certain forces 
corresponding to the last three terms of Eq. (2.18). These 
forces are referred to as inertial. 

Eq. (2.18) shows that the introduction of inertial forces 
makes it possible to keep the format of the fundamental 
equation of dynamics in non-inertial reference frames as 
well: the left-hand side is the product of the mass of the 
particle by its acceleration (but this time relative to the 
non-inertial reference frame), and the right-hand side con-
tains the forces. However, apart from the force F caused by 
the influence of surrounding bodies (interaction forces), it 
is necessary to take into account inertial forces (the remain-
ing terms on the right-hand side of Eq. (2.18)). 

Inertial forces. Let us write Eq. (2.18) in the following 
form: 

mw' = F Fir, +Fef  +Fcor , 	(2.19) 
where 

mw°  (2.20) 

is the inertial force caused by the translation of the non-
inertial reference frame; 

Fot = mco2p 

is the centrifugal force of inertia; 

Fcor  = 2m [v'o)] 

(2.21) 

(2.22) 

is the Coriolis force. The last two forces emerge due to rota-
tion of the reference frame. 

Thus, we see that the inertial forces depend on the charac-
teristics of the non-inertial reference frame (wo, co) as well 
as on the distance p and the velocity v' of a particle in that 
reference frame. 

For example, if a non-inertial reference frame translates 
relative to an inertial one, a free particle in that frame 
experiences only the force (2.20) whose direction is opposite 
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to the acceleration co, of the given reference frame. Recall 
how a sudden braking of the carriage we travel in makes us 
swing forward, that is, in the direction opposite to wo. 

Here is another example: a reference frame rotates about 
a stationary axis with the angular velocity 0.), and the body 
A is at rest in that frame (e.g. you are on a rotating plat-
form in an amusement park). Apart from the forces of inter-
action with surrounding bodies, the body A experiences 
the centrifugal force of inertia (2.21) directed along the 
radius vector p from the rotation axis. As long as the body A 
is at rest relative to the rotating platform (v' = 0), this 
force makes up for the interaction force. But as soon as the 
body begins to move, i.e. the velocity v' appears, there 
originates the Coriolis force (2.22) whose direction is deter-
mined by the vector cross product [v'e.)]. Note that the 
Coriolis force crops up to supplement the centrifugal force of 
inertia appearing irrespective of whether the body is at rest 
or moves with respect to the rotating reference frame. 

It was pointed out that the reference frame fixed to the 
Earth's surface can be regarded in many cases as practically 
inertial. However, there are some phenomena whose inter-
pretation in this reference frame is impossible unless its 
non-inertial nature is taken into account. 

For instance, 	free-fall acceleration is the greatest 
at the Earth's poles. Approaching the equator, one observes 
a decrease in this acceleration caused not only by the devia-
tions of the Earth from a spherical shape, but also by the 
growing action of the centrifugal force of inertia. There are 
also such phenomena as a deviation of free-falling bodies to 
the East, a wash-out of right banks of rivers in the Northern 
Hemisphere and left banks in the Southern Hemisphere, 
a rotation of the Foucault pendulum oscillation plane, etc. 
Phenomena of this kind are associated with the motion of 
bodies relative to the Earth's surface and can be explained 
by the Coriolis force. 

Example. A train of mass m moves along a meridian at the lati-
tude cp with the velocity v'. Find the lateral force which the train 
exerts on the rails. 

In the reference frame fixed to the Earth (rotating at the angular 
velocity w) the train's acceleration component normal to the merid-
ian plane is equal to zero. Therefore, the sum of the projections 
of forces acting on the train in this direction is also equal to zero. And 
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this means that the Coriolis force Fc0,. (Fig. 23) must be counterbal-
anced by the lateral force R exerted by the right rail on the train, 
i.e. Fc,,,. —R. In accordance with Newton's third law the train 
acts on that rail in the horizontal direction with the force R' = —R. 

Consequently, R' = Fcor = 2 in [v' co]. The magnitude of the vector 
R' is equal to R' = 0) sin (p. 

The following simple example illustrates how the inertial 
forces "appear" on transition from an inertial reference 
frame to a non-inertial one. 

Example. A horizontal disc D freely rotates over the surface of 
a table about a vertical axis with a constant angular velocity o. 
A sphere possessing mass m is suspended over the disc as shown in 
Fig. 24a. Let us consider the behaviour of that sphere in the K frame 
fixed to the table and assumed inertial, and in the K' frame fixed to 
the rotating disc. 

In the inertial K frame the sphere is subjected to two forces, the 
gravity force and the stretching force of the thread. These forces 
equalize each other so that the sphere is at rest in the K frame. 

In the non-inertial K' frame the sphere moves uniformly along 
a circle with the normal acceleration (a2p, where p is the distance 
between the sphere and the rotation axis. One can easily see that this 
acceleration is due to inertial forces. Indeed, in the K' frame, apart 
from the two counterbalancing forces mentioned above, there are 
also the centripetal force of inertia and the Coriolis force (Fig. 24b). 
Taking the projections of these forces on the normal n to the path at 
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the point where the sphere is located, we write: 

mw,'Fcor — Fci = 2m" nu.1)2P = rno2P,  
where it is taken into consideration that in this case v' = cep. Hence, 
wn = 

Properties of inertial forces. To summarize, we shall 
list the most significant properties of these forces in order to 
discriminate them from interaction forces: 

1. Inertial forces are caused not by the interaction of 
bodies, but by the properties of non-inertial reference frames 
themselves. Therefore inertial forces do not obey Newton's 
third law. 

2. To avoid misunderstandings is should be firmly borne 
in mind that these forces exist only in non-inertial reference 
frames. In inertial reference frames there are no inertial 
forces at all, and the notion of force is employed in these 
frames only in the Newtonian sense, that is, as a measure of 
interaction of bodies. 

3. Just as gravitational forces, all inertial forces are 
proportional to the mass of a body. Consequently, in a uni-
form field of inertial forces, as in the field of gravitational 
forces, all bodies move with the same acceleration regardless 
of their masses. This highly important fact has far-reaching 
consequences. 

The principle of equivalence. Since inertial forces, just 
as gravitational ones, are proportional to the masses of 
bodies, the following important conclusion can be made. 
Suppose we are in a certain closed laboratory and are deprived 
of observing the external world. Moreover, let us assume 
that we are not aware of the whereabouts of our laboratory: 
outer space or, e.g. the Earth. Observing the bodies falling 
with an equal acceleration regardless of their masses, we 
cannot determine the cause of this acceleration from only 
this fact. The acceleration can be brought about by a gravi-
tational field, by an accelerated translation of the laboratory 
itself, or by both causes. In such a laboratory no experiment 
whatsoever on free fall of bodies can distinguish the uniform 
field of gravitation from the uniform field of inertial forces. 

Einstein argued that no physical experiments of any kind 
can be of use to distinguish the uniform field of gravitation 
from the uniform field of inertial forces. This suggestion ; 
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raised to a postulate, provides a basis for the so-called 
principle of equivalence of gravitational and inertial forces: 
all physical phenomena proceed in the uniform field of gravi-
tation in exactly the same way as in the corresponding uniform 
field of inertial forces. 

This far-reaching analogy between gravitational and iner-
tial forces was used by Einstein as a starting point in his 
development of the general theory of relativity, or the rela-
tivistic theory of gravitation. 

In conclusion it should be pointed out that any mechanical 
problem can be solved in both inertial and non-inertial refer-
ence frames. Usually the choice of one or another reference 
frame is determined by the formulation of the problem or by 
the desire to solve it in as straightforward a manner as 
possible. In so doing, we quite often find that non-inertial 
reference frames are most convenient to apply (see Prob-
lems 2.9-2.11). 

Problems to Chapter 2 

• 2.1. A bar of mass m1  is placed on a plank of mass m2, which 
rests on a smooth horizontal plane (Fig. 25). The coefficient of fric-
tion between the surfaces of the bar and the plank is equal to k. The 

plank is subjected to the horizontal force F depending on time t as 
F = at (a is a constant). Find: 

(1) the moment of time to  at which the plank starts sliding from 
under the bar; 

(2) the accelerations of the bar w1  and of the plank w2!in the proc-
ess of their motion. 

Solution. 1. Let us write the fundamental equation of dynamics 
for the plank and the bar, having taken the positive direction of the x 
axis as shown in the figure: 

miwi  =Fp., m2w2=-F—Fp.. 	 (1) 

As the force F grows, so does the friction force F fr  (at the initial 
moment it represents the friction of rest). However, the friction force 
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F 	has the ultimate value 	 kmig. Unless this value is fr 	 fr.max = 
reached, both bodies move as a single whole with equal accelerations. 
But as soon as the force Fir  reaches the limit, the plank starts sliding 
from under the bar, i.e. 

w2 >- 

Substituting here the values of iv, and w2  taken from Eq. (1) and 
taking into account that F fr  = kmig, we obtain 

(at — kmig)I m2 	kg, 

where the sign "=" corresponds to the moment t = to. Hence, 
to  = (m1  + m2) kgl a. 

2. If t s  to, then 

wl  = w2  = at/ (mi  + m2); 

and if t 	to, then 

wl  = kg = const, w2  = (at — kmig)Im2. 

The plots w, (t) and iv, (t) are shown in Fig. 26. 
02.2. In the arrangement of Fig. 27 the inclined plane forms the 

angle a = 30° with the horizontal. The ratio of the masses shown is 
= m1/m2  = 2/3. The coefficient of friction between the plane and 

the body m2  is k = 0.10. The masses of the pulley block and the 
threads are negligible. Find the magnitude;and direction of the accel-
eration of the body ml  if the system is set into motion from an initial 
state of rest. 

Solution. First we should tackle the problem associated with the 
direction of the friction force acting on the body m2. Otherwise, we 
cannot write the fundamental equation of dynamics for the body m2  
in terms of projections, and the problem proves to be uncertain. 

We shall argue as follows: suppose that in the absence of friction 
forces the body m2  starts sliding, say, upward along the inclined 
plane. "Switching on" the friction forces, we obviously cannot reverse 



The Basic Equation of Dynamics 
	

63 

the motion direction, but only decrease the acceleration. Thus, the 
direction of the friction force acting on the body m2  is determined if 
we find the acceleration direction of this body in the absence of fric-
tion (k = 0). Accordingly, we shall begin with that. 

Let us write the fundamental equation of dynamics for both bo-
dies in terms of projections, having taken the positive directions of 
the x1  and x 2  axes as shown in Fig. 27: 

miwx  = m1g — T, m2wx  = 7' — m2g sin a, 

where T is the tensile force of the thread. Summing up termwise the 
left- and right-hand sides of these equations, we obtain 

ri —sin a +1 
 

After the substitution ri = 2/3 and a = 30° this expression yields 
wx  > 0, i.e. the body m2  moves up the inclined plane. Consequently, 
the friction force acting on this body is directed oppositely. Taking 
this into account, we again write the equations of motion: 

m1u4 = m1g — T', m214 = T' — m2g sin a — km2g cos a. 

Hence, 
, 	a—k cos a 

	

wx = 	+1 	
g 0.05 g. 

11  

•2.3. A non-stretchable thread with masses m1  and m2  attached 
to its ends (ml  > m2) is thrown over a pulley block (Fig. 28). We 
begin to lift the pulley block with the acceleration Ivo  relative to the 
Earth. Assuming the thread to slide over the pulley block without 
friction, find the acceleration w1  of the mass m1  relative to the Earth. 

Solution. Let us designate the positive direction of the x axis 
as shown in Fig. 28 and write the fundamental equation of dynamics 
for the two masses in terms of projections on this axis: 

wiwix= T — wig, 

m2w2x=T — M2g• 

These two equations contain three unknown quantities: wix, w2x, 
and T. The third equation is provided by the kinematic relationship 
between the accelerations: 

	

wr 	 w2= 

where w' is the acceleration of the mass m1  with respect to the pulley 
block. Summing up termwise the left-hand and the right-hand sides 
of these equations, we get 

w1  w2 = 2wo, 

or in terms of projections on the .x axis 

wix+ W2X = 2wo • 	 (3) 

g. 

(1)  

(2)  
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The simultaneous solution of Eqs. (1), (2) and (3) yields 

wix = [2m2wo+ (111 2-  rni) gll(rni+ m2). 

Whence it is seen that for a given wo  the sign of w1x  depends on the 
ratio of the masses m1  and m2. 

e2.4. A small disc moves along an inclined plane whose friction 
coefficient k = tan a, where a is the angle which the plane forms 

Fig. 28 

with the horizontal. Find how the velocity v of the disc depends on 
the angle cp between the vector v and the x axis (Fig. 29) if at the 
initial moment v = vo  and cp =- n/2. 

Solution. The acceleration of the disc along the plane is determined 
by the projection of the force of gravity on this plane Fx  = mg sin a 
and the friction force Fir  = king cos a. In our case k = tan a and 
therefore 

Fir  = Fx = mg sin a. 

Let us find the projections of the acceleration on the direction of the 
tangent to the trajectory and on the x axis: 

mw.,----F x  cos cp—Ffr = mg sin'a (cos cp 
mw x = F 	F fr cos cp — mg sin a (1 —cos cp). 

It is seen from this that iv., = —wx, which means that the velocity v 
and its projection vx  differ only by a constant value C which does 
not change with time, i.e. 

v = --vx  C, 

where vx  = v cos y. The constant C is found from the initial con-
dition v = vo, whence C = vo. Finally we obtain 

v = vo/(1 + cos cp). 

In the course of time cp 	0 and v 	vo/2. 
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e 2.5. A thin uniform elastic cord of mass m and length /0  (in 
a non-stretched state) has a coefficient of elasticity x. After having 
the ends of the cord spliced, it was placed on a smooth horizontal 
plane, shaped as a circle and set into rotation with the angular veloc-
ity co about the vertical] axis passing through the centre of the circle. 
Find the tension of the cord in this state. 

Solution. Let us single out a small element of the cord of mass 
alm as shown in Fig. 30a. This element moves along the circle due 

to a force which is a geometric sum of two vectors each of which has 
the magnitude of the tension sought T (Fig. 30b). Consequently, 
in accordance with Newton's second law 

am • Or = T.&. 	 (1) 

Since 6m = (m/23r) 6c and r = /tar (where 1 is the length of the cord 
in the state of rotation), Eq. (1) takes the form 

mro2 .//47r2  = T. 	 (2) 

On the other hand, in accordance with Hooke's law 

T = x (1 — /0). 	 (3) 

Eliminating 1 from Eqs. (2) and (3), we obtain 

x10 
T —

4312x/mco2 — 1 • 

Note that in the case of a non-stretchable cord (x = co) T = m01014212. 
e 2.6. Integration of motion equations. A particle of mass m moves 

due to the action of the force F. The initial conditions, that is, its 
radius vector r (0) and velocity v (0) at the moment t = 0, are known. 
Find the position of the particle as a function of time if 

(1) F = Fo  sin cot, r (0) = 0, 	v (0)=0; 

(2) F = — kv, 	r (0)=0, 	v (0) = vo; 

(3) F = — xr, 	r (0) = r0, v (0) -= v0, with v01Ir0. 

Here F0  is a constant vector, and co, k, x are positive constants. 

5-0539 
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Solution. 1. In accordance with the fundamental equation of 
dynamics the acceleration is 

dv/dt = (Fo/m) sin cot. 

We obtain the elementary increment of the velocity vector dv during 
the time dt and then the increment of this vector during the time from 
0 to t: 

v (t) — v (0) (F0/m) 	sin cot dt. 

0 

Taking into account that v (0) = 0, we obtain after integration 

v (t)=(F mco) (1 — cos cot). 

Now let us find the elementary displacement dr, or the increment 
of the radius vector r of the particle during the interval dt: dr = 

v (t) dt. The increment of the radius vector during the time from 0 
to t is equal to 

r (t)—r (0) = (F0  /mw) .c (1— cos cot) dt. 

0 

Integrating this expression and taking into account that r (0) = 0, 
we get 

r (t)=(Folinco2) (cot—sin cot). 

Fig. 31 illustrates the plots v, (t) and x (t), the time dependences 
of projections of the vectors v and r on the x axis chosen in the par-
ticle motion direction, i.e. in the direction of the F0  vector. 

2. In this case the acceleration is 

dv/dt = — (k/m) v. 

To integrate this equation we must pass to the scalar form, that is, 
to the modulus of the vector v: 

dv/v = — (klm) dt. 

Integration of this equation with allowance made for the initial 
conditions yields: In (vivo) — (k/m) t. After taking antilogarithms 
we return to the vector form: 

= vile- ki 17ri 

Integrating the last equation once more (and again taking into account 
the initial conditions), we obtain 

r= v dt =-(mvolk)(l_e-ktim). 

0 
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Fig. 32 shows the plots of the velocity v and the path covered s 
as functions of time t (in our case s = r). 

3. In this case the particle moves along the straight line coinciding 
with the radius vector r. Choosing the x axis in this direction, we can 
immediately write the fundamental equation of dynamics in terms 
of the projection on this axis: 

• • 
x co2x =0, (1) 

where x is the second derivative of the coordinate with respect to 
time, i.e. the projection of the acceleration vector, co? = x/m. Eq. (1) 
is referred to as the equation of harmonic vibrations. 

Fig. 32 Fig. 33 

It can be shown mathematically that the general solution of this 
equation takes the form 

x (t) = A cos cot 	B sin cot, 	 (2) 

where A and B are arbitrary constants. The restrictions imposed 
on these constants are usually determined from the initial conditions. 
For instance, in our case at the moment t = 0 

4(0)=- x0  and/vx 	vox, 	 (3) 
where xo  and vox  are the projections of the 1.0  and vo  vectors on the x 
axis. After substituting Eq. (2) into Eq. (3) we get: A = xo, B = 
= vox/w. All the rest is obvious. 

0 2.7. A particle of mass m moves in a certain plane due to the 
force F whose magnitude is constant and whose direction rotates with 
the constant angular velocity co in that plane. At the moment t = 
the velocity of the particle is equal to zero. Find the magnitude of the 
velocity of the particle as a function of time and the distance that the 
particle covers between two consecutive stops. 

Solution. Let us fix the .x, y coordinate system to the given plane 
(Fig. 33), taking the x axis in the direction along which the force 
vector was oriented at the moment t = 0. Then the fundamental 
equation of dynamics expressed via the projections on the x and y 
5• 
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axes takes the form 
in dv„Idt = F cos cot, m dv hlt = F sin Olt. 

Integrating these equations with respect to time with allowance 
made for the initial condition v (0) = 0, we obtain 

ux=(F/mw) sin cot, vv  = (F/mco) (1 — cos wt). 

The magnitude of the velocity vector is equal to 

v = V vgc+ v2v  = (2F/mo.)) sin (cot/2). 

It is seen from this that the velocity v turns into zero after the time 
interval At, which can be found from the relation co At/2 = rt. Conse-
quently, the sought distance is 

At 

s= v dt=8FInu02. 
0 

• 2.8. An automobile moves with the constant tangential acceler-
ation w, along the horizontal plane circumscribing a circle of radius R. 
The coefficient of friction between the wheels of the automobile and 
the surface is equal to k. What distance s will be covered by the auto-
mobile without slipping in the case of zero initial velocity? 

Solution. As the velocity increases, so do both the normal and 
the total acceleration of the automobile. There is no slipping as long 
as the total acceleration required is provided by the friction force. 
The maximum possible value of that force Fm„ = kmg, where m 
is the mass of the automobile. Therefore, in accordance with the 
fundamental equation of dynamics, mw = F, the maximum value 
of the total acceleration is 

On the other hand, 
wmax= kg- 	 (1) 

wmax =- Vuer+ (,2/R)2, 	 (2) 

where v is the velocity of the automobile at the moment its accelera-
tion reaches the maximum value. This velocity and the sought dis-
tance s are interrelated by the following formula: 

2w,s. 	 (3) 
Eliminating v and wmax  from Eqs. (1), (2) and (3), we obtain 

s= (R/2) 1/-  (kglmr)2- 1. 

It is not difficult to see that the solution is meaningful only if the 
radicand is positive, i.e. if iv, < kg. 

• 2.9. Non-inertial reference frames. A satellite moves in the 
Earth's equatorial plane along a circular orbit of radius r in the west-
east direction. Disregarding the acceleration due to the Earth's motion 
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around the Sun, find the acceleration w' of the satellite in the ref-
erence frame fixed to the Earth. 

Solution. Suppose K is an inertial reference frame in which the 
Earth's rotation axis is motionless, and K' is a non-inertial reference 
frame fixed to the Earth and rotating with the angular velocity co 
with respect to the K frame. 

To derive the acceleration w' of the satellite in the K' frame we 
must first of all depict all the forces acting on the satellite in that 
reference frame: the gravity F, the 
Coriolis force Fcor  and the centri- 
fugal forcelFc  t (Fig. 34, the view 	 \ wr 
from the Earth's North Pole). 

Now let us make use of Eq. 
(2.18), assuming wo  = 0 (in accor- 
dance with the conditions of the 

: 

F 	n  

u\ 

problem). Since in the K' frame 	 m Farm 
the satellite travels along a circle, 
Eq. (2.18) can be immediately writ-
ten via projections on the tra-
jectory's normal n: 

mw' = F — 2mv'm — ma)2r, (1) 

where F = TmMM, and in and 
M are the masses of the satellite 
and the Earth respectively. Now we have only to find the velocity u' 
of the satellite in the K' frame. To do this, we shall make use of the 
kinematic relation (1.24) in scalar form 

v' = v — wr, 	 (2) 

where v is the velocity of the satellite in the K frame (Fig. 34), and 
of the equation of motion of the satellite in the K frame 

mv?Ir = ymMM, 	 (3) 

from which v is found. Solving simultaneously Eqs. (1), (2) and (3), 
we obtain 

w' =(1— cor rITM)2  TM/r2. 

Specifically, w' = 0 when r = ji7M10 = 4.2.103  km. Such 
a satellite is called stationary: it is motionless relative to the Earth's 
surface. 

2.10. A small sleeve of mass m slides freely along a smooth hori-
zontal shaft which rotates with the constant angular velocity w 
about a fixed vertical axis passing through one of the shaft's ends. 
Find the horizontal component of the force which the shaft exerts 
on the sleeve when it is at the distance r from the axis. At the initial 
moment the sleeve was next to the axis and possessed a negligible 
velocity. 

Solution. Let us examine the motion of the sleeve in a rotating 
reference frame fixed to the shaft. In this reference frame the sleeve 
moves rectilinearly. This means that the sought force is balanced 

Fig. 34 
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out by the Coriolis force (Fig. 35): 

R= — Fcor = 2rn [we]. 	 (1) 

Thus, the problem reduces to determining the velocity v' of the sleeve 
relative to the shaft. In accordance with Eq. (2.19) 

do'ldt=Fc flm= 

Taking into account that dt = drlo', the last equation can be trans-
formedIto 	

v' do' = Or dr. 

Integrating this equation with allowance made for the initial condi-
tions (v' = 0, r = 0), we find v = or, or in a vector form 

v' = cor. 	 (2) 

Substituting Eq. (2) into Eq. (1), we get 

R = 2me) [tor]. 

• 2.11. The stability of motion. A wire ring of radius r rotates 
with the constant angular velocity co about the vertical axis 00' 

Fig. 35 Fig. 36 

passing through its diameter. A small sleeve A can slide along the 
ring without friction. Find the angle 0 (Fig. 36) corresponding to the 
stable position of the sleeve. 

Solution. Let us examine the behaviour of the sleeve in a reference 
frame fixed to the rotating ring. Its motion along the ring is char-
acterized by the resultant force projection FT on the unit vector 
at the point A. It is seen from Fig. 36 that 

FT=Fef cos 0— mg sin 0. 
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The right-hand side of this equation contains the projections of the 
centrifugal force and gravity. Taking into account' that Fo  

mco2r sin 0, we rewrite the foregoing expression as follows: 
F r  — sin 0 (cos 0 —g/co2r). 	 (1) 

• 
From the equilibrium condition (FT  = 0) we can find the two values 
of the angle 00  ensuring that equilibrium: sin 00  = 0 and cos 0, = 

gh.o2r. The first condition can be satisfied for any value of o, while 
the second one only if gho2r < L Thus, in the case of low co values 
there is only one equilibrium position, at the bottom point (00  = 0); 
but in the case of large co values (co > yglr) another equilibrium 
position, defined by the second condition, is possible. 

A certain equilibrium position is stable provided the force Er  
appearing on withdrawal of the sleeve from that position (in any 
direction) is directed back, to the equilibrium position, that is, the 
sign of FT  must be opposite toy that of the deflection AO from the 
equilibrium angle 00. 

At low deflections dO from the 00  angle the appearing force 6FT  
may be found as a differential of expression (1): 

8F, — [cos 00  (cos 00  — glco2r) —si n2  001 dO. 

At the bottom equilibrium position (00  = 0) 

6Er  (1-01)2r) dO. 	 (2) 

This equilibrium position is stable provided the expression put in 
parentheses is negative, i.e. when co < V glr. 

At the other equilibrium position (cos 00  = gho2r) 

SFz — sin2  00  dO. 

It is seen that this equilibrium position (if it exists) is always stable. 
Thus, as long as there is only the bottom equilibrium position 

(with o < /g/r), it is always stable. However, on the appearance 
of the other equilibrium position (when o > j/ g/r) the bottom posi-
tion becomes unstable (see Eq. (2)), and the sleeve immediately passes 
from the lower to the upper position, which is always stable. 



CHAPTER 3 

ENERGY CONSERVATION LAW 

§ 3.1. On Conservation Laws 

Any body (or an assembly of bodies) represents, in fact, 
a system of mass points, or particles. If a system changes in 
the course of time, it is said that its state varies. The state 
of a systeml, is defined by specifying the concurrent coordi-
nates and velocities of all constituent particles. 

Experience shows that if the laws of forces acting on a 
system's particles and the state of the system at a certain 
initial moment are known, the motion equations can help 
predict the subsequent behaviour of the system, i.e. find its 
state at any moment of time. That is how, for example, the 
problem of planetary motion in the solar system has been 
solved. 

However, an analysis of a system's behaviour by the use of 
the motion equations requires so much effort (e.g. due to 
the complexity of the system itself), that a comprehensive 
solution seems to be practically impossible. Moreover, such 
an approach is absolutely out of the question if the laws of 
acting forces are not known. Besides, there are some prob-
lems in which the accurate consideration of motion of indi-
vidual particles is meaningless (e.g. gas). 

Under these circumstances the following question natural-
ly comes up: are there any general principles following from 
Newton's laws that would help avoid these difficulties by 
opening up some new approaches to the solution of the 
problem. 

It appears that such principles exist. They are called 
conservation laws. 

As it was mentioned, the state of a system varies in the 
course of time as that system moves. However, there are 
some quantities, state functions, which possess the very 
important and remarkable property of retaining their values 
constant with time. Among these constant quantities, 
energy, momentum and angular momentum play the most 
significant role. These three quantities have the important 
general property of additivity: their value for a system com-
posed of parts whose interaction is negligible is equal to 
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the sum of the corresponding values for the individual con-
stituent parts (incidentally, in the case of momentum and 
angular momentum additivity holds true even in the pres-
ence of interaction). It is additivity that makes these three 
quantities extremely important. 

Later on it became known that the laws of conservation 
of energy, momentum and angular momentum intrinsically 
originate from the fundamental properties of time and space, 
uniformity and isotropy. By way of explanation, the 
energy conservation law is associated with uniformity of 
time, while the laws of conservation of momentum and 
angular momentum with uniformity and isotropy of space 
respectively. This implies that the conservation laws listed 
above can be derived from Newton's second law supplement-
ed with; the corresponding properties of time and space sym-
metry. We shall not, however, discuss this problem in 
more detail. 

The laws of conservation of energy, momentum and angu-
lar momentum fall into the category of the most fundamental 
principles of physics, whose significance cannot be overes-
timated. These laws have become even more significant since 
it was discovered that they go beyond the scope of mechanics 
and represent universal laws of nature. In any case, no 
phenomena have been observed so far which do not obey 
these laws. They "work" reliably in all quarters: in the field 
of elementary particles, in outer space, in atomic physics 
and in solid state physics. They are among the few most 
general laws underlying contemporary physics. 

Having made possible a new approach to treating various 
mechanical phenomena, the conservation laws turned into 
a powerful and efficient instrument of research used by 
physicists. The importance of the conservation principles 
as a research instrument is due to several reasons. 

1. The conservation laws do not depend on either the paths 
of particles or the nature of acting forces. Consequently, they 
allow us to draw some general and essential conclusions 
about the properties of various mechanical processes without 
resorting to their detailed analysis by means of motion 
equations. For example, as soon as it turns out that a cer-
tain process is in conflict with the conservation laws, one 
can be sure that such a process is impossible and it is no 
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use trying to accomplish it. 
2. Since the conservation laws do not depend on acting 

forces, they may be employed even when the forces are not 
known. In these cases the conservation laws are the only 
and indispensable instrument of research. This is the pres-
ent trend in the physics of elementary particles. 

3. Even when the forces are known precisely, the con-
servation laws can help substantially to solve many problems 
of motion of particles. Although all these problems can be 
solved with the use of motion equations (and the conserva-
tion laws provide no additional information in this case), the 
utilization of the conservation laws very often allows the 
solution to be obtained in the most straightforward and 
elegant fashion, obviating cumbersome and tedious calcula-
tions. Therefore, whenever new problems are ventured, the 
following order of priorities should be established: first, 
one after another conservation laws are applied and only 
having made sure that they are inadequate, the solution is 
sought through the use of motion equations. 

We shall begin examining the conservation laws with the 
energy conservation law, having introduced the notion of 
energy via the notion of work. 

§ 3.2. Work and Power 

Work. Let a particle travel along a path 1-2 (Fig. 37) 
under the action of the force F. In the general case the 

force F may vary during the 
2 motion, both in magnitude and 

Ts direction. Let us consider the 
elementary displacement dr, dur-
ing which the force F can be 
assumed constant. 

The action of the force F 
over the displacement dr is 

Fig. 37 	 characterized by a quantity 
equal to the scalar product Fdr 

and called the elementary work of the force F over the dis-
placement dr. It can also be presented in another form: 

Fdr = F cos ads = Fsds, 
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where a is the angle between the vectors F and dr, ds = 
!dr I is the elementary path, and F, is the projection of 

the vector F on the vector dr (Fig. 37). 
Thus, the elementary work of the force F over the dis-

placement dr is 
SA = Fdr = Fsds. 	 (3.1) 

The quantity SA is algebraic: depending on the angle between 
the vectors F and dr, or on the sign of the projection F, of 
the vector F on the vector dr, it can be either positive 
or negative, or, in particular, equal to zero (when F .j_ dr, 
i.e. F, = 0). 

Summing up (integrating) the expression (3.1) over all 
elementary sections of the path from point 1 to point 2, we 
find the work of the force F over the given path: 

(3.2) 

The expression (3.2) can be graphically illustrated. Let 
us plot F, as a function of the particle position along the 
path. Suppose, for example, that this plot has the shape 
shown in Fig. 38. From this figure the elementary work SA 
is seen to be numerically equal to the area of the shaded 
strip, and the work A over the path from point 1 to point 2 
is equal to the area of the figure enclosed by the curved line, 
ordinates 1 and 2, and the s axis. Here the area of the figure 
lying over the s axis is taken with the plus sign (it corre-
sponds to positive work) while the area of the figure lying 
under the s axis is taken with the minus sign (it corresponds 
to negative work). 

Let us consider a few examples involving calculations 
of work. 

The work of the elastic force F = —xr, where r is the radius 
vector of the particle A relative to the point 0 (Fig. 39). 
Let us displace the particle A experiencing the action of 
that force along an arbitrary path from point 1 to point 2. 
We shall first find the elementary work performed by the 
force F over the elementary displacement dr: 

SA = F dr = — xr dr. 
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The scalar product r dr = r (dr)r, where (dr), is the projec- 
tion of dr on the vector r. This projection is equal to dr, the 
increment of the magnitude of the vector r. Therefore r dr = 

r dr and 
SA = — xr dr = — d (xr2/2). 

Now, to calculate the work performed by the given force over 
the whole path, we should integrate the last expression be-
tween point 1 and point 2: 

2 

A = — d (xr2/2) = xrV2 — x4/2. 	(3.3) 

The work of a gravitational (or Coulomb's) force. Let 
a stationary point mass (charge) be positioned at the point 0 

1 

r; 

0 
Fig. 38 Fig. 39 

of the vector r (Fig. 39). We shall find the work of the gra-
vitational (Coulomb's) force performed during the dis-
placement of the particle A along an arbitrary path from 
point 1 to point 2. The force acting on the particle A may be 
represented as follows: 

F = (a/r2)r, 

mini2, the gravitational interaction, 
where a = km2, the Coulomb interaction. 

Let us first calculate the elementary work performed by 
this force over the displacement dr: 

SA = F dr = (a1r3) r dr. 
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As in the previous case, the scalar product r dr = r dr, 
So that 

SA = a dr/r2  = — d (alr). 

The total work performed by this force over the whole path 
from point 1 to point 2 is 

2 

A = — d (air) = air — alr2. 	(3.4) 

The work of the uniform force of gravity F = mg. Let 
us write this force as F = — mgk, where k is the unit vector of 
the vertical z axis whose positive direction is chosen upward 
(Fig. 40). The elementary work of gravity over the dis-
placement dr is 

SA = F dr = — mgkdr. 

The scalar product k dr = (dr)k, where (dr)k  is the projection 
of dr on the unit vector k and is equal to dz, the z coordinate 
increment. Therefore, k dr = dz 
and 	 zA 

SA = — mg dz = — d (mgz). 

The total work of this force per- 	 dzr-  dr 
formed over the whole path from 
point 1 to point 2 is 

2 

1 A = — d (mgz) = mg (z — z2). 

(3.5) 

mg 
///////// ///////////// 

The forces considered are 
	EFig.140 

interesting in that the work 
performed by them between points 1 land 2 does not depend 
on the shape of the path and is determined only by their 
positions (see Eqs. (3.3)-(3.5)). However, this very significant 
peculiarity of the forces considered is by no means a prop-
erty of all forces. For example, the friction force does not 
possess this property: the work performed by this force 
depends not only on the positions of the initial and final 
points but also on the shape of the path connecting them. 



78 	 Classical Mechanics 

So far we have discussed the work performed by a single 
force. But if during its motion a particle experiences several 
forces whose resultant is F = Fi  + F2  + . . ., it can be 
easily shown that the work performed by the resultant force F 
over a certain displacement is equal to the algebraic sum 
of the works performed by all the forces over the same dis-
placement. In fact, 

A-= (Fi+F2  . . . ) dr = Fi  dr + .c F2  dr + 

=A1 +A2+ . (3.6) 

Power. To characterize intensity of the work performed, 
the quantity called power is introduced. Power is defined as 
the work performed by a force per unit time. If the force F 
performs the work F dr during the time interval dt, the power 
developed by that force at a given moment of time is equal 
to N = F drldt; taking into account that drldt = v, we obtain 

	

N =Fv. 	 (3.7) 

Thus, the power developed by the force F is equal to the 
scalar product of the force vector by the vector of velocity 
with which the point moves under the action of the given 
force. Just like work, power is an algebraic quantity. 

Knowing the power of the force F, we can also find the 
work which that forcA performs during the time interval t. 
Indeed, expressing the integrand in formula (3.2) as F dr = 
= Fv dt = N dt, we get 

A= N dt. 
0 

As an example, see Problem 3.1. 
Finally, one very essential circumstance should be pointed 

out. When dealing with work (or power), in each specific case 
one should indicate precisely what force (or forces) performs 
that work. Otherwise, misinterpretations are, as a rule, 
inevitable. 
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§ 3.3. Potential Field of Forces 

A field of force is a region of space at whose each point 
a particle experiences a force varying regularly from point 
to point, e.g. the Earth's gravitational field, or the field of 
the resistance forces in a fluid stream. If the force at each 
point of a field of forces does not vary in the course of time, 
such a field is referred to as stationary. Obviously, a station-
ary field of forces may turn into a non-stationary field on 
transition from one reference frame to another. In a station-
ary field of forces the force is determined only by the posi-
tion of a particle. 

Generally speaking, the work performed by the forces of 
the field during the displacement of a particle from point 
1 to point 2 depends on the, path. However, there are some 
stationary fields of forces in which that work does not depend 
on the path between points 1 and 2. This class of fields pos-
sesses a number of the most important properties in physics. 
Now we shall proceed to these properties. 

The definition: a stationary field of forces in which the work 
performed by these forces between any two points does not 
depend on the shape of the path but only on the positions of 
these points, is referred to as potential, while the forces 
themselves are called conservative. 

If this condition is not satisfied, the field of forces is not 
potential and the forces of the field are called non-conserva-
tive. Among them are, for example, friction forces (the work 
performed by these forces depends on the path in the general 
case). 

An example of two stationary fields of forces, one of which 
is potential and the other is not, is examined in Problem 3.2. 

Let us demonstrate that in a potential field the work per-
formed by the field forces over any closed path is equal to zero. 
In fact, any closed path (Fig. 41) may be arbitrarily subdi-
vided into two parts: 1a2 and 2b1. Since the field is poten-
tial, then by the hypothesis i111) = ilib2). On the other hand, 
it is obvious that Al2) = — 26q1). Therefore, 

A(N-f- A (2b2 = A (1 — A (iT 0 , 

which was to be proved. 
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Conversely, if the workperformed by the field forces over 
any closed path is equal to zero, the work of the same forces 
performed between arbitrary points 1 and 2 does not depend 
on the path, i.e. the field is potential. To prove this, let us 
take two arbitrary paths: 1a2 and 1b2 (Fig. 41). We can 
connect them to make closed path la2b1. The work performed 
over this closed path is equal to zero by the hypothesis, 
i.e. A (ia,) + A gp = 0. Hence, A = — A g',.) . But A2) =- 
= —AIV and therefore 

ifia2 = 	. 

Thus, when the work of the field forces performed over 
any closed path is equal to zero, we obtain the necessary 

and sufficient condition for the 
work to be independent of the shape 
of the path, a fact that can be 
regarded as a distinctive attribute 
of any potential field of forces. 

The field of central forces. Any 
field of forces is brought about by 

Fig. 41 	 the action of definite bodies. In 
that field the particle A experi-

ences a force arising due to the interaction of this par-
ticle with the given bodies. Forces depending only on 
the distance between interacting particles and directed 
along the straight line connecting them are referred to as 
central. An example of this kind of forces is provided by 
gravitational, Coulomb's and elastic forces. 

The central force which the particle B exerts on the par-
ticle A can be presented in general form as follows: 

F = f (r) er, 	 (3.8) 

where f (r) is a function depending for the given type of 
interaction only on r, the distance between the particles; 
and er  is a unit vector defining the direction of the radius 
vector of the particle A with respect to the particle B 
(Fig. 42). 

Let us demonstrate that any stationary field of central 
forces is potential. 

To do this, we shall first find the work performed by the 
central forces in the case when the field of forces is brought 
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about by one motionless particle B. The elementary work 
performed by the force (3.8) over the displacement dr is 
equal to SA = F dr = f (r) er  dr. Since er  dr is equal to dr, 
the projection of the vector dr on the vector er  or on the 
corresponding radius vector r (Fig. 42), then SA = f (r) dr. 
The work performed by this force over an arbitrary path 
from point 1 to point 2 is 

2 

Al2 = 	(r) dr. 

This expression obviously depends only on the appearance 
of the function f (r), i.e. on the type of interaction, and on 
the values of r1  and r2, the 
initial and final distances be-
tween the particles A and B. It 
does not depend on , the shape .1;" 
of the path in any way. This 
means that the given fieldgof 
forces is potential. 

Let us generalize the re-
sult obtained to a stationary 
field of forces induced by a set 
of motionless particles exert-
ing on the particle A the forces 
Fl, F2, . , each of which 
is central. In this case the work performed by the resultant 
force during the displacement of the particle A from one 
point to another is equal to the algebraic sum of the works 
performed by individual forces. But since the work per-
formed by each of these forces dogs not depend on the shape 
of the path, the work performed by the resultant force does 
not depend on it either. 

Thus, any stationary field of central forces is indeed poten-
tial. 

Potential energy of a particle in a field. Due to.the fact 
that the work performed by potential field forces depends 
only on the initial and final positions of a particle we can 
introduce the extremely important concept of potential 
energy. 

A 

Fig. 42 

6-0539 
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Suppose we displace a particle from various points Pi  
of a potential field of forces to a fixed point 0. Since the 
work performed by the field forces does not depend on the 
shape of the path, it is only the position of the point P 
that determines this work, provided the point 0 is fixed. 
This means that a given work is a certain function of the 
radius vector r of the point P. 

Designating this function as U (r), we write 
0 

Apo = F dr = U (r). 	 (3.9) 

The function U (r) is referred to as the potential energy of 
the particle in a given field. 

Now let us find the work performed by the field forces 
during the displacement of the particle from point 1 to 
point 2 (Fig. 43). The work being independent of the shape 
of the path, we can choose one passing through the point 0. 
Then the work performed over the path 102 can be repre-
sented in the form 

Al2=  Alo ± A02= A10 — A20 

or, taking into account Eq. (3.9), 

2 

Al2= F dr = Ut  — U2. 

1 

(3.10) 

The expression on the right-hand side of this equation is 
the diminution* of the potential energy, i.e. the difference 

* The variation of some quantity X can be characterized either 
by its increment, or its diminution. The increment of the X quantity 
is the difference between its final (X2) and initial (X1) values: 

the increment AX = X2 — X1. 

The diminution of the quantity X is taken to be the difference between 
its initial (X1) and final (X 2) values: 

the diminution X1  — X2 = — AX, 

i.e. the diminution of the quantity X is equal to its increment in 
magnitude but is opposite in sign. 

The diminution and increment are algebraic quantities: if X2 > 
> X1, then the increment is positive while the diminution is negative, 
and vice versa. 
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between the values of the potential energy at the initial 
and final points of the path. 

Thus, the work of the field forces performed over the path 1-2 
is equal to the decrease in the potential energy of the particle 
in a given field. 

Obviously, any potential energy value can be chosen in 
advance and assigned to a particle positioned at the point 0 
of the field. Therefore, measuring the work makes it possible 
to determine only the difference of the potential energies at 
two points but not the absolute val- 1  
ue of the potential energy. How-
ever, as soon as the potential energy 
at some point is specified, its values 
are uniquely determined at all other 
points of the field by means of Eq. 
(3.10). 

Eq. (3.10) makes it possible to find 
the expression U (r) for any potential 
field of forces. It is sufficient to cal- 
culate the work performed by the field forces over any path 
between two points and to represent it as the diminution of 
a certain function which is the potential energy U (r). 

This is exactly how the work was calculated in the cases 
of the fields of elastic and gravitational (Coulomb's) forces, 
as well as in the uniform field of gravity (see Eqs. (3.3)-
(3.5)). It is immediately seen from these formulae that the 
potential energy of a particle in such fields of forces takes 
the following form: 

(1) in the field of elastic forces 

U (r) = xr2/2; 	 (3.11) 

(2) in the field of a point mass (charge) 

U (r) = air, 	 (3.12) 

where a = —ymim,, gravitational interaction, 
kqiq2, Coulomb's interaction; 

(3) in the uniform field of gravity 

U (z) = mgz. 	 (3.13) 

It should be pointed out once again that the potential 
energy U is a function determined with an accuracy of a 

6* 
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certain arbitrary addendum. This vagueness, however, is 
quite immaterial as all equations deal only with the differ-
ence of the values of U at two positions of a particle. There-
fore, the arbitrary addendum, being equal at all points of 
the field, gets eliminated. Accordingly, it is usually omitted 
as it is done in the three previous expressions. 

There is another important point. Potential energy should 
not be assigned to a particle but to a system consisting of 
this particle interacting with the bodies generating a 
field of force. For a given type of interaction the potential 
energy of interaction of a particle with given bodies 
depends only on the position of the particle relative to 
these bodies. 

Potential energy and force of a field. The interaction of 
a particle with surrounding bodies can be described in two 
ways: by means of forces or through the use of the notion of 
potential energy. In classical mechanics both ways are ex-
tensively used. The first approach, however, is more general 
because of its applicability to forces in the case of which 
the potential energy is impossible to introduce (e.g. fric-
tion forces). As to the second method, it can be utilized 
only in the case of conservative forces. 

Our objective is to establish the relationship between 
potential energy and the force of the field, or putting it 
more precisely, to define the field of forces F (r) from a given 
potential energy U (r) as a function of a position of a par-
ticle in the field. 

We have learned by now that the work performed by field 
forces during the displacement of a particle from one point 
of t potential field to another may be described as the 
diminution of the potential energy of the particle, that is, 
A 12 = - U 2  = —A U. The same can be said about the 
elementary displacement dr as well: SA = —dU, or 

F dr = —dU. 	 (3.14) 

Recalling (see Eq. (3.1)) that F dr = F, ds, where ds = 
= I dr I is the elementary path and F, is the projection of 
the vector F on the displacement dr, we shall rewrite 
Eq. (3.14) as 

Fs  ds = —dU, 
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where —dU is the diminution of the potential energy in the 
dr displacement direction. Hence, 

F, = —OUlas, 	 (3.15) 

i.e. the projection of the field force, the vector F, at a given 
point in the direction of the displacement dr equals the 
derivative of the potential energy U with respect to a given 
direction, taken with the opposite sign. The designation of 
a partial derivative oias emphasizes the fact of deriving with 
respect to a definite direction. 

The displacement dr can be accomplished along any direc-
tion and, specifically, along the x, y, z coordinate axes. For 
example, if the displacement dr is parallel to the x axis, it 
may be described as dr = i dx, where i is the unit vector of 
the x axis and dx is the x coordinate increment. Then the 
work performed by the force F over the displacement dr 
parallel to the x axis is 

F dr = Fi dx = Fx  dx,I 

where F x  is the projection of the vector F on the unit vector i 
(but not on the dr displacement as in the case of F8). 

Substituting the last expression into Eq. (3.14), we get 

Fx = 

where the partial derivative symbol implies that in the 
process of differentiation U (x, y, z) should be considered as 
a function of only one variable, x, while all other variables 
are assumed constant. It is obvious that the equations for 
the F y  and F, projections are similar to that for Fx. 

So, having reversed the sign of the partial derivatives of 
the function U with respect to x, y, z, we obtain the projec-
tions Fx,F y  and F, of the vector F on the unit vectors i, j 
and k. Hence, one can readily find the vector itself: F = 
= Fxi Fyj Fzk, or 

au . 	au . 	au F = — (— ax  -t- ay 3  7-  az 1') • 

The quantity in parentheses is referred to as the scalar 
gradient of the function U and is denoted by grad U or V U. 
We shall use the second, more convenient, designation where 
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("nabla") signifies the symbolic vector or operator 
0 	0 	0 

V=i x +jW +k  az 

Therefore V U may be formally regarded as the product of 
a symbolic vector V by a scalar U. 

Consequently, the relationship between the force of a 
field and the potential energy, expressed as a function of 
coordinates, can be written in the following compact form: 

F = — VU, (3.16) 

i.e. the field force F is equal to the potential energy gradient, 
taken with the minus sign, for a particle at a given point of 
the field. Put simply, the field force F is equal to the anti-
gradient of potential energy. The last equation permits the 
field of forces F (r) to be derived from the function U (r). 

Example. The potential energy of a particle in a certain field 
has the following form: 

(a) U (x, y) = —axy, where a is a constant; 
(b) U (r) = ar, where a is a constant vector and r is the radius 

vector of a point of the field. 
Let us find the field of force corresponding to each of these cases: 

(a) F= — 	
2  , au 

j 
(au 	

= (yi+ xj); ax 	ay 

(b) first, let us transform the function U to the following form: 

	

U = axx ayy 	azz; then 

	

I ay 	OU 	OU 
F=
-

1 	 + 8y j+ -Tr 

The meaning of a gradient becomes more obvious and 
descriptive as soon as we introduce the concept of an equipo-
tential surface at all of whose points the potential energy U 
has the same magnitude. It is clear that each value of U 
has a corresponding equipotential surface. 

It follows from Eq. (3.15) that the projection of the vec-
tor F on any direction tangential to the equipotential surface 
at a given point is equal to zero. This means that the vector 
F is normal to the equipotential surface at a given point. 
Next, let us consider the displacement as in the direction 
of decreasing U values; then OU < 0 and in accordance with 

k) = — (axi ayj azk) = — a. 
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Eq. (3.15) FS  > 0, i.e. the vector F is oriented in the direc-
tion of decreasing U values. As F is directed oppositely to 
the vector V U, we may conclude that the gradient of U is 
a vector oriented along a normal to an equipotential surface 
in the direction of increasing values of potential energy U. 

Fig. 44 illustrating a two-dimensional case clarifies what 
was said above. It shows a system of equipotentials (U1  < 
< U2 < U3 < U4), a gradient of the potential energy V U 
and the corresponding vector of the force F at the point A 
of the field. It pays to consider how 
these two vectors are directed, for ex- tri  U2 us (4  
ample, at the point B of the 'given 
field. 	 'VET 

In conclusion it should be pointed 
out that a gradient can be calculated 
not only from the function U but from 
any other scalar function of coordi-
nates. The concept of a gradient perme-
ates various divisions of physics. 

Concept of a field. Experience shows 
that in the case of gravitational and 
electrostatic interactions the force F that surrounding bodies 
(the system B) exert on a particle A is proportional to the 
mass (or the charge) of that particle. In other words, the 
force F may be represented as the product of two quan-
tities: 

F = mG, 	 (3.17) 

where m is the mass (or the charge) of the particle A, and G 
is a certain vector depending both on the position of the 
particle A and on the properties of surrounding bodies, that 
is, the system B. 

This opens up the possibility for another physical inter-
pretation of interaction which is based on the concept of a 
field. In this case the system B is assumed to induce a spatial 
field characterized by the vector G (r). Expressed otherwise: 
the system B, the origin of a field, is assumed to provide 
such conditions (the vector G) at all points of space that 
a particle positioned at any point experiences the force 
(3.17). Moreover, the field (the vector G) is supposed to exist 
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irrespective of whether the particle A isl actually in the 
field or not*. 

The vector G is referred to as the field strength. 
One of the most important properties of a field is that 

the field induced by several sources is equal to the sum of 
the fields induced by all of them. Putting it more precisely, 
the strength G of the resultant field at an arbitrary point 

G = 	Gi, 	 (3.18) 

where Gi  is the field strength of the ith source at the same 
point. This formula expresses the so-called principle of 
superposition of fields. 

Now let us direct our attention to the potential energy of 
a particle. In accordance with Eq. (3.17) we can rewrite 
Eq. (3.14) as mG dr = —dU. Dividing both sides by m 
and denoting Ulm = cp, we get 

G dr = 	 (3.19) 
Or 

2 

G dr = q),—(p2. (3.20) 

The function y (r) is called the field potential at the point 
whose radius vector is equal to r. 

Eq. (3.20) allows the potential of any gravitational or 
electrostatic field to be found. To do this, it is sufficient to 

calculate the integral c G dr over an arbitrary path between 

points 1 and 2 and then to present the expression obtained 
as a diminution of a certain function, the potential cp (r). 
For instance, the potentials of the gravitational field of a 
point mass m and of the Coulomb field of a point charge q 
are determined, in accordance with Eq. (3.12), as follows: 

Pgr  = —1m/r, ' 'Tem,/ = kqlr. 	(3.21) 

* While we confine ourselves to statics, the concept of a field 
may be treated as a mere formality simplifying the description of 
phenomena. However, when we pass to variable fields, the concept 
of a field acquires a profound physical meaning: a field is a physical 
reality. 
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Note that the potential p, as well as the potential energy, 
can be determined only with an accuracy of some adden-
dum, whose magnitude is of no importance. Accordingly, 
it is usually omitted.I 

Thus, a field can be described either in vector form G (r) 
or in scalar form (p (r). Both methods are adequate. How-
ever, for all practical purposes the second method of de-
scribing a field (by means of the potential (p) turns out to be 
far more convenient in most cases. Here is why this is so. 

1. If cp (r) is known, the potential energy U and the work 
A performed by the field forces can be immediately obtained: 

U .= TnIT, Al2 = M (CPI (p2)• 	 (3.22) 

2. Instead of the three components of the vectorial func-
tion G (r) it is simpler to specify the scalar function (p (r). 

3. When a field is produced by many sources, the potential 
(p is more easily calculated than the vector G: potentials are 
scalars, so that they can be summed up disregarding the 
force directions. In fact, in accordance with Eqs. (3.18) 

and (3.19) G dr= 2 (Gi  dr) = — 2 d (p i  -=— d (p i  = — dcp 

i.e. 

cp (r) = 	Ti (r), 	 (3.23) 

where (pi  is the potential produced by the ith particle at a 
given point of the field. 

4. And finally, when the function (p (r) is known, one can 
readily obtain the field G'(r) as the antigradient of the 
potential cp:1 

Gr= — V (p. 	 (3.24) 

This formula follows directly from Eq. (3.16). 
In conclusion let us examine an example involving the 

determination of the field potential of centrifugal forces 
of inertia. 

Example. Let us find the field strength G and the potential cps 
 centrifugal forces of inertia in a reference frame rotating with 

a constant angular velocity about a stationary axis. 
The field strength G= 	Op, where p isvthe radius vector 

of a point of the field relative to the rotation axis. 



Fig. 45 
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Now, utilizing Eq. (3.20), we integrate G over a path from point 1 
to point 2: 

2 	 2 	 2 

G dr = co2  p dr = co2  p dp=w2 (Pi —  pi)/2. 

It is evident that this integral does not depend on the shape of the 
path between points 1 and 2 and is defined by the positions of the 
given points. This means that the considered field of forces is poten-
tial. 

Comparing the result obtained with Eq. (3.20), we get 

wet  _(.02p212.  (3.25) 

Fig. 45 shows (pd vs the distance p to the rotation axis. For the sake 
of comparison also shown is the po- 
tential 'Tv  (p) of the gravitational 	So 
field produced by a point mass 
placed at the point p --= 0. 

§ 3.4. Mechanical Energy 
of a Particle in a Field 

Kinetic energy. Suppose a par-
ticle of mass m moves under the 
action of a certain force F, 
which in the general case may 
be a resultant of several forces. Let us determine the 
elementary work performed by this force over an elementary 
displacement dr. Taking into account that F = m dvIdt 
and dr = v dt, we may write 

SA = F dr = my dv. 

The scalar product v dv = v (dv),, where (dv),, is the projec-
tion of the vector dv on the direction of the vector v. This 
projection is equal to dv, the increment of the velocity 
vector magnitude. Consequently, v dv = v dv and the ele-
mentary work 

SA = my dv = d (mv212). 

It is seen from this that the work of the resultant force F 
contributes to an increase in a certain quantity (enclosed 
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in parentheses) referred to as kinetic energy: 

 

 

T =mv212. 

 

(3.26) 

Thus, the increment of the kinetic energy of a particle during 
its elementary displacement is equal to 

dT = 6A, 	 (3.27) 

and during the finite displacement from point 1 to point 2 

T2 - T1 = A127 (3.28) 

i.e. the increment of the kinetic energy gained by a particle 
over a certain displacement is equal to the algebraic sum of 
the works performed by all forces acting on the particle over 
the same displacement. If A l2  > 0, then T2 > T1, i.e. the 
kinetic energy of a particle grows; but if Al2 < 0, the 
kinetic energy decreases. 

Eq. (3.27) may be written in another form, having divided 
its both sides by the corresponding time interval dt: 

dTldt = FAT = N. (3.29) 

This means that the derivative of the kinetic energy of a 
particle with respect to time is equal to the power N devel-
oped by the resultant force F acting on the particle. 

Eqs. (3.28) and (3.29) hold true both in inertial and in 
non-inertial reference frames. In the latter frames, apart 
from the forces exerted on the considered particle by other 
bodies (interaction forces), we must also take into account 
inertial forces. That is why in these equations work (power) 
should be conceived as an algebraic sum of the works (powers) 
performed both by interaction forces and by inertial forces. 

Total mechanical energy of a particle. In accordance 
with Eq. (3.27) the increment of the kinetic energy of a par-
ticle is equal to the elementary work performed by the resul-
tant F of all forces acting on the particle. What kind of 
forces are they? If the particle is located in a potential field, 
this field exerts a conservative force Fe  on it. Besides, the 
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particle may experience other forces of different origin. 
We shall call them outside forces Fout. 

Thus, the resultant F of all forces acting on the particle 
may be presented in the form F = Fout. The work 
performed by all these forces results in an increment of the 
kinetic energy of the particle: 

dT =Mc + Mout . 

In accordance with Eq. (3.14) the work performed by the 
field forces is equal to the decrease in the potential energy 
of the particle, i.e. 6A, = —dU. Substituting this expres-
sion into the previous one and transposing the term dU 
to the left-hand side, we obtain 

dT dU = d (T U) = Mout• 

It is seen from this that the work performed by the outside 
forces results in an increment of the quantity T U. This 
quantity, the sum of the kinetic and potential energies, is 
referred to as the total mechanical energy of a particle in 
a field: 

E=T+U. (3.30) 

Note that the total mechanical energy E, just as the poten-
tial energy, is defined with an accuracy up to an arbitrary 
constant. 

So, the increment of the total mechanical energy acquired 
by a particle over an elementary displacement is equal to 

dE -=-15Aout (3.31) 

and over the finite displacement from point 1 to point 2 

E2 - E1 = Aout, (3.32) 

i.e. the increment of the total mechanical energy acquired by 
a particle over a certain path is equal to the algebraic sum of 
works performed by all outside forces acting on the particle 
over the same path. When A 0" > 0, the total mechanical 
energy of a particle increases, and when A out < 0, it de-
creases. 
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Example. From a cliff rising to the height h over a lake surface 
a stone of mass m is thrown with the velocity vo. Find the work per-
formed by air resistance forces if the stone falls on the lake surface 
with the velocity v. 

When the motion of the body is considered in the Earth's gravita-
tional field, the air resistance forces should be treated as outside 
ones, and in accordance with Eq. (3.32) the sought work Ares  = 

E 2  — El  = mv2l2 — (mval2 mgh), or 

Ares= m (v2 — 4)12—  mgh. 

The obtained value may turn out to be not only negative but positive 
as well (this depends, for example, on the character of wind during 
the fall of the body). 

Eq. (3.31) may be presented in another form if its both 
sides are divided by the corresponding time interval dt. 
Then 

dEldt = Fouiv. I 	(3.33) 

This implies that the derivative of the total mechanical 
energy of a particle with respect to time is equal to the 
power developed by the resultant of all outside forces acting 
on the particle. 

We have thus established that the total mechanical energy 
of a particle can change only due to outside forces. Hence, 
the law of conservation of the total mechanical energy of a 
particle in an external field follows directly: 

when outside forces are absent or such that the algebraic sum 
of powers developed by them during the time interval considered 
is equal to zero, the total mechanical energy of a particle 
remains constant during that interval. In other words, 

E = T U = const, 
Or 

  

 

mv2I2 +U (r) = const. (3.34) 

Even when written in such a simple form this conservation 
law permits some significant solutions to be obtained quite 
easily without resorting to equations of motion associated 
with cumbersome and tedious calculations. That is why 
the conservation laws prove to be a very efficient instrument 
of research. 
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The following example illustrates the capabilities and 
advantages provided by the application of the conservation 
law (3.34). 

Example. Suppose a particle moves in the unidimensional poten-
tial field U (x) shown in Fig. 46. In the absence of outside forces the 
total mechanical energy of a particle in this field, i.e. E, does not 
vary during the motion, and we can easily solve, for example, the 
following problems. 

1. To find v (x), the velocity of the particle asIa function of its 
coordinate, without solving the fundamental equation of dynamics. 

In accordance with Eq. (3.34), this 
can be done provided the specific 
appearance of the potential curve 

fz 	 U (x) and the total energy value 
E (the right-hand side of that 
equation) are precisely known. 

2. To establish the variation 
range of the x coordinate of the par- 
ticle within which it can be locat- 
ed when the total energy value E 

; xt  is fixed. It is clear that the part- 
. z 3 de cannot get in the region where 

U > E since the potential energy 
U of the particle cannot exceed its 
total energy. From this it imme-
diately follows that when E = El  

(Fig. 46), the[particletcan move either in the region confined by the x1  
and x2  coordinates (oscillation) or to the right of the x3  coordinate. 
The particle cannot however pass from the first region to the second 
one (or vice versa) due to the potential barrier dividing these regions. 
Note that the particle moving in a confined region of a field is referred 
to as being locked in a potential well (in our case, between x1  and x2). 

The particle behaves differently when E = E2  (Fig. 46): the whole 
region lying to the right of xo  becomes accessible to it. If at an initial 
moment the particle was located at the point xo, it travels to the 
right. The reader is advised to find how the kinetic energy of the 
particle varies depending on its coordinate x. 

§ 3.5. The Energy Conservation Law 
for a System 

Until now we confined ourselves to treating the behaviour 
of a single particle in terms of its energy. Now we shall pass 
over to a system of particles. That may be any object, gas, 
any device, the solar system, etc. 

In the general case particles of a system interact both with 
one another and with other bodies which do not belong to 

;Fig. 46 
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that system. The system of particles experiencing negligible 
(or no) action from external bodies is called closed (or isolat-
ed). The concept of a closed system is the natural general-
ization of the concept of an isolated mass point and plays 
a significant part in physics. 

Potential energy of a system. Let us consider a closed 
system whose particles interact only through central forces, 
i.e. the forces depending (for a given type of interaction) 
only on a distance between the particles and directed along 
the straight line that connects them. 

We shall show that in any reference frame the work per-
formed by all these forces during the transition of the system 
of particles from one position to another may be represented 
as a decrease of a certain function depending (for a given 
type of interaction) only on the configuration of the system, 
that is, on the relative positions of its particles. We shall 
call this function an internal potential energy of the system 
(in distinction to a potential energy characterizing the 
interaction of a given system with other bodies). 

First we shall examine a system consisting of two particles. 
Let us calculate the elementary work performed by the force 
of interaction between the particles. Suppose that in an 
arbitrary reference frame the positions of the particles at 
a certain moment of time are defined By the radius vectors 
r, and r2. If during the time dt the particles shift through 
dr1  and dr2  respectively, the work performed by the interac-
tion forces F12  and F2, is equal to 

6A-1, 2 = F12 dr1  ± F21 dr2. 

Taking into account that in accordance with Newton's third 
law F21  = —F12, the previous expression may be rewritten 
in the following form: 

6241,  2 = F12 (dr1— dr2). 

Let us introduce the vector r12  = r1  — r2  describing the 
position of the first particle with respect to the second par-
ticle. Then dr12  = dr1  — dr2, substituted into the expres-
sion for the work, it yields 

6AI,  2 = F12  dr12• 

F12  is a central force, and therefore the work performed 
by this force is equal to the decrease in the potential energy 
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of interaction of a given pair of particles, i.e. 

SAL  2 = - dU12. 

Since the function U12 depends only on the distance r12  
between the particles, the work SA1,2  obviously is not affected 
by the choice of a reference frame. 

Now let us direct our attention to a system comprising 
three particles (in this case the results obtained can readily 
be generalized for a system consisting of an arbitrary number 
of particles). The elementary work performed by all inter-
action forces during elementary displacements of all partic-
les may be presented as the sum of the elementary works 
performed by all three pairs of interactions, i.e. SA = 
= SA L2  + SA" + SA2,3. It was shown, however, that 
for each pair of interactions SA.i,h  = —dUih, and there-
fore 

SA — d (U 12+ U12 +U23) - dU, 

where the function U is the internal potential energy of the 
given system of particles: 

U = U12 + Ui3+ U23* 

Since each term of this sum depends on the distance between 
the corresponding particles, the internal potential energy U 
of the given system obviously depends on the relative posi-
tions of particles (at the same moment of time), or in other 
words, on the configuration of the system. 

Naturally, similar arguments hold true for a system 
comprising any number of particles. Consequently, it can be 
claimed that every configuration of an arbitrary system of 
particles is characterized by its internal potential energy U, 
and the work performed by all internal central forces, while 
that configuration varies, is equal to the decrease of the internal 
potential energy of the system, i.e. 

SA = —dU; 	 (3.35) 

during the finite displacement of all particles of the system 

A — — 1127 (3.36) 

where U1  and U2 are the values of the potential energy of 
the system in the initial and final states. 
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The internal potential energy U of the system is a non-
additive quantity, that is, in the general case it is not equal 
to the sum of the internal potential energies of the con-
stituent parts. The potential energy of interaction Uia 
between the individual parts of the system should be also 
taken into account: 

LT = EU 	 (3.37) 

where U,, is the internal potential energy of the nth part 
of the. system. 

It should be also borno in mind that the internal potential 
energy of a system, just as the potential energy of interac-
tion for each pair of particles, is defined with an accuracy 
up to an arbitrary constant which is quite insignificant, 
though. 

In conclusion, we shall quote some useful formulae for 
calculation of the internal potential energy of a system. 
First of all, we shall demonstrate that that energy may be 
represented as 

U= 	ui, (3.38) 

where Ui  is the potential energy of interaction of the ith 
particle with all remaining particles of the system. Here 
the summation is performed over all particles of the system. 

First, let us make sure that this formula is valid for a 
system of three particles. It was shown earlier that the 
internal potential energy of the given system is U = U12 12 + 
+ U13 + U23. This sum can be transformed as follows. Let 
us depict each term Uik in a symmetrical form: Uik =- 
= (Uik Uki)/2, for it is obvious that Uik = Uki. Then 

U= 2 
(U

12 U
21 + U13 H--U31 + U23 + U32). 

—  

Grouping together the terms with identical first subindex, 
we get 

TT 	riTT 
	+ 

(TT 	TT 	ITT 	)1  

	

= 7  Lkv 	13/ I 	21 + 23/ i v•-• 31 	•-• 32/i • 

Each sum in parentheses represents the potential energy Ui  
of interaction of the ith particle with the remaining two. 

7-0539 
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Consequently, the last expression can be rewritten as 
3 

1 
= —

2

(U1 -EU2 + U3) = 7,- ui, 
i=i 

identically with Eq. (3.38). 
The result obtained can be evidently applied to an arbi-

trary system since these arguments by no means depend on 
the number of particles constituting the system. 

Making use of the concept of potential, Eq. (3.38) can be 
transformed in the case of a system with the gravitational 
or Coulomb interaction between particles. Replacing the 
potential energy of the ith particle in Eq. (3.38) by Ui  = 
= mi  (p i , where mi  is the mass (charge) of the ith particle 
and (pi  is the potential produced by all remaining particles 
of the system at the site of the ith particle, we obtain 

1 
U — 2 	' 1.  

(3.39) 

When the masses (charges) are continuously distributed 
throughout the system, summation is reduced to integration: 

U = —
1 cp dm -= —1 (pp dV, 2 	2 (3.40) 

where p is the volume density of the mass (charge), and dV is 
the volume element. Here integration is performed over the 
whole volume occupied by the masses (charges). 

The application of the last formula may be illustrated by 
Problem 3.11 in which the internal potential energy of grav-
itational interaction of masses distributed over the surface 
and volume of a sphere is calculated. 

Kinetic energy of a system. Let us examine an arbitrary 
system of particles in a certain reference frame. Suppose the 
ith particle of the system has the kinetic energy T i  at a 
given moment. In accordance with Eq. (3.26) the increment 
of the kinetic energy of each particle is equal to the work 
performed by all forces acting on this particle: dTi  = Mi. 
Let us find the elementary work performed by all forces 
acting on all particles of the system: 

SA =- E opt i 	dri =d E Ti  =dT, 
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where T = 4_1  Ti is the total kinetic energy of the system. 

Note that the kinetic energy of a system is an additive 
quantity: it is equal to the sum of the kinetic energies of 
individual parts of a system irrespective of whether they 
interact with one another or not. 

So, the increment of the kinetic energy of a system is equal 
to the work performed by all the forces acting on all the par-
ticles of that system. During an elementary displacement of 
all particles 

dT = SA, 	 (3.41) 

and in the case of a finite displacement 

T2 	= A. (3.42) 

Eq. (3.41) may be represented in another form, having 
divided its both sides by the corresponding time interval dt. 
Making allowance for SAi  = Fivi  dt, we obtain 

dT/dt= Fiv i, (3.43) 

i.e. the time derivative of the kinetic energy of a system is equal 
to the cumulative power of all the forces acting on all the par-
ticles of the system. 

Eqs. (3.41)-(3.43) hold true both in inertial and in non-
inertial reference frames. It should be recognized that in 
non-inertial frames the work performed by interaction forces 
is to be supplemented by that of inertial forces. 

Classification of forces. The particles of the considered 
system are known to be able to interact both with one another 
and with bodies outside the given system. Accordingly, the 
forces of interaction between the particles of the system are 
referred to as internal while the forces caused by the action 
of other bodies outside the given system are called external. 
In a non-inertial reference frame the latter forces include 
also inertial ones. 

Furthermore, all forces are subdivided into potential 
and non-potential ones. The forces are referred to as potential 
if, for a given type of interaction, they depend only on 

7* 
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the configuration of a mechanical system. The work per-
formed by these forces was shown to be equal to the decrease 
of the potential energy of the system. 

To non-potential forces we refer the so-called dissipative 
forces, the friction and resistance forces. The significant 
feature of these forces is that the total work performed by 
internal dissipative forces of the considered system is nega-
tive in any reference frame. Let us demonstrate that. 

Any dissipative force may be represented in the form 

F = —k (v) v, 	 (3.44) 

where v is the velocity of a given body relative to another 
body (or medium) with which it interacts and k (v) is the 
positive coefficient depending in the general case on the 
velocity v. The force F is always directed oppositely to the 
vector v. Depending on the choice of a reference frame the 
work performed by that force can be either positive or nega-
tive. However, the total work performed by all internal 
dissipative forces is always a negative quantity. 

To prove this, we should point out first of all that the 
internal dissipative forces in a given system appear in 
pairs. In accordance with Newton's third law the forces 
of each pair are equal in magnitude and opposite in direc-
tion. Let us find the elementary work performed by an arbit-
rary pair of dissipative forces of interaction between bodies 
1 and 2 in the reference frame where the velocities of these 
bodies at a given moment are equal to v1  and v2: 

mdis = 
12 • 1 dt +Fuv2 dt. 

Making allowance for F21 = —F127 v1 v2 = 
ity of body"4  1 relative to body 2) and F12  = 
may transform the expression for work as 

dis 
OA = F12 (v1— v2) dt = —k (v) vv dt = — 

v (the veloc-
-k (v) v, we 

follows: 

k (v) v2  dt. 

It is seen from this that the work performed by an arbitrary 
pair of internal dissipative forces of interaction is always 
negative, and hence the total work performed by all pairs 
of internal dissipative forces is always negative. Consequently 

< O. (3.45) 
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Energy conservation law. It was shown above that the 
increment of the kinetic energy of a system is equal to the 
work performed by all forces acting on all particles of the 
system. Classifying these forces into external and internal 
ones, and the internal forces, in their turn, into potential 
and dissipative ones, we write the foregoing statement in 
the following form: 

dT = Mext + Mini= - SA —ext 624M + SAIL 

Then we take into account that the work performed by 
internal potential forces is equal to the decrease of the 
internal potential energy of the system, i.e. 6,z1Pin° = —dU. 
The foregoing expression then takes the form 

dT dU = Sliest  + 6Adnt. 	(3.46) 

Let us introduce the concept of the total mechanical energy 
of a system, or, briefly, mechanical energy, as the sum of the 
kinetic and potential energies of the system: 

+U. (3.47) 

Obviously, the energy E depends on the velocities of the 
particles of the system, the type of interaction between them 
and the configuration of the system. Besides, the energy E, 
just as the potential energy U, is defined with an accuracy 
up to an arbitrary constant, and is a non-additive quantity, 
i.e. the energy E of a system is not equal in the general case 
to the sum of energies of its individual parts. In accordance 
with Eq. (3.37) 

E =EEnia , 	 (3.48) 

where En  is the mechanical energy of the nth part of the 
system and (Tic, is the potential energy of interactions of 
its individual parts. 

Let us return to Eq. (3.46). We shall rewrite it with an 
allowance made for Eq. (3.47) in the following form: 

dE = 6Aext 	 (3.49) 

The last expression is valid for an infinitesimal variation 
of the configuration of the system. In the case of a finite 
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change 

  

 

E2 	Aext Ant? (3.50) 

i.e. the increment of the mechanical energy of a system is equal 
to the algebraic sum of the works performed by all external 
forces and all internal dissipative forces. 

Eq. (3.49) may be presented in another form, having 
divided both its sides by the corresponding time interval dt. 
Then 

= Next + Nal 	 (3.51) 

i.e. the time derivative of the mechanical energy of a system 
is equal to the algebraic sum of powers developed by all external 
forces and all internal dissipative forces. 

Eqs. (3.49)-(3.51) are valid both in inertial and in non-
inertial reference frames. It should be borne in mind that in 
a non-inertial reference frame one has also to take into 
account the work (power) of inertial forces acting as external 
forces, i.e. A exi  has to be treated as an algebraic sum of the 
works performed by the external interaction forces A leaxt  
and the work performed by the inertial forces Ai,. To 
emphasize this fact, we rewrite Eq. (3.50) in the form 

E,— El = Ain + ithzct± (3.52) 

Thus, we have arrived at a significant conclusion: the 
mechanical energy of a system may vary both due to external 
forces andl due to internal dissipative forces (or, more pre-
cisely, due to the algebraic sum of the works performed by all 
these forces). From this another important conclusion follows 
directly, the law of conservation of mechanical energy: 

in an inertial reference frame the mechanical energy of a 
closed system of particles, in which there are no dissipative 
forces, remains constant in the process of motion, i.e. 

E =T 	=const. (3.53) 
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Such a system is called conservative*. Note that during the 
motion of a closed conservative system it is the total me-
chanical energy that remains constant while the kinetic 
and potential energies vary in the general `case. These 
variations, however, always happen so that the increase of 
one of them is exactly equal to the decrease in the other, 
i.e. AT = —AU. It is obvious that this is valid only in 
inertial reference frames. 

Furthermore, it follows from Eq. (3.50) that when a closed 
system is non-conservative, i.e. when there are dissipative 
forces in it, the mechanical energy of such a system decreases, 
in accordance with Eq. (3.45): 

E2 	= ACjini l < 	 (3.54) 

It may be stated that the decrease of the mechanical energy 
is caused by the work performed against the dissipative forces 
acting in the system. Yet this explanation is formal since it 
does not reveal the physical nature of dissipative forces. 

A more profound examination of the problem has led to 
the fundamental conclusion about the existence of the 
universal law of energy conservation in nature: 

energy is never generated or eliminated, it may only pass 
from one form into another or bo exchanged between individual 
parts of matter. The concept of energy had to be expanded 
by introducing some new forms (in addition to mechanical): 
energy of an electromagnetic field, chemical and nuclear 
energies, etc. 

The universal law of energy conservation thus encompas-
ses even those phenomena for which Newton's laws are not 
valid. Therefore, it cannot be derived from these laws, but 
should be treated as an independent law, one of the most 
extensive generalizations of experimental data. 

Returning to Eq. (3.54), we can state the following: every 
decrease in mechanical energy of a closed system always 
implies the appearance of the equivalent amount of energy 
of different kinds which are not associated with visible 
motion. In this respect Eqs. (3.49)-(3.51) can be considered 
as a more general formulation of the energy conservation 

* The solar system can be regarded as a closed conservative system 
with an adequate degree of accuracy. 
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law in which the cause of the mechanical energy variation 
for a non-closed system is indicated. 

Specifically, the mechanical energy of a non-closed sys-
tem may remain constant, but this happens only in those 
cases when, in accordance with Eq. (3.50), the decrease 
in the energy due to the work performed to overcome inter- 
nal dissipative forces is equalized by the inflow of energy 
at the expense of the work performed by external forces. 

Finally, we should point out that most problems usually 
require the energy conservation law to be applied together 
with the momentum conservation law, or the angular mo- 
mentum conservation law; sometimes all three laws are 
used simultaneously. The way this is done will be illustrated 
in the next two chapters. 

Problems to Chapter 3 

• 3.1. A stone of mass m is thrown from the Earth's surface at the 
angle a to the horizontal with the initial velocity vo. Ignoring the 
air drag, find the power developed by the gravity force t seconds after 
the beginning of the motion, and also the work performed by that 
force during the first t seconds of the motion. 

Solution. The velocity of the stone t seconds after the beginning 
of the motion is v = vo  gt. The power developed by the gravity 
force mg at that moment is 

N =mgv = m (gvo + g2t). 

In our case gv, = gy, cos (x12 + a) = — gvo  sin a, therefore, 

N = mg (gt — vo  sin a). 

It is seen from this that if t < to  = vo  sin a/ g, then N < 0 while if 
t > to , then N > 0. 

The work performed by the gravity force during the first t seconds 
is 

p
t 

A = N dt= mg (gt212—vo  sin a 4). 

The N (t) and A (t) plots are shown in Fig. 47. 
• 3.2. There are two stationary fields of force: 
(1) F = ayi; 
(2) F = axi 	byj, 

where i, j are the unit vectors of the x and y axes, and a and b are 
constants. Are these fields of force potential? 
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Solution. Let us find the work performed by the force of each field 
over the path from a certain point 1 (xi, yi) to a certain point 2 (x2,  y2): 

x, 

(1) 6A =--F dr = ayi dr= ay dx; A -= a y dx; 

xi  
(2) 6A. = F dr = (axid-byj) dr= ax dx +by dy; 

x, 	Y2 

A-=a xdx+b 
J
.y dy. 

x, 	Yi 

In the first case the integral depends on the type of the y (x) func-
tion, that is, on the shape of the path. Consequently, the first field 
of force is not potential. In the second case both integrals do not 

 

P/x,y)  

 

  

m(x, 0) I 

Fig. 47 
	

Fig. 48 

depend on the shape of the path: they are defined only by the coordi-
nates of the initial and final points of the path; therefore, the second 
field of force is potential. 

• 3.3. In a certain potential field a particle experiences the force 

F = a (yi 	xj), 

where a is a constant, and i and j are the unit vectors of the x and y 
axes respectively. Find the potential energy U (x, y) of the particle 
in this field. 

Solution. Let us calculate the work performed by the force F 
over the distance from the point 0 (Fig. 48) to an arbitrary point 
P (x, y). Taking advantage of this work being independent of the 
shape of the path, we choose one passing through the points OMP 
and consisting of two rectilinear sections. Then 

M 	P
r  

A0p= .c F dr+ F dr. 

0 

The first integral is equal to zero since at all points of the OM section 
y 0 and F 1  dr. Along the section MP x = const, F dr = Fj dy 



106 	 Classical Mechanics 

F dy = ax dy and therefore, 

Aop = 0+ ax 1 dy =axy. 
JJ
M  

In accordance with Eq. (3.10) this work must be equal to the decrease 
in the potential energy, i.e. 2,10p=. U0 — Up. Assuming U0  = 0, 
we obtain Up = — App, or 

U (x, y) = — axy. 

Another way of finding U (x, y) is to resort to the total differential 
of that function: 

dU = (0U10x) dx 	(0U10y) dy. 

Taking into account that 0 U/Ox = —F,= —ay and OUlay = —Fa  
= —ax, we get 

dU = —a (y dx x dy) = d (—axy). 

Whence U (x, y) 	—axy. 
3.4. A ball of mass m is suspended on a weightless elastic thread 

whose stiffness factor is equal to x. Then the ball is lifted so that the 
thread is not stretched, and let fall with the zero initial velocity. 
Find the maximum stretch xn, of the thread in the process of the ball's 
motion. 

Solution. Let us consider several solution methods based on the 
energy conservation law. 

1. According to Eq. (3.28) the increment of the kinetic energy of 
the ball is equal to the algebraic sum of the works performed by all 
forces acting on it. In our case those are the gravity force mg and 
the elastic force Fe/  = xx of the thread (Fig. 49a). In the initial 
and final positions of the ball its kinetic energy is equal to zero for 
when the maximum stretch occurs the ball stops moving. Therefore, 
in accordance with Eq. (3.28) the sum of the works A gr 	Aei  = 0, 
Or 

xm  

ingxm 	(—xx) dx= mgxm —x412=0. 

0 

Whence xm  = 2mglx. 
2. The ball may be considered in the Earth's gravity field. This 

approach requires the total mechanical energy of the ball in the Earth's 
gravity field to be analysed. In accordance with Eq. (3.32) the incre-
ment of this energy is equal to the work performed by the external 
forces. In this case it is the elastic force that should be treated as an 
external force while the increment of the total mechanical energy of 
the ball is equal to that of only its potential energy in the Earth's 
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gravity field. Therefore, 
xm  

0 — mgxm, = (—xx) dx = —x4/2. 

0 

Whence we get the same result for xm. 
Note that we could proceed in the opposite way, examining the 

ball in the field of the elastic force and treating the gravity force 
as an external one. It pays to make sure that the result obtained in 
that approach is the same. 

3. And finally, we can consider the ball in the field generated by 
the joint action of both the gravity force and the elastic force. Then 
external forces are absent, and the total mechanical energy of the 

ball in such a field remains constant in the process of motion, i.e. 
AE = AT + AU = 0. During the transition of the ball from the 
initial to the final (lower) position A T = 0, and therefore AU 
= AUgr  + AU el el  = 0, or 

— mgx",,± xx?,,/2= 0. 

Again we get the same result. 
Fig. 49b shows the plots UR., (x) and U el  (x), whose origins are 

assumed to be located at the point x = 0 (which is not mandatory, 
of course). The same figure illustrates the plot of the total potential 
energy U (x) = Ugr  U01. For a given choice of the potential energy 
reference value the total mechanical energy of the ball E = 0. 

• 3.5. A body of mass m ascends from the Earth's surface with 
zero initial velocity due to the action of the two forces (Fig. 50): the 
force F varying with the height y as F = —2mg (1 — ay), where a 
is a positive constant, and the gravity mg. Find the work performed 
by the force F over the first half of the ascent and the corresponding 
increment of the potential energy of the body in the Earth's gravity 
field, which is assumed to be uniform. 

Solution. First, let us find the total height of ascent. At the begin-
ning and the end of the path the velocity of the body is equal to zero, 
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and therefore the increment of the kinetic energy of the body is also 
equal to zero. On the other hand, in accordance with Eq. (3.28) AT 
is equal to the algebraic sum of the works A performed by all the 
forces, i.e. by the force F and gravity, over this path. However, since 

(a) 

A T = 0, then A = 0. Taking into account that the upward direction 
is assumed to coincide with the positive direction of the y axis, we 
can write 

A= .c (F± mg) dr = (F y — mg) dy = 

0 	 0 
h
r  

= mg (1— 2ay) dy = mgh (1— ah)= O. 

0 

Whence h = 1/a. 
The work performed by the force F over the first half of the ascent is 

h//2 
	 h/2 

AF= Fy  dy -=2mg (1— ay) dy = 3mg/4a. 

0 	 0 

The corresponding increment of the potential energy is 

AU = m ghI2 = mgI2a. 

• 3.6. A disc slides without friction up a hill of height h whose 
profile depends only on the x coordinate (Fig. 51a). At the bottom 
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the disc has the velocity v1  whose direction forms the angle al  with 
the x axis (see Fig. 51b, top view). Find the motion direction of the 
disc after it reaches the top, i.e. find the angle a2. 

Solution. First of all we shall note that this problem cannot be 
solved by the use of the fundamental equation of dynamics since the 
force F acting on the disc in the region x1  < x < x2  is not specified. 
All we know about this force is that it is perpendicular to the y axis. 

We shall make use of the energy conservation law: my? 
2mgh, whence 

v2 = v2 — 2gh. 	 (1) 

This expression can be rewritten as follows: 

v3y  = vyx -I-v4-2gh. 

Since the force of the field is perpendicular to the y axis, it does not 
affect the vy  projection of the velocity; hence, v2 	vv. Therefore, 
the previous expression may be reduced to it — 	— 2gh, or 

v2  cos a2= "1/, of cost al-2gh, 	 (2) 

where v2  is defined from Eq. (1). As a result 

cos a2 = V (of cost al-2gh)/(vi-2gh). 

Note that this expression holds if the radicand in Eq. (2) is not 
negative, i.e. when v1  cos a1  > V 2gh. Otherwise the disc cannot 
overcome the hill, that is, it is "reflected" from the potential barrier. 

• 3.7. A plane spiral made of stiff smooth wire is rotated with 
a constant angular velocity ce in a horizontal plane about the fixed 
vertical axis 0 (Fig. 52). A small sleeve 
M slides along that spiral without 
friction. Find its velocity v' relative to 
the spiral as a function of the distance 

, p from the rotation axis 0 if the initial 
velocity of the sleeve is equal to vo 

Solution. It is advisable to solve this 
problem in a reference frame fixed to the 
spiral. We know that the increment of 
the kinetic energy of the sleeve must be 
equal to the algebraic sum of the works 
performed by all the forces acting on it. 
It can easily be reasoned that of all forces work is performed only 
by the centrifugal force of [inertia. The remaining forces, gravity, 
the force of reaction of the spiral, the Coriolis force, are perpendic-
ular to the v' velocity of the sleeve and do not perform any work. 

In accordance with Eq. (3.28), 

m  (,),2_„4;2)/2= mw2p  

where m is the mass of the sleeve and dr is its elementary displace- 
ment relative to the spiral. Since p dr = p (dr) p  = p dp, the integral 
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proves to be equal to n.o2p2/2. Hence, the sought velocity 

v f 	 ,,,; 2 	co2p2•  

• 3.8. Find the strength and the potential of the gravitational 
field generated by a uniform sphere of mass M and radius R as a func-
tion of the distance r from its centre. 

Solution. First of all we shall demonstrate that the potential 
produced by a thin uniform spherical layer of substance outside the 
layer is such as if the whole mass of the layer were concentrated at 
its centre, while the potential within the layer is the same at all 
its points. 

Suppose the thin spherical layer has the mass in and radius a. 
Let us start with calculating the potential dy at the point P (r > a) 
forming the elementary band dS of the given layer (Fig. 53a). If the 

    

    

P 

  

G(r) 

   

    

    

    

Fig. 53 

mass of this band is equal to dm and all its points are located at the 
distance x from the point P, then dy dm/x. Allowing for dm = 
= (m/2) sin 0 de, we obtain 

dcp = — (ym/2x) sin 0 dO. 	 (1) 

Next, from the cosine theorem (for the triangle OAP) it follows that 
x2  = a2  r2  — tar cos 0. Taking the differential of this expression, 
we get 

r+a 

Woutside= — (7m/2ar) 	dx = 	 (3) 
r — a 

Thus, the potential at the point P outside the thin uniform spherical 
layer is indeed such as if the whole mass of that layer were concen-
trated at its centre. 

When the point P is located inside the layer (r < a), the foregoing 
calculations remain valid till the integration. In this case the integra- 

x dx = ar sin 0 de. 	 (2) 

Using Eq. (2) we reduce Eq. (1) to the form dy = — (ym/2ar) dx; 
then we integrate this equation over the whole layer. Then 



Energy Conservation Law 	 111 

tion with respect to x is to be carried out from a — r to a + r. As 
a result, 

(P inside= —?m/a, 	 (4) 

that is, the potential inside the layer does not depend on the position 
of the point P, and consequently it will be the same at all points 
inside the layer. 

In accordance with Eq. (3.24) the field strength at the point P 
is equal to 

Gr  
— vm/r2  outside the layer,acp 

=- —= 

	

Or 	t 	0 	inside the layer. 

The plots cp (r) and G (r) for a thin spherical layer are illustrated 
in Fig. 53b. 

Now let us generalize the results obtained to a uniform sphere of 
mass M and radius R. If the point P lies outside the sphere (r > R), 
then from Eq. (3) it immediately follows that 

(Poutside= 	 (5) 

But if the point P lies inside the sphere (r < R), the potential cp 
at that point may be represented as a sum: 

(Pi + (P2, 

where (pi  is the potential of a sphere having the radius r, and (p2  is 
the potential of the layer of radii r and R. In accordance with Eq. (5), 

M (rIR)3  

	

(1)1= 	 = 	r2.
r 	 R3 

The potential qi2  produced by the layer is the same at all points inside 
it. The potential W2  is easiest to calculate for the point positioned at 
the layer's centre: 

R 
dM 

(1)2= — V 	r  
r 

=- 
3 TM 

(R2 — r2), 
 

— 
2 R3  

where dM = (3M/R3) r2  dr is the mass of a thin layer between the 
radii r and r + dr. Thus, 

	

Tinside = (Pi+ (P2= — (7M/2R) (3 — r2/R2). 	(6) 

The field strength at the point P follows from Eqs. (5) and (6): 

{—),M1r2  with r> R, 
GT  = — — = 

Or 	— M r 1 R 3  with r <R. 

The plots cp (r) and G (r) for a uniform sphere of radius R are 
shown in Fig. 54. 

• 3.9. Demonstrate that the kinetic energy T2  which a body re-
quires to escape the Earth's gravitational pull is twice as high as the 
energy T1  required to launch that body into a circular orbit around 
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the Earth (close to its surface). The air drag and the Earth's rotation 
are to ,,be ignored. 

Solution. Let us find the velocity v1  of a body travelling along 
a circular orbit. In accordance with the fundamental equation of dy-
namics 

where m is the mass of the 

mvi / R mg, 

body, and R is the orbit radius equal approx-
imately to the Earth's radius. 
Hence, 

1), = V gR = 7.9 km/s. 

This is the so-called first cosmic 
velocity. 

To overcome the Earth's gravi-
tational pull, the body has to reach 
the second cosmic velocity v2. Its 

.99(r) magnitude can be found from the 
energy conservation law: the kinet- 

2 R 	 is energy of the body close to the 
Earth's surface must be equal to 

Fig. 54 	 the height of the potential barrier 
that the body must overcome. 

The height of the barrier is equal to the increment of the potential 
energy of the body between the points r = R and r = co. Thus, 

mv2/2= 7mM/R, 

where M is the Earth's mass. Hence, 

v2  = -V2yM/R = 2gR = 11 km/s. 

Consequently, v2  = "VT v1  and T2 = 2T1. 
3.10. Three identical charged particles, each possessing the 

mass m and charge +q, are placed at the corners of an equilateral 
triangle with the side ro. Then the particles are simultaneously set 
free and start flying apart symmetrically due to Coulomb's repulsion 
forces. Find: 

(1) the velocity of each particle as a function of the distance r 
between them; 

(2) the work Al  performed by Coulomb's forces acting on[each 
particle until the particles fly from one another to a very large distance. 

Solution. 1. Since the given system is closed, the increment of 
its kinetic energy is equal to the decrease in the potential energy, i.e. 

3mv2/2 = 2kq 21r0-3kq21r. 
Hence, 

v = r2kg2  (r — ro)Imrro. 

It is seen that as r 	00 the velocity of each particle approaches the 
limiting value vma, = 2kelmro. 
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2. The work performed by the interaction forces during the varia-
tion of the system's configuration is equal to the decrease in the poten-
tial energy of the system: 

A = U1 — U2 = 3keiro, 

where allowance is made for the fact that at the final position U2  = 
= 0. Hence, the sought work is 

A/3= kq2Iro. 	 (1) 

Note. Here attention should be drawn to a frequent mistake made 
when solving this kind of problem. In particular, one may often 
hear the following argument: at the initial position the potential 
energy of each particle is equal to 2kq2Iro  while at the final position 
to zero. Hence, the sought work Al  = 242/ro. This result is twice 
as great as the one of Eq. (1). Why is this so? 

The mistake is made because the field in which each particle 
travels is non-stationary and, consequently, non-potential (since 
the two other particles also displace relative to each other), and there-
fore the work in such a field cannot be represented as a decrease in 
the potential energy of the particle. 

3.11. Making use of the results obtained in solving Problem 3.8, 
find the internal potential energy of gravitational interaction of 
masses distributed uniformly: 

(1) over the surface of a sphere; 
(2) throughout the volume of a sphere. 

The mass of the sphere is equal to M and its radius to R. 
Solution. 1. Since the potential at each point of a spherical surface 

is cp = —?MIR, we obtain, in accordance with Eq. (3.40): 

U = (q)/2) S dm = --0/2/2R. 

2. In this case the potential inside the sphere depends only on r 
(see Problem 3.8): 

cp = — (3yM/2R) (1 — r2/3R2). 

Substituting this expression into Eq. (3.40) and integrating, we 

R 

	

U=-1- 	
3 .0.m2 

	

2 	
cpdm.=- 1  R  

r=-0 

where dm is the mass of an elementary spherical layer confined between 

	

the radii r and r 	dr; 	dm = (3M/R2) r2  dr. 

get 

8-0539 



CHAPTER 4 

THE LAW OF CONSERVATION OF MOMENTUM 

§ 4.1. Momentum. The Law of Its Conservation 

The momentum* of a particle. Practical knowledge and 
analysis of mechanical phenomena indicate that apart from 
the kinetic energy T = mv2/2 one needs to introduce one 
more quantity, momentum (p = my), in order to describe 
the mechanical motion of bodies. These quantities provide 
the basic measures of mechanical motion of bodies, the 
former being scalar and the latter vectorial. Both of them 
play a most significant part in the construction of me-
chanics. 

Let us proceed to a more detailed analysis of momentum, 
First of all we shall write the fundamental equation of 
Newtonian dynamics (2.6) in another form, by the use of 
momentum: 

dpIdt=F, (4.1) 

i.e. the time derivative of the momentum of a mass point is 
equal to the force acting on that point. Specifically, if F = 0, 
then p = const. 

Note that in a non-inertial reference frame the force F 
comprises not only the forces of interaction between a given 
particle and other bodies, but also inertial forces. 

Eq. (4.1) allows the increment of the momentum of a 
particle to be found for any time interval provided the time 
dependence of the force F is known. In fact, it follows from 
Eq. (4.1) that the elementary momentum increment that 
the particle acquires during the time interval dt is equal 
to dp = F dt. Integrating this expression with respect to 
time, we find the momentum increment of a particle during 
the finite time interval t: 

132  p = F dt. 	 (4.2) 
0 

* It is sometimes called the quantity of motion. 
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When the force F = const, the vector F can be removed from 
the integrand and then p2  — ph  = Ft. The quantity on the 
right-hand side of this equation is referred to as the power 
impulse. Thus, the momentum increment acquired by a 
particle during any time interval is equal to the power im-
pulse over the same time interval. 

Example. A particle which at the initial moment t = 0 possesses 
the momentum Po  is subjected to the force F = at (1 — tit) during 
the time interval T, a being a constant vector. Find the momentum p 
of the particle at the moment when the action of the force comes to 
an end. 

In accordance with Eq. (4.2) we get p = Po + 	F dt = Po + 
0 

a-E2/6 (Fig. 55). 

The momentum of a system. Let us consider an arbitrary 
system of particles and introduce the concept of the momen-
tum of a system as a vector sum of 
the momenta of its constituent par- 	 av 2/6 
tides: 

P= 	Pi, (4.3) 

where pi  is the momentum of the 
ith particle. Note that the mo-
mentum of a system is an additive 
quantity, that is, the momentum of 
a system is equal to the sum of the momenta of its indi-
vidual parts irrespective of whether or not they interact. 

Let us find the physical quantity which defines the sys-
tem's momentum change. For this purpose we shall differen-
tiate Eq. (4.3) with respect to time: 

dpldt = 2 dpildt. 

In accordance with Eq. (4.1) 

dpildt = Fik +F1, 

where Fih are the forces which the other particles of the 
system exert on the ith particle, i.e. internal forces; Fi  is 
the force which other bodies outside the system under con- 

Fig. 55 

8* 
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sideration exert on the same particle (external forces). Sub- 
stituting the last expression into the previous one, we get 

dpldt = E Fik E Fi • 
i k 

The double summation symbol on the right-hand side 
denotes the sum of all internal forces. In accordance with 
Newton's third law the interaction forces between the sys-
tem's particles are pairwise identical in magnitude and 
opposite in direction. Consequently, the resultant force of 
each interacting pair is equal to zero, and therefore the 
vector sum of all internal forces is also equal to zero. As a 
result, the last equation takes the following form: 

dp/dt = F, (4.4) 

where F is the resultant of all external forces, F = 	Fi. 

Eq. (4.4) implies that the time derivative of the momentum 
of a system is equal to the vector sum of all external forces 
acting on the particles of the system. 

As in the case of a single particle, it follows from Eq. (4.4) 
that the increment of momentum which the system acquires 
during the finite time interval t is equal to 

P2 — Pi = J F dt, 
0 

(4.5) 

i.e. the increment of momentum of the system is equal to 
the momentum of the resultant of all external forces over 
the corresponding time interval. Here F is the resultant of 
all the external forces. 

Eqs. (4.4) and (4.5) hold true both in inertial and in 
non-inertial reference frames. It should be borne in mind, 
however, that in non-inertial reference frames one needs 
to take into account the inertial forces, which act as external 
forces, i.e. in these equations F should be regarded as the 
sum Fia  Fin , where Fia  is the resultant of all external 
interaction forces, and Fin  is the resultant of all inertial 
forces. 
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The law of momentum conservation. We have drawn an 
important conclusion: in accordance with Eq. (4.4) the 
momentum of a system may vary only due to external forces. 
Internal forces cannot change the momentum , of a system. 
Hence, another important conclusion immediately follows 
from this, the law of momentum conservation: in an inertial 
reference frame the momentum of a closed system of particles 
remains constant, i.e. does not change in the course of time: 

p = E pi  (t) = const. (4.6) 

Here the momenta of individual particles or parts of a 
closed system may change with time, a fact emphasized in 
the last expression. These changes, however, always happen 
so that the momentum increment of one part of the system 
is equal to the momentum decrease of another part of the 
system. In other words, the individual parts of a closed 
system can only interchange momenta. Having detected 
a momentum increment in a certain system, we can state 
that this increment originated at the expense of a momentum 
decrease in surrounding bodies. 

In this regard Eqs. (4.4) and (4.5) should be treated as 
a more general formulation of the momentum conservation 
law. This formulation indicates that the momentum change 
of a non-closed system is caused by the action of other bodies 
(external forces). What was said is of course valid only in 
reference to inertial reference frames. 

The momentum of a non-closed system can remain constant 
provided the resultant of all external forces is equal to zero. 
This follows immediately from Eqs. (4.4) and (4.5). In these 
cases the conservation of momentum is of practical interest, 
for it permits the system to be studied in a sufficiently 
simple fashion without going into a detailed analysis of 
the process. 

One more thing. Sometimes in a non-closed system it is 
not the momentum p itself that remains constant, but its 
p„ projection on a certain x direction. This happens when 
the projection of the resultant F of the external forces on 
the x direction is equal to zero, i.e. the vector F is per-
pendicular to that direction. In fact, projecting Eq. (4.4), 
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we get 
dpsIdt = F x, 	 (4.7) 

whence it follows that if F 	0, then p x  = const. For 
example, when a system moves in a uniform field of gravity, 
the projection of its momentum on any horizontal direction 
remains constant whatever happens inside the system. 

Let us consider examples involving constant and varying 
momenta. 

Example 1. A cannon of mass m slides down a smooth inclined 
plane forming the angle a with the horizontal. At the moment when 

the velocity of the cannon reaches v, it 
fires a shell in a horizontal direction 

(R)t. I with the result that the cannon stops 
and the shell "carries away" the momen- 
tum p. Suppose that the firing duration 

P is equal to t. What is the reaction force 
R of the inclined plane averaged over 
the time t? 

Here the system "cannon-shell" is 
non-closed. During the time interval t 
this system acquires a momentum in- 

Fig. 56 	crement equal to p — mir. The change 
of the system's momentum is caused 

by two external forces: the reaction force R (which is perpendicu-
lar to the inclined plane) and gravity mg. Therefore, we can write: 

p — my = (R) t mgt, 

where (R) is the vector R averaged over the time t. It is helpful to 
depict this relationship graphically (Fig. 56). It can be immediately 
seen from the figure that the sought value (11) is defined by the for-
mula (R) t = p sin a + mgt cos a. 

Example 2. A man of mass m1  is located on a narrow raft of mass m2  
afloat on the surface of a lake. The man travels through the distance 
Or' with respect to the raft and then stops. The resistance of the water 
is negligible. We shall find the corresponding displacement Are  of 
the raft relative to the shore. 

In this case the resultant of all external forces acting on the "man-
raft" system is equal to zero, and, therefore, the momentum of that 
system does not change, remaining equal to zero in the process of 
motion: 

ni,v, 	m2v2  = 0, 

where v1  and v2  are the velocities of the man and the raft with respect 
to the shore. But the velocity of the man relative to the shore may be 
represented in the form y1  = v2  v', where v' is the velocity of the 
man relative to the raft. Eliminating v1  from these two equations, 
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we obtain 
77/1 

Vi . 

	

V2 - 	 
m1+ M'2 

Multiplying both sides by dt, we find the relationShip between the 
elementary displacements of the raft dr2  and the man dr' relative 
to the raft. Obviously, the same relationship also holds in the case 
of finite displacements: 

	

Are— 	
ml 

 
77/1 ± M2 

It is seen from this that the displacement Are  of the raft does not 
depend on the character of the man's motion, i.e. on the law v' (t). 

We emphasize once again that the momentum conserva-
tion law holds only in inertial frames. This statement, how-
ever, does not rule out the momentum of a system remaining 
constant in non-inertial reference frames as well. This 
happens when in Eq. (4.4), which is also valid in non-inertial 
reference frames, the external force F (including inertial 
forces) is equal to zero. Clearly this situation occurs only 
under special conditions. Such special cases are fairly rare. 

Let us now demonstrate that if the momentum of a system 
remains constant in one inertial reference frame K, it also 
does so in any other inertial frame K'. Suppose in the K 
frame 

2 mivi  = const. 

If the K' frame moves relative to the K frame with the 
velocity V, the velocity of the ith particle in the K frame 
may be written as vi  = v; + V, where v.; is the velocity 
of that particle in the K' frame. Then the expression for 
the momentum of the system may be transformed as follows: 

E + 2 miv = const. The second term here does not 

depend on time. This implies that the first term, the momen-
tum of the system in the K' reference frame, does not depend 
on time either, i.e. 

mivi = const'. 

The result obtained is in complete agreement with the Gali-
lean relativity principle, according to which the laws of 
mechanics are identical in all inertial reference frames. 



120 	 Classical Mechanics 

The validity of Newton's laws underlies the reasoning 
that led us to the momentum conservation law. Specifically, 
the mass points of a closed system were assumed to interact 
in pairs and to obey Newton's third law. Now, what happens 
in systems which do not obey Newton's laws, e.g. in systems 
involving electromagnetic radiation? 

Experience shows convincingly enough that the momen-
tum conservation law is valid for such systems as well. 
However, in these cases one has to take into account in the 
general equilibrium of momenta not only the momenta of 
particles, but also the momentum which, as electrodynamics 
confirms, the radiation field itself possesses. 

Thus, experience shows that the momentum conservation 
law, when appropriately correlated, constitutes a fundamental 
law of nature which is valid without exceptions. But in this 
broad sense, this law is no longer a consequence of Newton's 
laws, and should he regarded as an independent general 
principle inferred from experimental data. 

§ 4.2. Centre of Inertia. 
The C Frame. 

The centre of inertia. Any system of particles possesses 
one remarkable point C, the centre of inertia, or the centre 
of mass, displaying a number of interesting and significant 
properties. Its position relative to the origin 0 of a given 

reference frame is described by the ra-
dius vector r c  defined by the following 
formula: 

rc  = m vi mir i , 	(4.8) 

where mi  and ri  are the mass and the 
radius vector of the ith particle, and 
m is the mass of the whole system 

Fig. 57 	(Fig. 57). 
It should be pointed out that the 

centre of inertia of a system coincides 
with its centre of gravity. However, this statement is 
valid only when the gravitational field can be assumed 
uniform within the limits of a given system. 
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Let us find the velocity of the centre of inertia in a given 
reference frame. Differentiating Eq. (4.8) with respect to 
time, we get 

2 mi., - pi  • 
	 (4.9) 

If the velocity of the centre of inertia is equal to zero, the 
system is said to be at rest as a whole. This provides a natu-
ral generalization of the concept of a motionless particle. 
Accordingly, the velocity Vc  acquires the meaning of the 
velocity of the system moving as a whole. 

With allowance made for Eq. (4.3) we obtain from Eq. (4.9) 

p = mV c , 	 (4.10) 

i.e. the momentum of a system is equal to the product of the 
mass of the system by the velocity of its centre of inertia. 

The equation of motion' for the centre of inertia. The 
concept of a centre of inertia allows Eq. (4.4) to be rewritten 
in a more convenient form. To do this, we have to sub-
stitute Eq. (4.10) into Eq. (4.4) and take into account that 
the mass of a system per se has a constant value. Then we 
obtain 

dV =F, 
dt 

(4.11) 

where F is the resultant of all external forces acting on the 
system. This is the equation of motion for the centre of inertia 
of a system, one of the most important equations of mechan-
ics. According to this equation, during the motion of any 
system of particles its centre of inertia moves as if all the mass 
of the system were concentrated at that point, and all external 
forces acting on the system were applied to it. In this case 
the acceleration of the centre of inertia is quite independent 
of the points to which the external forces are applied. 

Next, it follows from Eq. (4.11) that if F 0, then 
dV cidt = 0, and therefore Vc  = const. In particular, this 
case is realized in a closed system (in an inertial reference 
frame). Furthermore, if Vc  = const, then in accordance 
with Eq. (4.10) the momentum of the system p = const. 

Thus, if the centre of inertia of a system moves uniformly 
and rectilinearly, the momentum of the system remains con- 
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stant in the process of motion. Obviously, the reverse state- 
ment is also true. 

Eq. (4.11) coincides in its form with the fundamental 
equation of dynamics of a mass point and is its natural 
generalization to a system of particles: the acceleration of 
a system as a whole is proportional to the resultant of all 
external forces and inversely proportional to the total 
mass of the system. Recall that in non-inertial reference 
frames the resultant of all external forces includes both 
forces of interaction with surrounding bodies and inertial 
forces. 

Let us consider three examples associated with motion 
of a system's centre of inertia. 

Example 1. We shall show how the problem of a man on a raft 
(see Example 2 on p. 118) can be solved by resorting to the notion 
of the centre of inertia. 

Since the resistance of water is negligibly small, the resultant 
of all external forces acting on the system "a man and a raft" is equal 
to zero. This means that the position of the centre of inertia of the 
given system does not change in the process of motion of the man 
(and the raft), i.e. 

+ m2r2  = const, 

where r1  and r2  are the radius vectors describing the positions of the 
centres of inertia of the man and the raft relative to a certain point 
on the shore. From this equality we find the relationship between 
the increments of the vectors r1  and r2: 

m1  Ar1 	m2  Are  = 0. 

Taking into account that the increments Ari  and Are  represent the 
displacements of the man and the raft with respect to the shore and 
that Ari  = Ar2  Ar', we find the displacement of the raft: 

Ar2  — 	
m,

A r' 
mi.+ m2 

Example 2. A man jumps down from a tower into water. In the 
general case his motion is quite complicated. However, if the air 
drag is negligible, it can be immediately stated that the centre of 
inertia of the jumper moves along a parabola, just as a mass point 
experiencing the constant force mg, where m is the man's mass. 

Example 3. A closed chain connected by a thread to a rotating 
shaft revolves around a vertical axis with the uniform angular veloc-
ity w (Fig. 58), the thread forming the angle 0 with the vertical. 
How does the centre of inertia of the chain move? 

First of all, it is clear that it does not move in the vertical direc-
tion during the uniform rotation of the chain. This means that the 
vertical component of the tensile strength T of the thread counter- 
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balances gravity (Fig. 58, right). As for the horizontal component 
of the tensile strength, it is constant in magnitude and permanently 
directed toward the rotation axis. It follows from this that the centre 
of inertia of the chain, the point C, travels along the horizontal circle 
whose radius p is easy to find via 
Eq. (4.11), writing it as 

mo)2p = mg tan 0, 

where m is the mass of the chain. 
In this case the point C is perma-
nently located between the rota-
tion axis and the thread, as shown 
in Fig. 58. 

The C frame. In many cases 
when we examine only the 
relative motion of particles 
within a system, but not the 
motion of this system as a 
whole, it is most advisable to 
resort to the reference frame in which the centre of inertia 
is at rest. Then we can significantly simplify both the analy-
sis of phenomena and the calculations. 

The reference frame rigidly fixed to the centre of inertia 
of a given system of particles and translating with respect 
to inertial frames is referred to as the frame of the centre of 
inertia, or, briefly, the C frame. The distinctive feature of 
the C frame is that the total momentum of the system of 
particles is equal to zero; this immediately follows from 
Eq. (4.10). In other words, any system of particles as a 
whole is at rest in its C frame. 

The C frame of a closed system of particles is inertial, while 
that of a non-closed system is non-inertial in the general case. 

Let an find the relationship between the values of the 
mechanical energy of a system in the K and C reference 
frames. Let us begin with the kinetic energy T of the system. 
The velocity of the ith particle in the K frame may be repre- 

	

sented as vi  = vi 	V c, where 17i  is the velocity of that 
particle in the C frame and Vc  is the velocity of the C 
frame with respect to the K reference frame. Now we can 
write 

	

T = E 	= E mi +vc)2/2= 

= E m2/2 + Vc  E mivi  E mivu2. 
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Since in the C frame E mivi  = 0, the previous expression 
takes the form 

2 
T 	"1217  =T 	

r) 
 , (4.12) 

where i" = 	mini/2 is the total kinetic energy of the par- 
ticles in the C frame, m is the mass of all the system, and p 
is its total momentum in the K frame. 

Thus, the kinetic energy of a system of particles comprises 
the total kinetic energy T in the C frame and the kinetic energy 
associated with the motion of the system of particles as a whole. 
This important conclusion will be repeatedly utilized here-
after (specifically, in studies of dynamics of a solid). 

It follows from Eq. (4.12) that the kinetic energy of a 
system of particles is minimal in the C frame, another dis-
tinctive feature of that frame. Indeed, in the C frame V c = 
= 0, and Eq. (4.12) yields T = T. 

Now let us pass over to the total mechanical energy E. 
Since the internal potential energy U of a system depends 
only on its configuration, the magnitude U is the same in 
all reference frames. Adding U to the left- and right-hand 
sides of Eq. (4.12), we obtain the formula for transformation 
of the total mechanical energy on transition from the K 
to the C frame: 

E = 	mr72 	—E + 
n2  

(4.13) 

The energy E = 	U is referred to as the internal me- 
chanical energy of the system. 

Example. Two small discs, each of mass m, lying on a smooth 
horizontal plane, are interconnected by a weightless spring. One 
of the discs is set in motion with the velocity vo, as shown in Fig. 59. 
What is the internal mechanical energy E of this system in the process 
of motion? 

Since the surface is smooth, the-  system in the process of motion 
behaves as a closed one. Therefore, its total mechanical energy E 
and total momentum p remain constant and equal to the initial val-
ues, i.e. E = mvg/2 and p =- mvo. Substituting these values into 



m 
Fig. 59 
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Eq. (4.13), we obtain 

V= E — p2I(2 .2m) =-- nwS/4. 

It is easy to realize that the internal energy E is associated with the 
rotation and oscillation of the given system, while at the initial 
moment E was equal only to the rotational motion energy. 

If the processes associated with a change in the total 
mechanical energy take place in a closed system of particles, 
from Eq. (4.13) it follows that AE = AE, i.e. the increment 
of the total mechanical energy relative 
to an arbitrary inertial reference frame 
is equal to the increment of the internal 
mechanical energy. In this case the kinetic 
energy resulting from the motion of the 
system of particles as a whole does not 
change because in a closed system p 
= const. 

Specifically, if a closed system is con-
servative, its total mechanical energy re-
mains constant in all inertial reference 
frames. This conclusion completely agrees with the Galilean 
relativity principle. 

A system of two particles. Suppose the masses of the par-
ticles are equal to m1  and m2  and their velocities in the K 
reference frame to v1  and v2, respectively. Let us find the 
expressions defining their momenta and the total kinetic 
energy in the C frame. 

The momentum of the first particle in the C system is 
— 

131 = miv1 = (v1—  Vc), 

where V c  is the velocity of the centre of inertia (of the C 
system) in the K reference frame. Substituting in this for-
mula expression (4.9) for V c, we obtain 

-= 11  (v1—  v2), 

where IA, is the so-called reduced mass of the system 

= milnz/(mi m2). (4.14) 
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Similarly, the momentum of the second particle in the 
C frame is 

P2 = µ (V2 —  V1)• 

Thus, the momenta of the two particles in the C frame 
are equal in magnitude and opposite in direction; the modu-
lus of the momentum of each particle is 

p z= prel, 	 (4.15) 

where vrei  = I v1 — V2 I is the velocity of one particle 
relative to another. 

Finally, let us consider kinetic energy. The total kinetic 
energy of the two particles in the C frame is 

= + 1;  2 = P2 /2M1 P2/2m2. 

Since in accordance with Eq. (4.14) 1/m, + 1/m2  = 1/p,, 
then 

— p212p.=110,//2. (4.16) 

  

If the particles interact, their total mechanical energy 
in the C frame is 

U, 	 (4.17) 

where U is the potential energy of interaction of the given 
particles. 

The formulae obtained play an important part in studies 
of particle collisions. 

§ 4.3. Collision of Two Particles 

In this section we shall examine arious cases of colli-
sions of two particles, using only the momentum and energy 
conservation laws as an investigatory tool. Here we shall 
see that the conservation laws enable us to draw some general 
and essential conclusioi s concerning the properties of a 
given process irrespective of a specific law of particle inter-
action. 

At the same time we shall illustrate the advantages of the 
C frame, whose utilization considerably simplifies analysis 
of a process and many calculations. 
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Although we shall discuss collisions of particles, it should 
be mentioned at once that all subsequent arguments and 
conclusions relate to collisions of any bodies. One only has 
to substitute the velocity of the centre of inertia of each 
body for the velocity of a particle, and to replace the kinetic 
energy of a particle by that part of the kinetic energy of 
each body that characterizes its motion as a whole. 

In what follows we shall assume that 
(1) the initial reference frame K is inertial, 
(2) the system of two particles is closed, 
(3) the momenta (and the velocities) of the particles be-

fore and after a collision correspond to sufficiently large 
distances between them; at the same time the potential 
energy of interaction can be neglected. 

In addition, the quantities relating to the system after 
a collision will be marked with a prime, while those in the 
C frame with a tilde. 

Now let us pass to the essence of the problem. Particle 
collisions are classified into three types: completely in-
elastic, perfectly elastic, and inelastic (the intermediate 
case). 

Completely inelastic collision results in two particles 
"sticking together", after which they move as a single unit. 
Suppose two particles with masses m1  and m2  move with 
the velocities v1  and v2  before collision (in the K frame). 
After the collision a particle with mass m1  m2  is formed 
because of additivity of mass in Newtonian mechanics. The 
velocity v' of the formed particle can be immediately found 
from the momentum conservation law: 

(m1+ m2) v = 	+ m2v2. 

The velocity v' is obviously equal to that of the system's 
centre of inertia. 

In the C frame this process is the most simple: prior to 
the collision both particles move toward each other carry-
ing equal momenta p, while after the collision the formed 
particle turns out to be stationary. In this case the total 
kinetic energy T of the particles completely turns into the 
internal energy Q of the formed particle, i.e. T = Q. Whence, 
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with allowance made for Eq. (4.16), we obtain 

Q= 2 — 2 mi.+ in, 1  
inen2  (– v -- v2)2. 

Thus the value of Q for a given pair of particles depends only 
on their relative velocity. 

Perfectly elastic collision does not lead to any change 
in the internal energy of the particles, so that the kinetic 
energy of the system does not change either. We shall con-
sider two particular cases: central (head-on) and non-central 
elastic collisions. 

1. A head-on collision. Both particles move along the 
same straight line before and after collision. Suppose that 
prior to collision the particles move with the velocities v1  

before 

Pz 
	after 

Fig. 60 

and v2  in the K reference frame (the particles either move 
toward each other or one particle overtakes another). What 
are the velocities of these particles after the collision? 

Let us first consider this process in the C frame, where 
the particles before and after the collision possess momenta 
equal in magnitude and opposite in direction (Fig. 60). 
Moreover, since the total kinetic energy of the particles is 
the same before and after the collision, as well as their 
reduced mass, then in accordance with Eq. (4.16) the mo-
mentum of each particle only reverses its direction as a 
result of the collision, its magnitude remaining unchanged, 
i.e. 1)1 = —pt , where i = 1, 2. The same can be said about 
the velocity of each particle in the C frame: 

—vi. 

Now let us find the velocity of each particle after the col-
lision in the K reference frame. For this purpose we shall 
make use of the velocity transformation formulae for the 
transition from the C to the K frame and also the foregoing 

Pi 
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equality. Then 

vi' = Vc 	Vc 	-= Vc  (v — Vc) = 2Vc  — V i 

where V c  is the velocity of the centre of inertia (of the C 
frame) in the K frame; this velocity is determined by 
Eq. (4.9). Hence, the velocity of the ith particle in the K 
frame after the collision is 

2Vc  —vi, 	 (4.18) 

where i = 1, 2. In terms of the projections on an arbitrary 
x axis the last equality takes the form 

vix  = 2Vcx — vix• 	 (4.19) 

Specifically, when the particle masses are identical, it is 
easy to see that the particles exchange their velocities as 
a result of the collision, i.e. v; = v2  and v2 = v1. 

2. A non-central collision. We shall limit ourselves to 
the case when one of the particles is motionless before the 
collision. Suppose a particle possessing the mass m1  and 
momentum pi  experiences in the K frame a non-central 
elastic collision with a motionless particle of mass m2. 
What are the possible momenta of these particles after the 
collision? 

First, let us examine this process in the C frame. Here, 
as in the previous case, the particles possess momenta equal 
in magnitude and opposite in direction at any moment of 
time before and after the collision. Besides, the momentum 
of each particle does not change in magnitude following the 
collision, i.e. 

However, the particles' rebound direction is different in this 
case. It forms a certain angle 0 with the initial motion 
direction (Fig. 61), depending on the particle interaction law 
and the mutual positions of the particles in the process of 
collision. 

Now let us calculate the momentum of each particle 
after the collision in the. K reference frame. Making use 
of the velocity transformation formulae for the transition 

9-0539 
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from the C to the K frame, we obtain: 

= rnivi = ml  (Ve  -4- vi) 	pp  

	

p2  = m2v2  = m2 (Vc -1-- v2) =-- m2Vc , p2 , 	(4.20) 

where V c  is the velocity of the C frame relative to the K 
reference frame. 

Summing up separately the left- and right-hand sides of 
these equalities and taking into account that i,' = 
we get 

I); ± = (mi + m2) Vc = 

just as it should be in accordance with the momentum con-
servation law. 

Now let us draw the so-called vector diagram of momenta. 
First we depict the vector pi  as the section AB (Fig. 62), 

Pz 

Fig. 61 

and then the vectors pi and p2, each of which represents, 
according to Eq. (4.20), a sum of two vectors. 

Note that this drawing is valid regardless of the angle 01 
The point C, therefore, can be located only on the circle of 
radius ihaving its centre at the point 0, which divides the 
section AB into two parts in the ratio AO : OB = m1  : m2. 
Moreover, in the considered case (when the particle of mass 
nit  rests prior to the collision) this circle passes through the 
point B, the end point of the vector Ps, since the section 
OB = p. Indeed, 

OB=m2Vc= m2 



Fig. 62 
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where v1  is the velocity of the bombarding particle. But 
inasmuch as in our case vi  = vrei , 

OB [Lyra= P 
in accordance with Eqs. (4.14) and (4.15). Thus, in order 
to draw a vector diagram of momenta corresponding to an 

elastic collision of two particles (one of which rests initially) 
it is necessary: 

(1) first to depict the section AB equal to the momentum 
pi  of the bombarding particle; 

(2) then through the point B, the end point of the vector 
p1, to trace a circle of tivrraeds 

m  
i  iu mi+ m2  

2  
Pi, 

whose centre (point 0) divides the section AB into two parts 
in the ratio AO : OB = m1  : 

This circle is the locus of all possible locations of the 
apex C of the momenta triangle ABC whose sides AC and 
CB represent the possible momenta of the particles after 
the collision (in the K reference frame). 

Depending on the particle mass ratio the point A, the 
beginning of the vector pi, can be located inside the given 
circle,_on it, or outside it (Fig. 63). In all three cases the 
angle 0 can assume all the values from 0 to t. The possible 
values of the angle 01  of scattering of the bombarding particle 
and the angle e of rebounding particles are as follows: 

(a)  m, < m2  0 < 01<a O>n-02 

(b)  m1 = m2  0 < 01 -<,..n/2 e=102 

(c)  m1  > m2  0 < 01  < Oi max 0 < at/2 
9* 
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Here 01„p„ x  is the limiting angle. It is defined by the formula 

sin 01 max = m2/m1, 	 (4.21) 

which directly follows from Fig. 63c: sin Ovnax  = OC' IA0 = 
= OBI AO 

In addition, here is another interesting fact. In the last 
case (m1  >m 2) the particle in, can be scattered by the same 

A 0 	B A 	0 	B A 8, 	0 
m,.<1;72 	 /772 	 ini>M2 

Fig. 63 

angle 01  whether it possesses the momentum AC or AD 
(Fig. 63c), i.e. the solution is ambiguous. The same is true 
for the particle m2. 

And finally, from the same vector diagram of momenta 
we can determine the relation between the angles 01  and 0 

tan Of  = 	sin 8 	
(4.22) 

cos 0 + rn1/m2  

With this we have exhausted any information on the 
given process which can be derived through the use of only 
the momentum and energy conservation laws. 

Thus, we see that the momentum and energy conservation 
laws by themselves permit us to draw a number of significant 
conclusions about the properties of a given process. Most 
essential here is the fact that these properties are universal 
in their nature, that is, they do not depend on the type of 
interaction between particles. 

One fundamental fact, however, should be pointed out. 
The vector diagram of momenta based on the momentum 
and energy conservation laws provides us with a complete 
pattern of all possible cases of rebounding particles; but 
this very significant result cannot indicate the concrete case 
that is actually realized. To answer that question, we must 
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analyse the collision process in more detail by means of the 
motion equations. In the process it becomes clear that the 
scattering angle 01  of a bombarding particle depends on the 
type of the interaction of colliding particles and on the 
so-called aiming parameter*, while the ambiguity of a 
solution in the case m1  > m2  is due to the fact that the same 
scattering angle 01  can occur with two different values of 
the aiming parameter irrespective of the law of particle 
interaction. 

The circumstance discussed here represents an inherent, 
fundamental property of all conservation laws in general. 
The conservation laws can never provide an unambiguous 
picture of what is actually going to happen. But if, on the 
basis of some other considerations, it becomes possible to 
infer what exactly is going to happen, the conservation laws 
can contribute information on how it must happen. 

Inelastic collision. After this kind of collision the inter-
nal energy of rebounding particles (or one of them) changes, 
and therefore the total kinetic energy of the system changes 
as well. It is customary to denote the corresponding incre-
ment of the kinetic energy of the system by .Q. Depending 
on the sign of Q an inelastic collision is referred to as exoergic 
(Q > 0) or endoergic (Q < 0). In the former case the kinetic 
energy of the system increases while in the latter it decreases. 
In an elastic collision Q = 0, of course. 

Our task is to determine possible momenta of particles 
after a collision. 

This problem is easiest when solved in terms of the C 
frame. By the hypothesis, the increment of the total kinetic 
energy of the system in the given process is equal to 

f' -f Q. (4.23) 

Since in this case 	T, this means, in accordance with 
Eq. (4.16), that the momenta of particles change their 
magnitude after the collision. The momentum of each par- 
ticle 	after the collision can be easily found if we replace 

* The aiming parameter is the distance between the straight line 
along which the momentum of a bombarding particle is directed, and 
the particle exposed to a "collision". 



134 	 Classical Mechanics 

in Eq. (4.23) by its expression 	= 1 '2/2p,: 

19' -172R (1' + (4.24) 

Now let us consider the same problem in the K reference 
frame, where a particle of mass ml  with the momentum pi  
collides with a stationary particle of mass m2. To determine 
the possible cases of particle rebounding after the collision, 
it is helpful to resort to the!vector diagram of momenta. It 
is drawn similarly to the case of an elastic collision. The 

momentum of a bombarding 
particle pi  = AB (Fig. 64) 
is divided by the point 0 into 
two parts proportional to the 
masses of the particles 
(AO : OB = ml  : m2). Then 
from the point 0 _a circle is 

Fig. 64 	 drawn with radius p' specified 
by Eq. (4.24). This circle is the 

locus of all possible positions of the vertex C of the triangle 
ABC whose sides AC and CB are equal to the momenta of 
the corresponding particles after the collision. 

Note that in contrast to the case of an elastic collision 
the point B, the end point of the vector pi, does not lie on 
the circle any more; in fact, when Q>0, this point is locat-
ed inside the circle, and when Q < 0 outside it. Fig. 64 
illustrates the latter case, an endoergic collision. 

Threshold. There are many inelastic collisions in which 
the internal energy of particles is capable of changing by 
a quite definite value, depending on the properties of the 
particles themselves (e.g. inelastic collisions of atoms and 
molecules). Nevertheless, exoergic collisions (Q > 0) can 
occur for an arbitrarily low kinetic energy of a bombarding 
particle. In similar cases endoergic processes (Q < 0) 
possess a threshold. A threshold is the minimal kinetic energy 
of a bombarding particle just sufficient to make a given 
process possible in terms of energy. 

So, suppose we need to carry out an endoergic collision 
in which the internal energy of the particles is capable of 
acquiring an increment not less than a certain value I Q I. 
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Under what condition does such a process become 
possible? 

Again, the problem is easiest when solved in the C frame, 
where it is obvious that the total kinetic energy T of the 
particles before the collision must in any case be not less 
than I Q I, i.e. T e Q I. Whence it follows that there 
exists the minimal value tm,„ = I Q I, such that the kinetic 
energy of the system entirely turns into an increment of the 
internal energy of the particles, and so the particles come 
to a standstill in the C frame. 

Let us consider the same problem in the K reference frame, 
where a particle of mass mi  collides with a stationary par- 
ticle of mass m2. Since at /m in  the particles come to a stand-
still after the collision in the C frame, this signifies that 
in the K frame, provided the kinetic energy of the bombard-
ing particle is equal to the requisite threshold value T it hr., 

both particles move after the collision as a single unit whose 
total momentum is equal to the momentum pi  of the bom-
barding particle and the kinetic energy /321/2 (m1  + m2). 
Therefore 

T 1 thr = I P I + P112 (m + m-2). 

Taking into account that T1thr = p;/2m1  and eliminating pi 
from these two equations, we obtain 

m1+m2 
 

T1 thr 	m2 	 !P  l. (4.25) 

This is the threshold kinetic energy of the bombarding par-
ticle sufficient to make the given endoergic process possible 
in terms of energy. 

It should be pointed out that Eq. (4.25) plays an impor-
tant part in atomic and nuclear physics. It is used to deter-
mine both the thresholds of various endoergic processes and 
their corresponding energies I Q I. 

In conclusion we shall consider an example which, in 
essence, provides a model of an endoergic collision (see 
also Problems 4.5 and 4.8). 

Example. A small disc of mass m and a smooth hillock of mass M 
and height h are located on a smooth horizontal plane (Fig. 65). What 
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minimal velocity should be imparted to the disc to make it capable 
of overcoming the hillock? 

It is clear that the velocity of the disc must be at least sufficient 
for it to climb the hillock and then to move together with it as a single 
unit. In the process, part of the system's kinetic energy turns into 

Fig. 65 

an increment of potential energy AU = mg*. We shall regard this 
process as endoergic in which I Q I = A U. Then in accordance with 
Eq. (4.25). 

whence 
nuqhrl2= mgh (m+ M)IM , 

vthr=17 2  (1 ml M) gh. 

§ 4.4. Motion of a Body with Variable Mass 

There are many cases when the mass of a body varies in 
the process of motion due to the continuous separation or 
addition of matter (a missile, a jet, a flatcar being loaded 
in motion, etc.). 

Our task is to derive the equation of motion of such a 
body. 

Let us consider the solution of this problem for a mass 
point, calling it a body for the sake of brevity. Suppose 
that at a certain moment of time t the mass of a moving body 
A is equal to m and the mass being added (or separated) has 
the velocity u relative to the given body. 

Let us introduce an auxiliary inertial reference frame K 
whose velocity is equal to that of the body A at a given 
moment t. This means that at the moment t the body A 
is at rest in the K frame. 

Now suppose that during the time interval from t to 
t dt the body A acquires the momentum m dv in the 
K frame. The momentum is gathered due to (1) the addition 
(separation) of the mass Sm bringing (carrying away) the 
momentum Sm •u, and (2) surrounding bodies exerting the 
force F, or the action of a field of force. Thus, it can be 
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written that 
m dv = F dt ± (Sm 

where the plus sign denotes the addition of mass and the 
minus sign denotes the separation. These cases can be com-
bined, designating ±6m as the mass increment dm of the body 
A (in fact, in the case of mass addition dm = +6m, and in 
the case of mass separation dm = —6m). Then the fore-
going equation takes the form 

m dv = F dt + dm .u. 

Dividing this expression by dt, we obtain 

(4.26) 

where u is the velocity of the added (separated) matter with 
respect to the considered body. 

This is the fundamental equation of dynamics of a mass 
point with variable mass. It is referred to as the Meshchersky 
equation. Obtained in one inertial reference frame, this 
equation is also valid, due to the relativity principle, in 
any other inertial frame. It should be pointed out that in 
a non-inertial reference frame the force F is interpreted as 
the resultant of both inertial forces and the forces of inter-
action of a given body with surrounding bodies. 

The last term in Eq. (4.26) is referred to as the reactive 
force: R = (dm/dt) u. This force appears as a result of the 
action that the added (separated) mass exerts on a given 
body. If mass is added, then dml dt > 0 and the vector R 
coincides in direction with the vector u; if mass is separated, 
dm/dt < 0 and the vector R is directed oppositely to the 
vector u. 

The Meshchersky equation coincides in form with the 
fundamental equation of dynamics for a permanent mass 
point: the left-hand side contains the product of the mass 
of a body by acceleration, and the right-hand side contains 
the forces acting on it, including the reactive force. In 
the case of variable mass, however, we cannot include the 
mass m under the differential sign and present the left-
hand side of the equation as the time derivative of the 
momentum, since m dvIdt r  d (mv)Idt. 

dv 	dm 
dt 	

_L

dt U, 
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Let us discuss two special cases. 
1. When u = 0, i.e. mass is added or separated with zero 

velocity relative to the body, R = 0 and Eq. (4.26) takes 
the form 

4\  , dv 
m t)— = F, 

dt 
(4.27) 

where m (t) is the mass of the body at a given moment of 
time. This equation describes, for example, the motion of 
a flatcar with sand pouring out freely from it (see Prob-
lem 4.10, Item 1). 

2. If u = —v, i.e. the added mass is stationary in the 
chosen reference frame, or the separated mass becomes sta-
tionary in that frame, Eq. (4.26) takes another form, 

m (dv I dt) 	(dml dt) v = F, 
Or 

d (mv)I dt = F. 	 (4.28) 

In other words, in this case (and only in this one) the action 
of the force F determines the change of momentum of a body 
with variable mass. This is realized, for example, during 
the motion of a flatcar being loaded with sand from a sta- 
tionary hopper (see Problem 4.10, Item 2). 

Let us consider an example in which the Meshchersky 
equation is utilized. 

Example. A rocket moves in the inertial reference frame K in the 
absence of an external field of force, the gaseous jet escaping with 
the constant velocity u relative to the rocket. Find how the rocket 
velocity depends on its mass in if at the moment of launching the mass 
is equal to mo. 

In this case F = 0 and Eq. (4.26) yields 
dv = u dminz. 

Integrating this expression with allowance made for the initial con- 
ditions, we get 	

v = — u In (m.,/m), 	 (1) 

where the minus sign shows that the vector v (the rocket velocity) 
is directed oppositely to the vector u. It is seen that in this case (u = 
= const) the rocket velocity does not depend on the fuel combustion 
time: v is determined only by the ratio of the initial rocket mass nto  
to the remaining mass in. 

Note that if the whole fuel mass were momentarily ejected with 
the velocity u relative to the rocket, the rocket velocity would be 
different. In fact, if the rocket initially is at rest in the chosen inertial 
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reference frame and after the fuel ejection gathers the velocity v, 
the momentum conservation law for the system "rocket-and-fuel" 
yields 

0 = my + (mo  — m) (u + v), 

where u + v is the velocity of the fuel relative to the given reference 
frame. Hence 

V = - u (1 — m/m0). 	 (2) 

In this case the rocket velocity v turns out to be less than in the pre-
vious case (for equal values of the moim ratio). This is easy to demon-
strate, having compared the dependence of v on mo/m in both cases. 
In the first case (when matter separates continuously) the rocket 
velocity v grows infinitely with increasing moim as Eq. (1) shows, 
while in the second case (when matter separates momentarily) the 
velocity v tends to the limiting value — u (see Eq. (2)). 

Problems to Chapter 4 

• 4.1. A particle moves with the momentum p (t) due to the force 
F (t). Let a and b be constant vectors, with a 1 b. Assuming that 

(1) p (t) = a + t (1 — at) b, where a is a positive constant, find 
the vector F at the moments of time when F L p; 

(2) F (t) = a + 2t b and p (0) = po, where po  is a vector directed 
oppositely to the vector a, find the vector p at the moment to  when 
it is turned through 90° with respect to the vector po. 

Solution. 1. The force F = dpldt = (1 — 2at) b, i.e. the vector F 
is always perpendicular to the vector a. Consequently, the vector F 
is perpendicular to the vector p at those moments when the coefficient 
of b in the expression for p (t) turns into zero. Hence, t1=0 and t2 .= 

1/a; the respective values of the vector F are equal to 

= b, F2 = - b. 

2. The increment of the vector p during the time interval dt is 
dp = F dt. Integrating this equation with allowance made for the 
initial conditions, we obtain 

— Po  = F dt=at+bt2  

where by the hypothesis po  is directed oppositely to the vector a. 
The vector p turns out to be perpendicular to the vector Po  at the 
moment to  when ato  = Po. At this moment p = (pola)2  b. 

• 4.2. A rope thrown over a pulley (Fig. 66) has a ladder with 
a man A on one of its ends and a counterbalancing mass M on its 
other end. The man, whose mass is m, climbs upward by Ar' relative 
to the ladder and then stops. Ignoring the masses of the pulley and 
the rope, as well as the friction in the pulley axis, find the displace-
ment of the centre of inertia of this system, 
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Solution. All the bodies of the system are initially at rest, and 
therefore the increments of momenta of the bodies in their motion 
are equal to the momenta themselves. The rope tension is the same 
both on the left- and on the right-hand side, and consequently the 
momenta of the counterbalancing mass (pi) and the ladder with the 
man (P2) are equal at any moment of time, i.e. Pi = p2, or 

Mv1  = my (M — m) v2, 

where v1, v, and v2  are the velocities of the mass, the man, and the 
ladder, respectively. Taking into account that v2  = 	and v = 

= v2 	v', where v' is the man's velocity relative 
to the ladder, we obtain 

v1 —(m12M) v'. 	 (1) 

On the other hand, the momentum of the whole 
system 

p = 	P2 = 2p1, or 2M Vc  = 2Mv1, 

where Vc  is the velocity of the centre of inertia 
of the system. With allowance made for Eq. (1) 
we get 

Vc  = = (m/2M) v' . 

And finally, the sought displacement is 

Arc  ---- Vc  dt =(m12M) v' dt =(m12M) Ar' 

Fig. 66 	Another method of solution is based on a prop- 
erty of the centre of inertia. In the reference 

frame fixed to the pulley axis the location of the centre of inertia:of 
the given system is described by the radius vector 

rc  = [Mr1 (M — m) r2  mr3]/2M, 

where r1, r2, and r3  are the radius vectors of the centres of inertia 
of the mass M, the ladder, and the man relative to some point 0 
of the given reference frame. Hence, the displacement of the centre 
of inertia Arc  is equal to 

Arc  = [M Art  (M — m) Are  m Ar3V2M, 

where Ari, Ar2, and Ar3  are the displacements of the mass M, the 
ladder, and the man relative to the given reference frame. Since 
Art  = —Ar2  and Ar3  = Ar2  Ar', we obtain 

Arc  = (m/2M) Ar'. 

g 4.3. A system comprises two small spheres with masses m1  and m2  
interconnected by a weightless spring. The spheres are set in motion 
at the velocities v1  and v2, as shown in Fig. 67, whereupon the system 
starts moving in the uniform gravitational field of the Earth. Ignoring 
the air drag and assuming that the spring is non-deformed at the 
initial moment of time, And 
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(1) the velocity Vc  (t) of the centre of inertia of this system as 
a function of time; 

(2) the internal mechanical energy of the system in the process of 
motion. 

Solution. 1. In accordance with Eq. (4.11) the velocity vector 
increment of the centre of inertia is d Vc = g dt. Integrating this 
equation, we get Vc  (t) — Vc  (0) = gt, where Vc  (0) is the initial 
velocity of the centre of inertia. Hence 

Vc  (t) = 	+ mor,)/(mi  + m2) + gt. 

2. The internal mechanical energy of a system is its energy E in 
the C frame. In this case the C frame moves with the acceleration g, 
so that each sphere experiences two external forces in that frame: 
gravity mig and the inertial force —mtg. The total work performed 

m2 	76 

M m 

Fig. 67 	 Fig. 68 

by the external forces is thus equal to zero (in the C frame), and there-
fore the energy E does not change. To find the energy, it is sufficient 
to consider the initial moment of time, when the spring is not yet 
deformed and the energy E is equal to the kinetic energy To  in the C 
frame. Making use of Eq. (4.16), we get 

= T — 	 mirn 
TO 	(vi — v2)2  — 	2 	D • — 2 (mi  + m2) (V2  ± V  

4.4. A ball possessing the kinetic energy T collides head-on with 
an initially stationary elastic dumbbell (Fig. 68) and rebounds in the 
opposite direction with the kinetic energy T'. The masses of all three 
balls are the same. Find the energy of the dumbbell oscillations after 
the collision. 

Solution. Suppose p and p' are the momenta of the striking ball 
before and after the collision, p' and are the momentum and the 
kinetic energy of the dumbbell as a whole after the collision, and E 
is the oscillation energy. In accordance with the momentum and 
energy conservation laws 

T=TH-TH-E. 

Taking into account that T = p2/2m, we obtain from these two equa-
tions: 

E=(T-3T'-2 
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04.5. In the K frame particle 1 of mass mi  strikes a stationary 
particle 2 of mass m2. The charge of each particle is equal to +q. 
Find the minimal distance separating the particles during a head-on 
collision if the kinetic energy of particle 1 is equal to Ti  when it is 
far removed from particle 2. 

Solution.Let us consider this process,both in the K frame and in the C 
frame. 

1. In the K frame the particles move at the moment of the closest 
approach as a single unit with the velocity v, which can be determined 
from the momentum conservation law: 

= (mi 4-  m2) v, 

where pi  is the momentum of the striking particle, pi  -=-1/-  2m1T1.  
On the other hand, it follows from the energy conservation law 

that 
= (mi  m2) v2 /2+ AU, 

where the increment of the system's potential energy A U = keIrmin• 
Eliminating v from these two equations, we get 

rmin  ----- (4217'1)(1+ m1/m2). 

2. The solution is simplest in the C frame: here the total kinetic 
energy of the particles turns entirely into an increment of the poten-
tial energy of the system at the moment of the closest approach: 

T=AU, 

where in accordance with Eq. (4.16) T = 1171/2 = T1m2/(m1  + m2), 
AU = keirmin.From this it is easy to find rmin• 

4.6. A particle of mass m1  and momentum pi  collides elastically 
with a stationary particle of mass m2. Find the momentum pi of the 
first particle after its collision and scattering through the angle 0 
relative to the initial motion direction. 

Solution. From the momentum conservation law we find (Fig. 69) 

	

p22= pi+ 142  — 2pi pi cos 0, 	 (1) 

where p; is the momentum of the second particle after the collision. 
On the other hand, from the energy conservation law it follows 

that Ti  = Ti 	T;, where Ti and T2 are the kinetic energies of the 
first and second particles after the collision. Using the relation T 
= p212m, we can reduce Eq. (1) to the following form: 

= (pl pi2) 

Eliminating p'22  from Eqs. (1) and (2), we obtain 

cos  0 ± Vcos2  0+ (mi/mf —1) 
Pi — P1 	 14- m2Imi 	' 

When m1  < m2, only the plus sign (in front of the radical sign) has 
physical meaning. This follows from the fact that under this condi- 

(2) 
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tion the radical is greater than cos 0 and that pi is the vector's modu-
lus, which cannot be negative. 

But when m1  > m2, both signs haye physical meaning; the solution 
is ambiguous in this case: the momentum of the particle scattered 
through the angle 0 may have one of two values (depending on the 
relative positioning of the particles at the moment of collision). The 
latter case is illustrated by the vector diagram shown in Fig. 63c. 

Fig. 69 
	

Fig. 70 

• 4.7. What fraction ri of its kinetic energy does a particle of mass 
m1  lose when it scatters, after an elastic collision, through the 
threshold angle on a stationary particle of mass m2  (ml  > m2)? 

Solution. Suppose Ti, pi, Ti, and pi are the values of the kinetic 
energy and momentum of the striking particle before and after the 
scattering, respectively; then 

= (T — Ti)1Ti=1-711Ti= 1 — (pi/pi)2 , 	 (1) 

i.e. the problem reduces to the determination of pi/pi. 
Let us make use of the vector diagram of momenta corresponding 

to the threshold angle 0 th,. (Fig. 70). From the right triangle A CO 
it follows that 

Pie  = (P1-73) 2  —7)2  = Pi 2P5 
whence 

(pV pi)2  = 1-- 2PI = 1— 2m21(mi+ m2). 	 (2) 

Substituting Eq. (2) into Eq. (1), we obtain 

= 2m2/(ml + m2). 

the angle 	between them with kinetic energies Ti and T2 respecti- 
vely. In the process the molecule is excited, that is, its internal energy 

molecule of mass m2. After the collision the particles rebound at 
• 4.8. An atom of mass m1 collides inelastically with a stationary 

increases by the definite value Q. Find Q and the threshold kinetic 
energy of the atom enabling the molecule to pass into the given excited 
state. 

Solution. From the energy and momentum conservation laws 
in this process we can write 

14= -F/42+ 2PIP; cos 8, 
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where the primes mark the after-collision values. The second relation 
follows immediately from the momenta triangle according to the 
cosine theorem. Making use of the formula p2  = 2m T, we eliminate Ti  
from these equations and get 

Q= (m2 /mi  —1) 7'+2 17(m2 /m1) TIT; cos 0 
and 

T1 thr= Q (mi+ ins)/ms• 

•4.9.A particle with the momentum ps  (in the K frame) disintegrates 
into two particles with masses ml  and m2. The disintegration 
energy Q turns into kinetic energy. Draw the vector diagram of momenta 
for this process to find all possible momenta pi  and p2  of the generated 
particles. 

Solution. This process appears to be the simplest in the C frame: 
here the disintegrating particle is at rest while the generated particles 

Fig. 71 

move in opposite directions with momenta equal in magnitude 791  = 
= P2 = p. Since the disintegration energy Q turns entirely into the 
total kinetic energy T of the generated particles, 

P=V 201  = 2p,Q, 

where !a is the reduced mass of the generated particles. 
Now let us find the momenta of these particles in the K frame. 

Making use of the velocity transformation formula for the transition 
from the C to the K frame, we can write: 

Pi = mivi  = m1 (Vc +17/) = M1VC + P17 

P2 = M2V2 = M2 (VC + V2) maIrc +Ps 

with pi 	p2  = Po in accordance with the momentum conservation 
law. 

Using these formulae, we can draw the vector diagram of momenta 
(Fig. 71). First, we draw the segment AB equal to the momentum po. 
Then we draw a circle of radius p—  from the point 0 to divide the seg- 
ment AB into two parts in the ratio ml  : m2. This circle is the locus 
of all possible positions of the vertex C of the momenta triangle ABC. 
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• 4.10. A flatcar starts rolling at the moment t = 0 due to the 
permanent force F. Ignoring friction in the axes, find the time de-
pendence of the velocity of the flatcar if 

(1) it is loaded with sand which pours out through a hole in the 
bottom at the constant rate ft kg/s, and the initial mass of the flatcar 
with sand at the moment t = 0 is equal to mo; 

(2) the sand is loaded on it from a stationary hopper at the per-
manent rate [t kg/s, starting from the moment t = 0, when it had 
the mass mo. 

Solution. 1. In this case the reactive force is equal to zero and the 
Meshchersky equation (4.26) takes the form (mo  — p,t) dvIdt = F, 
whence 

dv = F dt/(mo  — ?At). 

Integrating this expression with allowance made for the initial condi-
tions, we get 

v = (F/p) In [mo/(mo 	RM. 

2. In this case the horizontal component of the reactive force 
(which is the only one of interest here) is R = ILL (—v), where v is 
the velocity of the flatcar. That is why the Meshchersky equation 
should be taken in the form (4.28), or 

d (mv) = F dt. 

Integrating this equation with allowance made for the initial condi-
tions, we obtain 

my = Ft, 

where m =- mo 	tit. Hence, 

V = Ft/(no + t). 

Needless to say, the expressions obtained in both cases are valid 
only in the process of unloading (or loading) a flatcar. 

• 4.11. A spaceship of mass mo  moves with the constant velocity 
vo  in the absence of a field of force. To change the direction of motion, 
a reactive engine is started whose jet moves with the constant veloc-
ity u with respect to the spaceship and is directed perpendicular 
to the spaceship's direction of motion. The engine stops when the 
spaceship's mass is equal to m. Find how much the course of the space-
ship changes during the operation of the engine. 

Solution. Let us find the increment of the spaceship's velocity 
vector during the time interval dt. Multiplying both sides of the 
Meshchersky equation (4.26) by dt and taking into account that 
F = 0, we get 

dv = u dmIrn. 

10-0539 
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Here dm < 0. Since the vector u is always perpendicular to the vec-
tor v (the spaceship's velocity), the modulus of the vector v does not 
change and retains its original magnitude: IvI=Ivo l=vo. 
It follows from this that the rotation angle do c of the vector v that 
occurs during the time interval dt is equal to 

dot = I dv Ilvo  = (ulvo) I  dm/m I. 

Integrating this equation, we obtain 

cc -= (u/vo) In (mo/m). 



CHAPTER 5 

THE LAW OF CONSERVATION OF ANGULAR MOMENTUM 

§ 5.1. Angular Momentum of a Particle. 
Moment of Force 

The analysis of the behaviour of systems indicates that 
apart from energy and momentum there is still another 
mechanical quantity also associated with a conservation law, 
the so-called angular momentum*. What is this quantity 
and what are its properties? 

First, let us consider one particle. Suppose r is the radius 
vector describing its position relative to some point 0 of 
a chosen reference frame and p is its momentum in that 
frame. The angular momentum of the particle A relative 
to the point 0 (Fig. 72) is the vector L equal to the vector 
product of the vectors r and p: 

L = [rp]. (5.1) 

It follows from this definition that L is an axial vector. 
Its direction is chosen so that the rotation about the point 0 
toward the vector p and the vector L correspond to a right-
handed screw. The modulus of the vector L is equal to 

L = rp sin a = 1p, 	 (5.2) 

where a is the angle between r and p, and 1 = r sin a is the 
arm of the vector p relative to the point 0 (Fig. 72). 

The equation of moments. Let us determine what mechan-
ical quantity is responsible for the variation of the vector 
L in a given reference frame. For this purpose we differen-
tiate Eq. (5.1) with respect to time: 

dLIdt = [drldt, pl 	[r, dpl dt]. 

Since the point 0 is stationary, the vector dr/dt is equal to 
the velocity v of the particle, i.e. coincides in its direction 
with the vector p; therefore 

[drldt, p] = 0. 

* The following names are also used: moment of momentum, mo-
ment of quantity of motion, rotational moment, or simply moment. 
10* 
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Next, in accordance with Newton's second law dp/dt = F, 
where F is the resultant of all the forces applied to the 
particle. Consequently, 

dLIdt = [rFl. 

The quantity on the right-hand side of this equation is 
referred to as the moment of force, or torque, of F relative 

Li 
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Fig. 72 	 Fig. 73 

to the point 0 (Fig. 73). Denoting it by the letter M, we 
write 

M 	 (5.3) 

The vector M, like the vector L, is axial. Similarly to (5.2) 
the modulus of this vector is equal to 

M = 1F, 	 (5.4) 

where 1 is the arm of the vector F relative to the point 0 
(Fig. 73). 

Thus, the time derivative of the angular momentum L 
of the particle relative to some point 0 of the chosen reference 
frame is equal to the moment M of the resultant force F 
relative to the same point 0: 

dLiclt =M. 	 (5.5) 

This equation is referred to as the equation of moments. 
Note that in the case of a noninertial reference frame the 
moment of the force M includes both the moment of the 
interaction forces and the moment of inertial forces (relative 
to the same point 0). 

Among other things, from the equation of moments (5.5) 
it follows that if M = 0, then L = const. In other words, 
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if the moment of all the forces acting on a particle relative 
to a certain point 0 of a chosen reference frame is equal to 
zero during the time interval of interest to us, the angular 
momentum of the particle relative to this point remains 
constant during that time. 

Example 1. A planet A moves in the gravitational field of the 
Sun S (Fig. 74). Find the point in the heliocentric reference frame 
relative to which the angular momentum of that planet does not 
change in the course of time. 

First of all, let us define what forces act on the planet A. In the 
given case it is only the gravitational force F of the Sun. Since during 
the motion of the planet the direction of this force passes through 

F 

S 

Fig. 74 

the centre of the Sun, that point is the one relative to which the mo-
ment of the force is equal to zeroa nd the angular momentum of the 
planet remains constant. The momentum p of the planet changes 
in the process. 

Example 2. A disc A moving on a smooth horizontal plane rebounds 
elastically from a smooth vertical wall (Fig. 75, top view). Find the 
point relative to which the angular momentum of the disc remains 
constant in this process. 

The disc experiences gravity, the force of reaction of the horizontal 
surface, and the force R of reaction of the wall at the moment of the 
impact against it. The first two forces counterbalance each other, 
leaving only the force R. Its moment relative to any point of the 
line along which the vector R acts is equal to zero, and therefore 
the angular momentum of the disc relative to any of these points 
does not change in the given process. 

Example 3. On a horizontal smooth plane there are a motionless 
vertical cylinder and a disc A connected to the cylinder by a thread AB 
(Fig. 76, top view). The disc is set in motion with the initial velocity v 
as shown in the figure. Is there any point here relative to which the 
angular momentum of the disc is invariable in the process of motion? 
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The only uncompensated force acting on the disc A in this case 
is the tension F of the thread. It is easy to see that there is no point 
here relative to which the moment of the force F is invariable in 
the process of motion. Therefore, there is no point relative to which 

the angular momentum of the 
disc would vary. 

This example illustrates that 
sometimes a point relative to which 
the angular momentum of a particle 
is constant cannot be found at all. 

The equation of momenta 
Fig. 76 	 (5.5) makes it possible to solve 

the following two problems: 
(1) find the force moment M relative to a certain point 0 

at any moment of time t if the time dependence of the 
angular momentum L (t) of a particle relative to the same 
point is known; 

(2) determine the increment of the angular momentum of 
a particle relative to a point 0 at any moment of time if 
the time dependence of the force moment M (t) acting on 
this particle (relative to the same point) is known. 

The solution of the first problem reduces to the calcula-
tion of the time derivative of the angular momentum, that 
is, dLldt, which is equal, in accordance with Eq. (5.5), 
to the sought force moment M. 

The second problem is solved by integrating Eq. (5.5). 
Multiplying both sides of this equation by dt, we obtain 
the expression dL = M dt determining the increment of the 
vector L. Integrating this expression with respect to time, 
we get the increment of the vector L over the finite time 
interval t: 

L, —L1= M dt. 	 (5.6) 

The quantity on the right-hand side of this equation is 
referred to as the momentum of the force moment, or the 
torque momentum. Thus, the increment of the angular mo-
mentum of a particle during any time interval is equal to 
the momentum of the force moment during the same time. 

Let us consider two examples, 
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Example 1. The angular momentum of a particle relative to a cer-
tain point varies in the course of time t as L (t) = a + bt2, where 
a and b are certain constant vectors, with a J b. Find the force mo-
ment M acting on the particle when the angle between the vectors M 
and L is equal to 45°. 

In accordance with Eq. (5.5) M = dLIdt = 2bt, i.e. the vector M 
coincides in its direction with the vector b. Let:us depict the vectors M 

a 

 

Fig. 78 

and L at some moment t (Fig. 77). It is seen from the figure that the 
angle a = 45° at the moment to, when a = btS. Hence, to  = Valb 
and M = 2 all?  b. 

Example 2. A stone A of mass m is thrown at an angle to the 
horizontal with the initial velocity vo. Ignoring the air drag, find 
the time dependence L (t) of the angular momentum of the stone rela-
tive to the point 0 from which the stone was thrown (Fig. 78). 

During the time interval dt the angular momentum of the stone 
relative to the point 0 increases by dL = M dt = [r, mg] dt. Since 
r = vot gt2i2 (see p. 17), dL = [vo, mg] t dt. Integrating this 
expression with allowance made for the initial condition (L (0) = 0 
at t = 0), we get L (t) = [vo, mg] 12/2. It is seen from this that the 
direction of the vector L remains constant in the process of motion 
(the vector L is directed beyond the plane of Fig. 78). 

The angular momentum and the force moment relative 
to an axis. Let us choose an arbitrary motionless -axis z 
in a given reference frame. Suppose the angular momentum 
of the particle A relative to a certain point 0 of the z axis 
is equal to L and the force moment acting on the particle 
is equal to M. 

The angular momentum relative to the z axis is the pro-
jection of the vector L, defined with respect to an arbitrary 
point 0 of the given axis, on that axis (Fig. 79). The con- 
cept of a force moment relative to an axis is introduced in 
a similar fashion. They are denoted by L, and M, re- 
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spectively. We shall see later that L, and M, do not depend 
on the choice of the point 0 on the z axis. 

Let us examine the properties of these quantities. Pro-
jecting Eq. (5.5) on the z axis, we obtain 

dL,Idt = M 	 (5.7) 

i.e. the time derivative of the angular momentum of the 
particle relative to the z axis is equal to the force moment 

Fig. 79 

relative to the same axis. In particular, if M Z  = 0, then 
L z  = const. In other words, when the force moment relative 
to a fixed axis z is equal to zero, the angular momentum 
of the particle relative to that axis remains constant. The 
vector L can, however, vary in the process. 

Example. A small body of mass m suspended on a thread moves 
uniformly along a horizontal circle (Fig. 80) due to gravity mg and 
the tension T of the thread. The angular momentum of< the body 
relative to the point 0, the vector L, is located in the same plane 
as the z axis and the thread. .During the motion of the body the vector 
L rotates continuously under the action of the moment M of gravity, 
i.e. it varies. As for the projection Lz, it remains constant since the 
vector M is perpendicularite:theY„z axis and M, = 0. 

Now let us find analytical expressions for L, and M. 
It is easy to see that this problem reduces to the determina-
tion of the projections of the vector products Erpl and IrF1 
on the z axis. 

We shall make use of the cylindrical coordinate system 
p, tp, z, fixing the unit vectors ep, ev, ez, oriented in the 
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direction of increasing coordinates, to the particle A (Fig. 81). 
In this coordinate system the radius vector r and momentum 
p of the particle are written in the form 

r = pep + ze, p= ppep  New  p,e,, 

where p p, Ai), p, are the projections of the vector p on the 
corresponding unit vectors. It is known from vector algebra 

Fig. 80 Fig. 81 

that the vector product [rp] can be represented via the 
following determinant: 

ep  e, ez  

L= [rp] = p 0 

Pp Pup Pz 

From this it is immediately seen that the angular momentum 
of the particle relative to the z axis is 

L z = Nig), 	 (5.8) 

where p is the distance of the particle from the z axis. Let 
us reduce this expression to a form more suitable for prac-
tical applications. Taking into account that p, = mv,, = 
= moo),, we get 

L, = mp2co,, 	 (5.9) 

where co, is the projection of the angular velocity co with 
which the radius vector of the particle rotates. 
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The force moment relative to the z axis is written similarly 
to Eq. (5.8): 

	

M, = pF,), 	 (5.10) 

where F, is the projection of the force vector F on the unit 
vector eq,. 

Note that the projections L, and M , are indeed indepen-
dent of the choice of the point 0 on the z axis, relative to 
which the vectors L and M are defined. Besides, it is seen 
that L, and /If, are algebraic quantities, their 'signs corre-
sponding to those of the projections pr  and Fr. 

§ 5.2. The Law of Conservation 
of Angular Momentum 

Let us choose an arbitrary system of particles and intro-
duce the notion of the angular momentum of that system 
as the vector sum of angular momenta of its individual 
particles: 

	

L = E Li , 	 (5.11) 

where all vectors are determined relative to the same point 0 
of a given reference frame. Note that the angular momentum 
of the system is an additive quantity: the angular momentum 
of a system is equal to the sum of the angular momenta of 
its individual parts, irrespective of whether they interact 
or not. 

Let us clarify what quantity defines the change of the 
angular momentum of the system. For this purpose we 
differentiate Eq. (5.11) with respect to time: dlidt 

dLi /dt. In the previous section it was shown that the 
derivative dLi/dt is equal to the moment of all forces acting 
on the ith particle. We represent this moment as the sum of 
the moments of internal and external forces, i.e. Mi + Mi. 
Then 

dLIdt = E Mi ±E M. 

Here the first sum is the total moment of all internal forces 
relative to the point 0 and the second sum is the total moment 
of all external forces relative to the same point, 
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Let us demonstrate that the total moment of all internal 
forces relative to any point is equal to zero. Indeed, the 
internal forces are the forces of interaction between the 
particles of the given system. In accordance with Newton's 
third law these forces are pairwise equal in magnitude, are 
opposite in direction and lie on the same straight line, that 
is, have the same arm. Consequently, the force moments of 
each pair of interaction are equal in magnitude and opposite 
in direction, i.e. they counterbalance each other, and hence 
the total moment of all internal forces always equals zero. 

As a result, the last equation takes the form 

dLIdt (5.12) 

where M is the total moment of all external forces, M = 
E mi. 

Eq. (5.12) thus asserts that the time derivative of the angular 
momentum of a system is equal to the total moment of all exter-
nal forces. It is understood that both quantities, L and M, 
are determined relative to the same point 0 of a given refer-
ence frame. 

As in the case of a single particle, from Eq. (5.12) it 
follows that the increment of the angular momentum of a 
system during the finite time interval t is 

L2 - L1= M dt, (5.13) 

i.e. the increment of the angular momentum of a system is 
equal to the momentum of the total moment of all external 
forces during the corresponding time interval. Of course, 
the two quantities, L and M, are also determined here rela-
tive to the same point 0 of a chosen reference frame. 

Eqs. (5.12) and (5.13) are valid both in inertial and non-
inertial reference frames. However, in a non-inertial refer-
ence frame one has to take into account the inertial forces 
acting as external forces, i.e. in these equations M should 
be regarded as the sum Mia + Min , where Mia  is the total 
moment of all external forces of interaction and Min, is the 
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total moment of inertial forces (relative to the same point 0 
of the reference frame). 

Thus, we have reached the following significant con-
clusion: in accordance with Eq. (5.12) the angular momentum 
of a system can change only due to the total moment of all 
external forces. From this immediately follows another im-
portant conclusion, the law of conservation of angular 
momentum: 

in an inertial reference frame the angular momentum of 
a closed system of particles remains constant, i.e. does not 
change with time. This statement is valid for an angular 
momentum determined relative to any point of the inertial 
reference frame. 

Thus, in an inertial reference frame the angular momen-
tum of a closed system of particles is 

L = E Li  (t) = const. (5.14) 

At the same time the angular momenta of individual parts 
or particles of a closed system can vary with time, a fact 
emphasized in the last expression. These variations, how-
ever, occur in such a way that the increment of the angular 
momentum in one part of the system is equal to the angular 
momentum decrease in another part (of course, relative to 
the same point of the reference frame). 

In this respect Eqs. (5.12) and (5.13) can be regarded as 
a more general formulation of the angular momentum con-
servation law, a formulation specifying the cause of varia-
tion of the angular momentum of a system, which is the 
influence of other bodies (via the moment of external forces 
of interaction). All this, of course, is valid only in inertial 
reference frames. 

Once again we shall point out the following: the law of 
conservation of angular momentum is valid only in inertial 
reference frames. This, however, does not rule out cases 
when the angular momentum of a system remains constant 
in non-inertial reference frames as well. For this, it is 
sufficient that, in accordance with Eq. (5.12), which holds 
true also in non-inertial reference frames, the total moment 
of all external forces (including inertial forces) be equal to 
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zero. Such circumstances are realized very seldom, and the 
corresponding cases are exceptional. 

The law of conservation of angular momentum is just 
as important as the energy and momentum conservation 
laws. In many cases this law by itself enables us to draw 
important inferences about the essential aspects of particular 
processes without going into their detailed analysis. We shall 
illustrate this by the following example. 

Example. Two identical spheres are mounted on a smooth horizon-
tal bar along which they can slide (Fig. 82). Initially the spheres are 
brought together and connected by a thread. Then the whole assembly 

a Fig. 82 

is set into rotation about a vertical axis. After a period of free rota-
tion, the thread is burned up. Naturally, the spheres fly apart toward 
the ends of the bar. At the same time, the angular velocity of the 
assembly drops drastically. 

The observed phenomenon is a direct consequence of the law of 
conservation of angular momentum, for this assembly behaves as 
a closed system (the external forces counterbalance one another and 
the friction forces in the axis are small). To assess quantitatively the 
angular velocity change, let us assume the mass of the whole assembly 
to be concentrated in the spheres and their size to be negligible. 
Then, from the equality of the angular momenta of the spheres relative 
to the point C in the initial and final states of the system 2m [rivi] =-- 
= 2m [r2v2] it follows that 

,2rn 	26) 
' 	' r 2 2° 

It is seen that as the distance r from the spheres to the rotation axis 
grows, the angular momentum of the assembly decreases (as 1/r2). 
And vice versa, if the distance between the spheres decreases (due 
to some internal forces), the angular velocity of the assembly increases. 
This general phenomenon is widely used by, for example, figure 
skaters and gymnasts. 

Note that the final result is quite independent of the nature of 
internal forces (here the friction forces between the spheres and the 
bar). 
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Of special interest are cases in which the angular momen-
tum L remains constant in non-closed systems in which the 
momentum p is known to change with time. If the total 
moment of external forces relative to a point 0 of the chosen 
reference frame M = 0 during the time interval considered, 
then in accordance with Eq. (5.12) the angular momentum 
of the system relative to the point 0 remains constant during 
this time interval. Generally speaking, such a point may 
not exist in non-closed systems, so that the fact of its exis-
tence should be established in every concrete case. 

Example 1. The Earth-Moon system moving in the gravitational 
field of the Sun is non-closed. Its momentum continuously varies 
due to gravitational forces. However, there is one point here relative 
to which the moment of the gravitational forces acting on this system 
is always equal to zero. This point is the centre of the Sun. Therefore, 

it can be immediately claimed 
that the angular momentum of the 
Earth-Moon system relative to the 
Sun's centre remains constant. 

Example 2. A rod OB lying on 
a smooth horizontal plane can 
rotate freely about a stationary:ver-
tical axis passing through the rod's 
end 0 (Fig. 83). A disc A moving 
along the plane hits the rod's end B 
and gets stuck there, whereupon 
the whole system starts rotating 

Fig. 83 	 as a single unit about the point 0. 
It is clear that the disc and the 

rod compose a non-closed system: 
apart from the forces counterbalancing each other in the vertical 
direction, a horizontal force exerted by the axis is generated during 
the impact, while during the rotation the axis exerts a force impelling 
the centre of inertia of the system to move along the circle. But both 
of these forces pass through the point 0, and therefore the moment 
of these external forces is always equal to zero (relative to the point 0). 
Hence, the following conclusion can be drawn: the angular momentum 
of this system remains constant relative to the point 0. 

Infrequently in non-closed systems it is not the angular 
momentum L itself that remains constant, but its projec- 
tion on a stationary axis z. This happens when the projec- 
tion of the total moment M of all external forces on that 
axis z is equal to zero. In fact, projecting Eq. (5.12) on 
the z axis, we obtain 

dL zIdt = M 5 . 	 (5.15) 
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Here L , and M , are the angular momentum and the total 
moment of external forces relative to the z axis: 

L5=yLiz, 34- z = miz, 	 (5.16) 

where Li , and Mi  z  are the angular momentum and the mo-
ment of external forces relative to the z axis for the ith 
particle of the system. 

It follows from Eq. (5.15) that if M, = 0 relative to some 
stationary axis z in a given reference frame, the angular 
momentum of the system relative to that axis does not 
change: 

Lz =ELiz (t)= const. 	 (5.17) 

At the same time the vector L, defined relative to an arbit-
rary point 0 on that axis, may vary. For example, when 
a system moves in a uniform gravitational field, the total 
moment of all gravitational forces relative to any stationary 
point 0 is perpendicular to the vertical, and therefore 
M z  = 0 and L = const relative to any vertical axis. This 
cannot be said about the vector L itself. 

The reasoning leading to the law of conservation of angu-
lar momentum is based entirely on the validity of Newton's 
laws. But what about systems that do not obey those laws, 
e.g. the systems with electromagnetic radiation, atoms, 
nuclei, etc.? 

Because of the immense role that the law of conservation 
of angular momentum plays in mechanics, the concept 
of angular momentum is extended in physics to non-mechan-
ical systems (which do not obey Newton's law) and the law 
of conservation of angular momentum is postulated for all 
physical processes. 

The law of conservation of angular momentum thus extended 
is no longer a consequence of Newton's laws; it represents 
an independent general principle generalized from experimental 
facts. Together with the energy and momentum conserva-
tion laws the law of conservation of angular momentum is 
one of the most important, fundamental laws of nature. 
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§ 5.3. Internal Angular Momentum 

It was established in the foregoing section that the angular 
momentum L of a system changes only due to the total 
moment M of all external forces; it is the vector M that 
defines the behaviour of the vector L. Now we shall examine 
the most essential properties of these quantities together 

with the significant conclusions fol-
lowing from those properties. 

The total moment of external 
forces. Just as the moment of an in-
dividual force, the total moment of 
forces depends, generally speaking, 
on the choice of a point relative to 
which the moment is determined. 
Let M be the total moment of 
forces relative to the point 0 and M' 
relative to the point 0' whose ra-
dius vector is equal to 1.0  (Fig. 84). 

Let us find the relationship between M and M'. 
The radius vectors r, and ri of the point at which the force 

Fi  is applied are related as r, = rj + 1.0  (Fig. 84). Conse-
quently, M may be written in the following form: 

M = E [ri  Fi] = E [riFi] E [roFi] 
Or 

M=M'd- 	 (5.18) 

where F = 	Fi  is the resultant of all external forces. 
Eq. (5.18) shows that when F = 0, the total moment of 

external forces does not depend on the choice of the point 
relative to which it is determined. In particular, such is 
the case when a couple acts on a system. 

In this respect the C frame possesses one interesting and 
important characteristic (recall that this reference frame 
is rigidly fixed to the centre of inertia of a system of particles 
and translates with respect to inertial frames). Since in 
the general case the C frame is non-inertial, the resultant of 
all external forces must include not only the external forces 
of interaction Fia  but also the inertial forces Fin. On the 
other hand, the system of particles as a whole is at rest in 



The Law of Conservation of Angular Momentum 	 161 

the C frame, and therefore in accordance with Eq. (4.14) 
F = Fia  +Fin  = 0. Taking into account Eq. (5.18), we 
reach the following significant conclusion: in the C frame 
the total moment of all external forces, including inertial 
forces, does not depend on the choice of the point 0. 

And here is another important conclusion: in the C frame 
the total moment of inertial forces relative to the centre of 
inertia is always equal to zero: 

(5.19) = o. 

Indeed, the inertial force acting on each particle of the 
system Fi  = —miwo, where w0  is the acceleration of the 
C frame. Consequently, the total moment of all these forces 
relative to the centre of inertia C is 

= E [r1, — miwol = — [(1 miri), wol• 

In accordance with Eq. (4.8) E miri  = mrc, and as in 
our case rc  = 0, then Micn  = 0. 

Internal angular momentum. Generally speaking, angu-
lar momentum, just as the force moment, depends on the 
choice of the point 0 relative to which it is determined. 
When that point is transferred by the distance r0  (Fig. 84), 
the new radius vectors rl of the particles are related to the 
old ones ri  by means of the formula ri  = ri r0. Con-
sequently, the angular momentum of the system relative 
to the point 0 can be written as follows: 

	

L = L friPil = E 	E froPi], 
or 

	

L = L' 	[rop], 	 (5.20) 

where L' is the angular momentum of the system relative 
to the point 0', and p = 	pi  is the total momentum of 
the system. 

From Eq. (5.20) it follows that if the total momentum of 
the system p = 0, then its angular momentum does not 
depend on the choice of the point 0. This distinguishes the 
C frame, in which the system of particles as a whole is at 
rest. Hence, we reach the third important conclusion: in the 
C frame the angular momentum of a system of particles is 

11-0529 
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independent of the choice of the point relative to which it is 
determined. We shall refer to this quantity as the internal 
angular momentum of a system and denote it by L. 

Relation between L and I. Suppose L is the angular mo-
mentum of a system of particles relative to the point 0 
of the K reference frame. Since the internal angular momen- 
tum L in the C frame does not depend on the choice of the 
point 0', this point may be taken coincident with the point 
0 of the K frame at a given moment of time. Then at that 
moment the radius vectors of all the particles in both refer-
ence frames are equal (r1 = ri ) and the velocities are related 
by the formula 

vi  —vi + Vc, 	 (5.21) 
where V c  is the velocity of the C frame relative to the K 
frame. Consequently, we may write 

L = E m, [r ivi] = E m, [r ivi ] E m, [r ivd. (5.22) 
The first sum on the right-hand side of this equality is the 
internal angular momentum M. The second sum may be 
written in accordance with Eq. (4.8) as m [rcVc1, or [rcp], 
where m is the mass of the whole system, r c  is the radius 
vector of its centre of inertia in the K frame and p is the 
total momentum of the system. Finally, we obtain 

L=L + frab i (5.23) 

i.e. the angular momentum L of a system of particles comprises 
its internal angular momentum L and the momentum [rc pt, 
associated with the motion of the system of particles as a single 
unit. 

Let us consider, for example, a uniform sphere rolling 
down an inclined plane. Its angular momentum relative to 
some point of that plane is composed of the angular momen-
tum associated with the motion of the centre of inertia of 
the sphere and the internal angular momentum associated 
with the rotation of the sphere about its axis. 

Specifically, it follows from Eq. (5.23) that if the centre 
of inertia of a system is at rest (the momentum of the system 
p = 0), then its angular momentum L represents the inter- 
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nal angular momentum. We are already familiar with that 
case. In another extreme case, when L = 0, the angular 
momentum of a system relative to some point is determined 
only via the momentum associated with the motion of the 
system as a single unit, i.e. by the second term of Eq. (5.23). 
This is how, for example, the angular momentum of any 
solid behaves during its translation. 

Equation of moments in the C frame. We pointed out 
in the previous section that Eq. (5.12) holds true in any 
reference frame. Consequently, it is valid in the C frame as 
well, and we can immediately write: dLldt = M, where M 
is the total moment of external forces in the C frame. 

Since the C frame is non-inertial in the general case, M 
includes not only the moments of external forces of interac-
tion, but also the moment' of inertial forces. On the other 
hand, at the beginning of this section (see p. 161) the force 
moment M in the C frame was shown to be independent of 
the choice of the point relative to which it is determined. 
Usually, the point C, the centre of inertia of the system, is 
taken as such a point. The choice of this point is advantageous 
because the total moment of inertial forces relative to it 
is equal to zero, so that one must take into account only 
the total moment M c  of external forces of interaction. 
Thus, 

	

dildt =Mc, I 	(5.24) 

i.e. the time derivative of the internal angular momentum 
of a system is equal to the total moment of all external forces 
of interaction relative to the centre of inertia of that system. 

In particular, when M c 	0, then L = const, i.e. the 
internal angular momentum of a system does not vary. 

When written in projections on the z axis passing through 
the centre of inertia of a system, Eq. (5.24) takes the form 

	

= Mcz 	 (5.25) 
where M c, is the total moment of external forces of inter-
action relative to the z axis fixed in the C frame and passing 
through the centre of inertia. Here again, if Mcz = 0, 
then Z, = const. 

11* 
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§ 5.4. Dynamics of a Solid 

In the generalcase the motion of a solid is defined by two 
vector equations. One of them is the equation of motion of 
the centre of inertia (4.11), and the other the equation relat-
ing momenta and moments in the C frame, Eq. (5.24): 

m dVddt =F; ciL/dt = Mc. 	(5.26) 

If the laws of acting external forces, the points of their 
application and the initial conditions are known, these 
equations provide the velocity and the position of each 
point of a solid at any moment of time, i.e. make it pos-
sible to solve the problem of motion of a solid completely. 
However, despite the apparent simple form of Eqs. (5.26), 
their solution in the general case is far from easy. First of 
all this is because the relationship between the internal 
angular momentum L and the velocities of individual points 
of a solid in the C frame turns out to be complicated, except 
for a few special cases. We shall not consider this problem 
in the general case (it is solved in the general theory) and 
shall limit ourselves hereafter to only several special cases. 

But first we shall quote some considerations which follow 
directly from the very appearance of Eqs. (5.26). Clearly, 
translation of forces along the direction of their action does 
not affect either the resultant F or the total moment M c . 
Eqs. (5.26) do not vary either, and therefore the motion of 
a solid remains the same. Consequently, the points of 
application of external forces can be transferred along the 
direction of their action, a technique used very extensively. 

Equivalent force. In those cases when the total moment of 
all external forces turns out to be perpendicular to the resul-
tant force, i.e. M L F, all external forces may be reduced 
to one force F acting along a certain straight line. In fact, 
if the total moment relative to some point 0 M L  F, then 
we can always find a vector r, L  M (Fig. 85), such that 
with the given M and F 

M = fron. 

Here the choice of r0  is not unambiguous: adding any vector 
r parallel to F, we do not violate the last equality. This 
means that this equality defines not a point of "application" 
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of the force F, but a line along which it acts. Knowing the 
moduli M and F of the corresponding vectors, we can find 
the arm 1 of the force F (Fig. 85): 1= M/F. 

Thus, if M j_ F, then the system of forces acting on various 
points of a solid may be replaced by one equivalent force 
which is equal to the resultant force F and produces a moment 
equal to the total moment M 
of all external forces. 

A uniform field of force, e.g. 
the gravitational field, can 
serve as an example. In such a 
field each particle experiences 
the force Fi  = mig. In this 
case the total moment of grav-
itational forces relative to 
any point 0 is equal to 

M=1 [ri, m ig] = 	mir i) gl. 

In accordance with Eq. (4.8) 
the sum in parentheses is equal 
to mrc, where m is the mass of a body and r c  is the radius 
vector of its centre of inertia relative to the point 0. There- 
fore, 	

M = [mr c, g] = [r c, mg]. 

This implies that the equivalent force mg of the gravitational 
forces passes through the centre of inertia of the body. It is 
customary to say that the equivalent force of gravity is 
"applied" to the centre of inertia of a body, or to its centre 
of gravity. Clearly, the moment of this force relative to the 
centre of inertia of a body is equal to zero. 

Now we shall move on to an examination of the four 
specific cases of motion of a solid: (1) rotation about a sta-
tionary axis, (2) plane (two-dimensional) motion, (3) rota-
tion about free axes, (4) the special case of motion when a 
body has only one motionless point (gyroscopes). 

1. Rotation about a stationary axis. First let us find the 
expression for the angular momentum of a solid body relative 
to the rotation axis 00' (Fig. 86). Making use of Eq. (5.9), 
we write 

L, = E Liz (E mi0) (oz, 
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where m i  and p, are the mass of the ith particle of a solid 
and its distance from the rotation axis, and co , is its angular 
velocity. Denoting the quantity in parentheses by I, we get 

L,  = icoz, (5.27) 

  

where I is the so-called moment of inertia of a solid relative 
to the 00' axis: 

= mi pl. (5.28) 

It is easy to see that the moment of inertia of a solid depends 
on the distribution of masses relative to the axis in question, 

and is an additive quantity. nil 
The moment of inertia of a 

body is calculated by means of 
the following formula: 

I= r2  dm = pr2  dV , 

where dm and dV are the mass 
and the volume of an element of 
the body located at the distance 
r from the z axis chosen, and p 
is the density`/of the 'body at a 
given point. 

The 'moments of inertia of 
some uniformT solids relative 

to the z c  axis passing through their centres of inertia are 
listed in the following table (here m is the mass of the body) 

,Solid body zc  axis Moment of inertia 
rc 

A thin rod of 
length 1 

A uniform cylinder 
of radius R 

A thin disc of 
radius R 

A sphere of radius R 

Is perpendicular to 
the rod 

Coincides with the axis 
of the cylinder 

Coincides with the 
diameter of the disc 

Passes through the 
centre of the sphere 

—
1 

ml 2  
12 
1 
—
2 

mR2  

—
4 

mR2  

2 
— 

mR2 
5 
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In terms of mathematics the calculation of the moment of 
inertia of a solid body of an arbitrary shape relative to one 
or another axis presents, generally speaking, a painstaking 
task. In certain cases, however, the moment of inertia can 
be calculated much more easily if one resorts to the Steiner 
theorem: the moment of inertia I relative to an arbitrary z 
axis is equal to the moment of inertia / c  relative to the zc  
axis which is parallel to the z axis and passes through the 
centre of inertia C of the body, plus the product of the mass 
m of the body by the square of the distance a between the 
axes: 

/ = /c  ma2. (5.29) 

The theorem is proved in Appendix 3. 
Thus, when the moment of inertia / c  is known, the 

moment of inertia I is calculated with no effort. For example, 
the moment of inertia of a thin rod (of mass m and length 1) 
relative to an axis perpendicular to the rod and passing 
through its end is equal to 

1 / = —12 m/2  m ( 2  —1  ) 2  = 3 m/2. 

The fundamental equation of rotation dynamics of a solid 
body (stationary axis of rotation). This equation can be 
easily obtained as a consequence of Eq. (5.15) by differen-
tiating Eq. (5.27) with respect to time. Then 

(5.30) -1-13z = mz, 

where 111- , is the total moment of all external forces relative 
to the rotation axis. Specifically, from this equation the 
moment of inertia I is seen to determine the inertial prop-
erties of a solid body during its rotation: the same moment 
of forces M Z  induces a smaller angular acceleration 13, 
in bodies possessing greater moments of inertia. 

Recall that force moments relative to an axis are algebraic 
quantities: their signs depend on both the choice of the 
positive direction of the z axis (coinciding with the rotation 
axis) and the "rotation" direction of the corresponding force 
moment. For example, choosing the positive direction of the 
z axis as shown in Fig. 87, we thereby specify the positive 
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direction of reading the angle cp (both of these directions 
are associated with the right-hand screw rule). Next, if a 
certain moment Mi  z  "rotates" a body in the positive direc-
tion of the angle cp, that moment is regarded as positive, 
and vice versa. In its turn, the sign of the total moment M5  
determines the sign of 13,, the projection of the angular 
acceleration vector on the z axis. 

By integrating Eq. (5.30) with allowance made for the 
initial conditions, the values a)" and yo  at the initial mo-

ment of time, we can obtain a compre- 
z  hensive solution of the problem of a sol-

id body rotating about, a stationary 
axis, i.e. obtain the time dependence of 

co 

	

	the angular velocity co Z  (t) and the rota- 
tion angle cp (t). 

Fig. 87 	
Note that Eq. (5.30) is valid in any 

reference frame fixed rigidly to the rota- 
tion axis. However, if the reference frame 

is non-inertial, it shouldrbe borne in mind that the force 
moment M z  consists not only of moments of forces of inter-
action with other bodies, but also moments of inertial 
forces. 

Kinetic energy of a rotating solid body (stationary axis 
of rotation). Since the velocity of the ith particle of a ro-
tating solid body is vi  = pica, we may write 

T = E milli/2 = (E 	0)2/2 
or briefly, 

  

 

T =I(o212, (5.31) 

where I is the moment of inertia of the body relative to the 
rotation axis and ca is its angular velocity. 

Example. Disc 1 (Fig. 88) rotates about a smooth vertical axis 
with the angular velocity o.),. Disc 2 rotating with the angular veloc-
ity o.)2  falls on disc 1. Due to friction between them the discs soon 
start rotating as a single unit. Find the increment of the rotational 
kinetic energy of that system provided that the moments of inertia 
of the discs relative to the rotation axis are equal to 1-1  and 12  respec-
tively. 

First let, us find the steady-state angular velocity of rotation. 
From the law .of conservation of the -angular momentum of a system 
relative to the z axis it follows that /1(012  + /26)22  = (/). + /2) co2, 
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whence 
0)z =(Iiwiz+ .120)2z)/ (Ii +12). 

	 (1) 

Note that co,z, (o2, and (oz  are algebraic quantities. If coz  > 0, the 
corresponding vector co coincides with the positive ,  direction of the z 
axis, and vice versa. 

The increment of the kinetic energy of 
rotation for this system is 

AT = (It  -1- / 2) (o2/2 — (1.191,/2 /204z/2). 

Replacing coz  by its expression (1), we get 

1/ 
AT — 	

12 	
(0)1z — wszr. 	(2) 

2 (//+ /2) 

   

1■1111111111111111 
oiioiiui 	111111111111 

IIIII 

   

The minus sign shows that the kinetic ener- 
gy of the system decreases. 

	 Fig. 88 

Note that the results (1) and (2) are quite similar in form and 
meaning to the case of absobitely inelastic collision (see p. 127). 

The work performed by external forces during the rota-
tion of a solid body about a stationary axis. In accordance 
with the law of variation of mechanical energy of a system 
the elementary work of all external forces acting on a solid 
body is equal only to the increment of kinetic energy of the 
body, as its internal potential energy remains constant, i.e. 
SA = dT . Making use of Eq. (5.31), we may write SA = 
= d (/w2/2). Since the z axis coincides with the rotation 
axis, w2  = co! and 

SA = Ico z  dco z. 

But in accordance with Eq. (5.30), /dw z  = M z  dt. Sub-
stituting this expression into the last equation for SA 
and taking into account that w z  dt = dcp, we obtain 

SA = M dw. (5.32) 

The work SA is an algebraic quantity: if M z  and dy) have 
identical signs, then SA > 0; if the signs are opposite, then 
(SA < 0. 

The work performed by external forces during the rotation 
of a solid through an angle cp is equal to 

A= M 

0 

(5.33) 
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When /1/, = const, the last expression takes a simple form: 
A = 111,T. 

Thus, the work performed by external forces during the 
rotation of a solid around a stationary axis is determined by 
the action of the moment 114 of these forces relative to that 
axis. If the forces are such that their moment M Z  = 0, 
then they perform no work. 

2. Plane motion of a solid body (see p. 26). During plane 
motion the centre of inertia C of a solid body moves in a 
certain plane stationary in a given reference frame K while 
the angular velocity vector o of the body remains perma-
nently perpendicular to that plane. This signifies that the 
body in the C frame performs a purely rotational motion 
about the stationary (in that frame) axis passing through 
the centre of inertia of the body. At the same time, the 
rotation of a solid is defined by Eq. (5.30), which was shown 
to be valid in any reference frame. 

Thus, we have the following two equations describing 
plane motion of a solid body: 

mwc  = F; Ic13, = Mcz, 	 (5.34) 

where m is the mass of the body, F is the resultant of all 
external forces, / c  and M c, are the moment of inertia and 
the total moment of all external forces, both moments being 
determined relative to the axis passing through the centre 
of inertia of the body. 

It should be borne in mind that the moment M c, includes 
only external forces of interaction in spite of the fact that 
in the general case the C frame is non-inertial. This is because 
the total moment of inertial forces is equal to zero both 
relative to the centre of inertia and relative to any axis 
passing through that point. Therefore it can be disregarded 
altogether (see p. 163). 

Note also that the angular acceleration 13,, as well as co , 
and cp, are equal in both reference frames since the C frame 
translates relative to the inertial reference frame K. 

Integrating Eqs. (5.34) with allowance made for the ini-
tial conditions, we can find the relationships r c  (t) and 
cp (t) defining the position of a solid body at any moment t. 

When finding the motion of a non-free solid body one has 
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to use still another, additional condition specifying the 
restrictions that existing bonds impose on the motion. This 
condition provides a kinematic relationship between the 
linear and angular accelerations. 

Example. A uniform cylinder of mass m and radius r rolls without 
slipping down an inclined plane forming the angle a with the hori-
zontal (Fig. 89). Find the motion 
equation of the cylinder. 

The standard "approach to the 
solution of problems of this type 99  

all, 	
in-the following. First of 

 one should identify the forces 
acting on'a given body and the 
points of their application (in this 
case the acting forces include mg, 
gravity, R, tthe normal component 
of the force Hof reaction of the in-
clined plane and Fir, the static Inc 
tion force). ;Then it is necessary to 
choose the positive directions of 
the x axis and of the rotation angle 
cp (these directions should be consis-
tent so that the accelerations wc, and (3, have the identical signs), 
e.g. as shown in Fig. 89, right. And only after that can the equations 
of motion (5.34) be written in terms of projections on the chosen posi-
tive directions of x and cp: 

mwcx= mg sin a—Fir , Ick----rFf r • 

In addition, the absence of slipping provides the kinematic relation-
ship between the accelerations: 

wcx = ri3z • 

The simultaneous solution of all three equations allows the accelera-
tions vvc  and-13," as well-as-the Fir  force,' to be found. 

Kinetic energy in the plane motion of a solid body. Sup-
pose a body performs a plane motion in a certain inertial 
reference frame K. To find its kinetic energy T in this frame, 
we shall resort to Eq. (4A2). The quantity T entering into 
this equation represents in this case the kinetic energy of 
rotation of the body in the C frame about an axis passing 
through the body's centre of inertia. In accordance with 
Eq. (5.31) T = /0)2/2, therefore we may immediately 
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write 

T Ic(132 
in v c2  

(5.35) 
2 2 

where I c  is the moment of inertia of the body relative to 
the rotation axis passing through its centre of inertia, co 
is the angular velocity of the body, m is its mass, and V c  
is the velocity of the body's centre of inertia in the K refer-
ence frame. 

Thus, the kinetic energy of a solid body in a plane motion 
comprises the rotation energy in the C frame and the energy 

associated with the motion of 
the centre of inertia. 

3. Free axes. Principal axes 
of inertia. When a solid body 
is set in rotation and then 
left free, the direction of the 
rotation axis changes in space, 
generally speaking. To make 
the body's arbitrary rotation 
axis keep its direction con-
stant, some forces need to be 
applied to that axis. 

Let us consider this problem 
in detail using the following 
example. Suppose the middle 

Fig. 90 	 point C of a uniform rod is 
rigidly fixed to a rotation axis 
so that the angle between 

the axis and the rod is equal to 0 (Fig. 90). Let us find the 
moment M of the external forces which should be applied 
to the rotation axis to keep its direction constant during 
the rod's rotation with the angular velocity co. In accordance 
with Eq. (5.12) this moment M = dLldt. Thus, to determine 
M, one should first find the angular momentum L of the 
rod and then its time derivative. 

The angular momentum L can be determined most easily 
relative to the point C. Let us isolate mentally the rod 's 
element of mass Om located at the distance r from the point 
C. Its angular momentum relative to that point SL=lr, Orriv], 
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where v is the velocity of the element. It can be easily seen 
from Fig. 90 that the vector SL is perpendicular to the rod 
and its direction is independent of the choice of the element 
Sm. Consequently, the total angular momentum L of the 
rod coincides with the vector SL in direction. 

Note that in this case the vector L does not coincide in 
its direction with the vector co! 

During the rotation of the rod the vector L also rotates 
with the angular velocity co. In the time interval dt the 
vector L acquires the increment dL, whose magnitude is 
seen from Fig. 90 to be equal to 

dL I = L sin (n/2 — 0) cn dt, 

or, in a vector form, dL = [ coL] dt. Dividing both sides of 
the last expression by dt, we obtain 

M = [con. 

Thus, to maintain the rotation axis in a fixed direction, it 
should be subjected to the moment M of some external forces 
F (shown in Fig. 90). However, it is easy to see,,that when 
0 = n12, the vector L coincides in its direction with the 
vector co, and in this case M = 0, i.e. the direction of the 
rotation axis remains invariable in the absence of external 
influence. 

A rotation axis whose direction in space remains invariable 
in the absence of any external forces is referred to as a free 
axis of a body. 

It is proved in the general theory that for any solid body 
there are three mutually perpendicular axes which pass 
through the centre of inertia of a body and can serve as free 
axes. They are called the principal axes of inertia of a body. 

The determination of the principal axes of inertia of a 
body of an arbitrary form is a complex mathematical prob-
lem. It is much simpler, however, for bodies possessing 
some kind of symmetry, since the position of the centre of 
inertia and the direction of the principal axes of inertia 
possess in this case the same kind of symmetry. 

For example, a uniform rectangular parallelepiped has 
principal axes passing through the centres of opposite faces. 
When a body possesses a symmetry axis (e.g. a uniform 
cylinder), one of its principal axes of inertia may be repre- 
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sented by that symmetry axis while any two mutually 
perpendicular axes lying in the plane perpendicular to the 
symmetry axis and passing through the body's centre of 
inertia can be chosen as the other axes. Thus, in a body pos-
sessing axial symmetry only one of the principal axes of 
inertia is fixed. In a body possessing central symmetry (e.g. 
in a uniform sphere) any three mutually perpendicular axes 
passing through the body's centre can be chosen as the prin-
cipal axes of inertia, that is, not a single principal axis of 
inertia is fixed with respect to the body. 

The important characteristic property of the principal 
axes of inertia of a body is the fact that during the rotation 
of the body about any of them the angular momentum L of 
the body coincides in its direction with the angular velocity 
co of the body and is determined by the formula 

L = 16), 	 (5.36) 

where I is the moment of inertia of the body relative to the 
given principal axis of inertia. Here L does not depend on 
the choice of the point relative to which it is determined 
(assuming the rotation axis to be stationary). 

The validity of Eq. (5.36) may be easily demonstrated for 
the case of a uniform body possessing axial symmetry. 
Indeed, in accordance with Eq. (5.27) the angular momen-
tum of a solid body relative to the rotation axis L, = /co, 
(recall that L, is the projection of the vector L determined 
relative to any point on that axis). But when a body is 
symmetric relative to the rotation axis, it immediately 
follows from the condition of symmetry that the vector L 
coincides in its direction with the vector o.), and therefore, 
L= 1o.  

Once again, it should be pointed out that in the general 
case (when the rotation axis does not coincide with any of 
the principal axes of inertia though it passes through the 
centre of inertia of a body) the direction of the vector L 
does not coincide with that of the vector co, and the relation-
ship between these vectors is very complex. This fact ac-
counts for the complicated behaviour of rotating solids. 

4. Gyroscopes. A gyroscope is a massive symmetric body 
rotating about its symmetry axis with a high angular veloc-
ity. Let us examine the behaviour of a gyroscope using a 
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top as an example. It is known from experience that if the 
axis of a spinning top is tilted from the vertical, the top does 
not fall, but performs so-called precession, with its axis 
circumscribing a cone about the vertical with a certain 
angular velocity o'. It turns out that with an increase in 
the angular velocity co of spinning of the top, the angular 
velocity co' of precession decreases. 

Such behaviour of a gyroscope can be readily explained 
using the equation of momenta (5.12), assuming co 
This condition, by the way, elu-
cidates what is meant by the rap-
id spinning of a gyroscope. In 
fact, the angular momentum L 
of a precessing gyroscope rela-
tive to the supporting point 0 
(Fig. 91) may be represented as 
the sum of the angular momen-
tum L. associated with lithe gy-
roscope spinning about its axis 
and some additional angular mo-
mentum L' caused by the gy-
roscope precession about the ver-
tical axis, i.e. 

L 

Since the gyroscope :axis coin-
cides with one of the principal 
axes of inertia, then! in accor-
dance with Eq. (5.36) L. = /a), 
where I is the moment of iner-
tia of a gyroscope with respect 
to that axis. Moreover, it is clear that as the precession gets 
slower, the corresponding angular momentum L' diminishes. 
If co >> co', then in all practical cases L L', and therefore 
the resultant angular momentum L essentially coincides 
with L. both in magnitude and direction. We can thus 
assume that 

L=/co. 

Knowing the behaviour of the vector L, we can find the mo-
tion characteristics of a gyroscope axis. 
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But the behaviour of the vector L is described by the 
equation of moments (5.12). In accordance with that equa-
tion the angular momentum L relative to the point 0 
(Fig. 91) acquires during the time interval dt the increment 

dL = M dt, 	 (5.37) 

coinciding in direction with the vector M, the moment of 
external forces relative to the same point 0 (in this case 
that is the moment of the gravitational force mg). From 
Fig. 91 it is seen that dL j_ L. As a result, the vector L 
(and, consequently, the gyroscope axis) spins together with 
the vector M about the vertical, circumscribing a circular 
cone with the half-aperture angle 0. The gyroscope precesses 
about the vertical axis with some angular velocity co'. 

Let us find how the vectors M, L and co' are interrelated. 
From the figure the modulus increment of the vector L during 
the time interval dt is seen to be equal to I dL I — 
= L sin 0 co'dt, or in vector form dL = [co'Ll dt. Substi-
tuting this expression into Eq. (5.37), we obtain 

ko'Ll = M. 	 (5.38) 

It is seen from this equation that the moment of force M 
defines the angular precession velocity co' (but not accelera-
tion!). Therefore, an instantaneous elimination of the mo-
ment M entails an instantaneous disappearance of precession. 
In this respect, one may say that precession possesses no 
inertia. 

Note that the force moment M acting on a gyroscope may 
be very different in nature. Continuous precession, i.e. the 
constant angular velocity co', is maintained provided the 
vector M remains constant in magnitude and spins together 
with the gyroscope axis. 

Example. Find the angular velocity of precession of a tilted gyro-
scope of mass m spinning with a high angular velocity w about its 
symmetry axis with respect to which the moment of inertia of the 
gyroscope is equal to I. The gyroscope's centre of inertia is located at 
a distance l from the supporting point. 

In accordance with Eq. (5.38) co'Ro sin 0 = mgl sin 0, where 0 
is the angle between the vertical and the gyroscope axis (Fig. 91). 
Hence, 

=-- 
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It is interesting to note that the quantity co' is independent of the 
inclination angle 0 of the gyroscope axis. In addition, the result 
obtained shows that u' is inversely proportional to co, i.e. the higher 
the angular velocity of a gyroscope, the lower the angular velocity 
of its precession. 

Gyroscopic couple. Now let us examine a phenomenon 
appearing with the forced rotation of a gyroscope axis. 
Suppose, for example, a gyroscope axis is mounted in a U- 
shaped support, which we rotate about the 00' axis as 

shown in Fig. 92. If the angular momentum L of the gyro-
scope is directed to the right, then during the time interval 
dt in the process of that rotation the vector L gets an incre-
ment dL, a vector directed beyond the plane of the figure. 
In accordance with Eq. (5.37) this implies that the gyroscope 
experiences the force moment M coinciding with the dL 
vector in direction. The moment M is due to the appearance 
of the couple F that the support exerts on the gyroscope axis. 
In accordance with Newton's third law, on the other hand, 
the support itself experiences the forces F' developed by the 
gyroscope axis (Fig. 92). These forces are referred to as 
gyroscopic; they form the gyroscopic couple M' = —M. Note 
that in this case the gyroscope is not capable of resisting 
the variation of its rotation axis direction. 
12-0539 
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TheAappearance of gyroscopic forces is referred to as 
gyrostatic action, or gyroeffect. A gyroeffect associated with 
the appearance of gyroscopic stresses in bearings is observed, 
for example, in turbine rotors of ships at the time of turning, 
rolling or pitching, in propeller-driven planes during turn-
ing, etc. 

Let us examine gyrostatic action in a gyroscope whose 
axis together with a bearing frame (Fig. 93) can rotate freely 
about the horizontal axis 00' of a U-shaped mount. When 
the mount is set into a forced rotation about the vertical 
axis as shown in the figure by the co' vector, the angular 
momentum L of the gyroscope receives during the time 
interval dt an increment dL1, a vector directed beyond the 
plane of the figure. That increment is induced by the moment 
M1  of a couple exerted on the gyroscope axis by the frame. 
The corresponding gyroscopic forces exerted by the gyroscope 
axis on the frame make the frame turn about the horizontal 
axis 00'. In the process the vector L acquires an additional 
increment dL2  which is in its turn caused by the moment M 
of the couple which the frame exerts on the gyroscope axis. 
Consequently, the gyroscope axis turns so that the vector L 
tends to coincide in its direction with the vector co'. 

Thus, during the time interval dt the angular momentum L 
of the gyroscope acquires an increment dL = dL1 	dL2  = 
= (M1 	M 2) dt. As this takes place, the frame experiences 
the gyroscopic couple 

= (MI+ M2)• 

The component of that couple M ;-= —M1  makes the frame 
turn about the horizontal axis 00', while the other compo-
nent M; = —M2  opposes the turning of the whole system 
about the vertical axis (in contrast to the previous case). 

The gyroeffect underlies various applications of gyro-
scopes: the gyrocompass, gyroscopic stabilizers, the gyro-
sextant, etc. 

Problems to Chapter 5 

• 5.1. Find the maximum and minimum distances of the planet 
A from the Sun S if at a certain moment of time it was at the distance 
r0  and travelled with the velocity 00, with the angle between the 
radius vector r0  and the vector vo  being equal to cp (Fig. 94). 
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Solution. Let us make use of the laws of conservation of angular 
momentum and energy. The centre of the Sun is the point relative 
to which the angular momentum of the planet remains constant. 
Therefore, 

romv, sin cp =- rrav, 

where m is the mass of the planet. The angular momentum of the 
planet at a given moment of time enters into the left-hand side of 

Fig. 94 Fig. 95 

that equality, while the right-hand side contains its angular momen-
tum at the maximum (minimum) distance r when r 1  v. 

From the energy conservation law it follows that 

mv8/2—ymM/r0 = mv2 /2—ymM1r, 

where M is the mass of the Sun and y is the gravitational constant. 
Eliminating v from these two equations, we get 

r= 2  r° a 
	

± (1 + 	—a (2 —a) sine cp), 
— 

where a = reg/y/IY. The plus sign in front of the radical sign corres-
ponds to r„,„„ and the minus sign to rain. 

C 5.2. Particle 1 located far from particle 2 and possessing the 
kinetic energy T o  and mass m1  strikes particle 2 of mass m2  through 
the aiming parameter 1, the arm of the momentum vector relative 
to particle 2 (Fig. 95). Each particle carries a charge +q. Find the 
smallest distance between the particles when 

(1) m, « m2; 
(2) m, is comparable to m2. 
Solution. 1. The condition mi.  « m2  means that in the process 

of interaction particle 2 is practically motionless. The vector of the 
force acting on particle 1 passes continuously through the point at 
which particle 2 is located. Consequently, the angular momentum 
of particle 1 relative to motionless particle 2 is conserved. Hence, 

1po =rminp, 

where the left-hand side represents the angular momentum of par- 
ticle 1 located far from particle 2 and the right-hand side is the angu- 
lar momentum of particle 1 at the moment of the closest approach, 

12* 
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when r 1 p (Fig. 95.) Next, from the energy conservation law it fol-
lows that 

To=T+k42/rmin , 

where T is the kinetic energy of particle 1 at the moment of the closest 
approach. Having solved these two equations (and taking into account 
the relationship between po  and To), we obtain 

2  rmin  = 	
2

,q0  (1+ 	(2/ To/kq2)2) • 	 (1) 

2. In this case one cannot assume that particle 2 is at rest in the 
process of interaction. It is advisable to seek the solution here in the 
C frame, in which the "collision" occurs the way it is shown in Fig. 96. 
This system of two particles is assumed closed, and therefore its inter- 

nal angular momentum is con- 
served: 

	

rpio=rmin171, 	(2) 

where account is taken of the 
fact that ri2  I pi  at the mo- 
ment of the closest approach fio 	r12 	 (see Fig. 95). Moreover, in ac- P10 
cordance with the energy con-

2 nervation law 

	

fo= 71+ keirmin, 	(3) 

where To  and T are the total 
kinetic energies of the particles 

Fig. 96 	 in the C frame, respectively, at 
the moment when they are far 

from each other and at the moment of their closest approach. From 
Eqs. (2) and (3) we get expression (1), only with To  substituted for 
To. What is more, in this case (particle 2 is originally at rest) 

To 	
m2 

M1+ M2 To,  

in accordance with Eq. (4.16). Note that if mi.  < m2, then To 	To  
and the expression for rmin  is completely identical to Eq. (1). 

6 5.3. A small sphere is suspended at the point 0 by means of 
a light non-stretchable thread of length 1. Then the sphere is swung 
through an angle 0 from the vertical and imparted an initial velocity 
vo  perpendicular to the vertical plane in which the thread is located. 
At what velocity vo  is the maximum swinging angle equal to x12? 

Solution. The swinging sphere experiences two forces: the gravi-
tational force and the tension of the thread. It is not difficult to see 
that the moment of these forces M, 0 relative to the vertical axis z 
passing through the point 0. Consequently, the angular momentum 
Lz  of the sphere relative to the given axis is constant, or 

/ sin 0 •mv, = /•mv, 	 (1) 
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where m is the mass of the sphere, and v is its velocity in the position 
when the thread forms the angle a/2 with the vertical. 

The sphere moves in the Earth's gravitational field under the 
influence of an external force, the tension of the-thread. That force 
is always perpendicular to the velocity vector of the sphere and there-
fore does not perform any work. It follows that in accordance with 
Eq. (3.32) the mechanical energy of the sphere in the Earth's gravi-
tational field remains constant: 

mil/ 2 = mva/ 2+ mg/ cost), (2) 

where the right-hand side of the 
equality corresponds to the hori-
zontal position of the thread. 

The simultaneous solution of 
Eqs. (1) and (2) yields 

vc, = 	20/cos 0. 

5.4. Two identical small cou-
plings are positioned on a rigid 
wire ring of radius ro  which can 
freely rotate about the vertical axis 
AB (Fig. 97). They are joined to-
gether by a thread and set in the 
position m-m. Then the whole as-
sembly is set into rotation with the 
angular velocity coo, whereupon the 
thread is burnt at the point A. 
Assuming the mass of the assembly to be concentrated mainly in the 
couplings, find its angular velocity at the moment when the couplings 
have slid down (without friction) to the extreme lower position m' -m'. 

Solution. Suppose that in the lower position the couplings are 
located at the distance r from the rotation axis and the angular velo-
city of the assembly is co. Then, from the laws of conservation of 
energy and angular momentum relative to the rotation axis, it fol-
lows that 

r2co2 —rS4 = 2gh; 	r2co= r8co , 

where h is the difference in the height of the couplings in the upper 
and lower positions. Besides, from Fig. 97 it is seen that 

71=-- r2 + h2 . 

These three equations, when solved simultaneously, yield 

= (1 	1±(4g/r04)2)(0,/ 2. 

1 5.5. A smooth rod rotates freely in a horizontal plane with the 
angular velocity coo  about a stationary vertical axis 0 (Fig. 98) rela-
tive to which the rod's moment of inertia is equal to I. A small coupling 
of mass m is located on the rod close to the rotation axis and is tied 
to it by a thread. When the thread is burned, the coupling starts 
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sliding along the rod. Find the velocity 	of the coupling relative 
to the rod as a function of its distance r from the rotation axis. 

Solution. In the process of motion of the given system the kinetic 
energy and the angular momentum relative to the rotation axis do 
not vary. Hence, it follows that 

/co; =1b2 + mv2; Roo  = (I + mr2) w , 

v2  = v'2 	co2r2  (Fig. 98). From these equations 

1 j7 1+ mr21I • 

• 5.6. A bullet A flying horizontally hits and remains in a vertical 
uniform rod of mass m and length /0  hinged by its upper end at the 

where we obtain 

Fig. 98 

point 0 (Fig. 99). The bullet has the momentum p and hits the rod 
at a point lying at the distance I from the point 0. Disregarding the 
mass of the bullet, find 

(1) the momentum increment of the bullet-rod system during the 
time of motion of the bullet in the rod; 

(2) the angular velocity acquired by the rod with regard to the 
internal angular momentum of the bullet, which is equal to L and 
coincides in direction with the vector p (the bullet spins about its 
motion direction). 

Solution. 1. The bullet-rod system is non-closed: apart from the 
counterbalancing forces a horizontal component of the reaction force 
appears in the process of motion of the bullet at the point 0 of the 
rod. That component brings about the momentum increment of the 
system: 

Ap =- mvc  — p, 

where vc  is the velocity of the centre of inertia of the rod after the 
bullet has hit. 

Since all external forces in this process pass through the point 0, 
the angular momentum of the system remains constant relative to 
any axis passing through that point as long as the bullet moves in the 
rod. Choosing the axis that is at right angles to the figure plane, we 
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write 
1p = 

where I is the moment of inertia of the rod relative to the axis thus 
chosen, and co is the angular velocity of the rod immediately after 
the bullet has stopped in it. 

With allowance made for CC  = (Dr, where r is the distance from 
the point 0 to the centre of inertia of the rod, these two equations 
yield 

Fig. 100 Fig. 101 

system does not vary as long as the bullet keeps moving in the rod. 
This signifies that in this case the horizontal component of the reaction 
force at the point 0 is absent. 

2. In this case the angular momentum of the system with respect 
to the point 0 also remains constant as long as the bullet moves in 
the rod, and consequently in accordance with Eq. (5.23) 

[1p] =L. 

Here the angular momentum of the bullet relative to the point 0 
is written on the left-hand side and on the right-hand side we wrote 
the angular momentum of the rod (together with the bullet stuck 
in it) immediately after the bullet stopped (see Fig. 100 where all 
three vectors are located in the horizontal plane). 

Let us calculate the vector L when the rod (with the bullet) acquires 
the angular velocity co. We shall consider a small element of the rod 
of mass dm located at the distance r from the point 0. Its angular 
momentum relative to the point 0 is equal to 

dL =[r, dray] = dm• r2o) = (me)//0) r2  dr, 

Ap = (342l0  — 1) p. 

It is seen that the sign of the increment Ap depends on the ratio /no . 
Specifically, when ///0  = 2/3, Ap = 0, i.e. the momentum of the 
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where v is the velocity of the given element. Integrating this expres-
sion over all elements, we obtain 

L = rniaw/3 
Thus, 

Ed- [1p] = m/Sw/3. 

Using this formula, we obtain in accordance with Fig. 100 

(,) = 3 	/2p2lintig 

From the same figure one can find also the direction of the vector w 
(the angle ex). 

• 5.7. A uniform solid cylinder of mass m, and radius R can rotate 
without friction about a stationary horizontal axis 0 (Fig. 101). 
A thin non-stretchable cord of length 1 and mass m is wound in one 
layer over the cylinder. Find the angular acceleration of the cylinder 
as a function of the length x of the overhanging piece of cord. Slipping 
is assumed absent and the centre of gravity of the wound portion of 
cord is supposed to be located at the cylinder's axis. 

Solution. Let us make use of the equation of moments (5.15) rela-
tive to the 0 axis. For this purpose we find the angular momentum 
of the system L, relative to the given axis and the corresponding force 
moment M5. The angular momentum is 

Lz = lo.),+Rmv=(m012+m)R2e)„ 

where allowance is made for the moment of inertia of the cylinder 
moR2/2 and v = cozR (no cord slipping). The moment of the 

external gravitational forces relativejto'Lthe 0 axis is 

Mz  = Rmgx/l. 

Differentiating L, with respect to time and substituting dL5/dt 
and M, into the equation of moments, we obtain 

13, = 2mgx11R (mo  + 2m). 

• 5.8. A uniform disc of radius ro  lies on a smooth horizontal plane. 
A similar disc spinning with the angular velocity co, is carefully 
lowered onto the first disc. How soon do both discs spin with the 
same angular velocity if the friction coefficient between them is equal 
to k? 

Solution. First, let us find the."steady-state rotation angular veloc-
ity w. From the law of conservation of angular momentum it follows 
that Roo  = 21w, where I is the moment of inertia of each disc relative 
to the common rotation axis. Hence, 

= w0/2. 

Now let us examine the behaviour of one of the discs, for example, 
the lower one. Its angular velocity varies due to the moment M 
of the friction forces. To calculate M, we single out on the upper 
surface plane of the disc an elementary) ring with radii r and r + dr. 
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The moment of the friction forces acting on the given ring is equal to 

dM =- rk (mg lara)2tcr dr =-- (2kmg1r8)r2  dr, 

where m is the mass of each disc. Integrating this expression with 
respect to r between 0 and ro, we get 

M = (2/3) kmgro. 

In accordance with Eq. (5.30), the angular velocity of the lower disc 
increases by do) over the time interval 

dt = (I/M) do) = (3r0/4 kg) do). 

Integrating this equation with respect to 0.) between 0 and o)0/2, 
we find the sought time 

t = 3roco0/8kg. 

• 5.9. A uniform cylinder is placed on a horizontal board (Fig. 102). 
The coefficient of friction between them is equal to k. The board is 

Fig. 102 Fig. 103 

imparted a constant acceleration w in a horizontal direction at right 
angles to the cylinder's axis. Find 

(1) the acceleration of the cylinder axis in the absence of slipping; 
(2) the limiting value wiim  for which there is no slipping. 
Solution. 1. Choosing the positive directions for x and p  as shown 

in Fig. 102, we write the equation of motion of the cylinder axis and 
the equation of moments in the C frame relative to that axis: 

mwc  =--F fr; /8= rFf 7., 

where m and I are the mass and the moment of inertia of the cylinder 
relative to its axis. In addition, the condition for the absence of 
slipping of the cylinder yields the kinematic relation of the accelera-
tions: 

w — wc = Pr. 
From these three equations we obtain we  = w13. 

2. Let us find from the previous equations the magnitude of the 
friction force Fn. ensuring that the cylinder rolls without slipping: 
Fir  = mw/3. The maximum possible value of that force is equal 
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to kmg. Hence, 
with/ = 3kg. 

• 5.10. A uniform sphere of radius r starts rolling down without 
slipping from the top of another sphere of radius R (Fig. 103). Find 
the angular velocity of the sphere after it leaves the surface of the 
other sphere. 

Solution. First of all note that the angular velocity of the sphere 
after it leaves does not change. Therefore the problem reduces to the 
determination of its magnitude at the moment of breaking-off. 

Let us write the equation of motion for the centre of the sphere at 
the moment of breaking-off: 

mv2AR r) = mg cos 0, 

where v is the velocity of the centre of the sphere at that moment, 
and 0 is the corresponding angle (Fig. 103). The velocity v can be 

found from the energy conservation law: 

nigh = mv212 1012, 
-m9 

R, 

F, 	• 5.11. A thin uniform rod of mass 
m and length 1 rotates with the constant 
angular velocity co about the vertical axis 
passing through the rod's suspension 
point 0 (Fig. 104).tIn so doing, the rod 
describes a conical surface with a half-
aperture angle 0. Find the angle 0 as 
well as the magnitude and direction of 
the reaction force R at the point 0. 

Solution. Let us consider the frame 
rotating about the vertical axis togeth-

er with the rod. In this reference frame the rod experiences 
not only the gravity mg and the reaction force R but also the centri-
fugal force of inertia Fe f . As the rod rests in the given reference frame, 
that is, stays in the equilibrium position, the resultant moment 
of all forces relative to any point and the resultant of all forces are 
equal to zero. 

It is only gravity and the centrifugal forces of inertia that produce 
a moment relative to the point 0. From the equality of the moments 
of these forces it follows that 

(mgl/2) sin 0 = Mc  f 	 (1) 

Let us calculate Md. The elementary moment of the force of inertia 
that acts on the rod element dx located at the distance x from the 

where I is the moment of inertia of the 
sphere relative to the axis passing through 
the sphere's centre. In addition, 

v = cor; h = (R T  r) (1 — cos 0). 

From these four equations we obtain 

= 10g (R+01177-2. 
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point 0; is equal to 

dMc f=(mco2ll) sin 0 cos 0x2  dx. 

Integrating this expression over the whole length of the rod, we get 

Mei= (m.co212 /3) sin 0 cos 0. 	 (2) 

It follows from Eqs. (1) and (2) that 

cos 0 = 3g/2co21. 	 (3) 
Now let us determine the magnitude and direction of the vector R. 

In the reference frame where the rod rotates with the angular velocity 
U) its centre of inertia, the point C, moves along a horizontal circle. 
Consequently, from the law of motion of a centre of inertia, that is, 
Eq. (4.11), it immediately follows that 
the vertical component of the vector R 
is Rii = mg, while the horizontal compo- 
nent RI  is determined from the equation 
mu,„ = R1, where wn, is the normal ac- 
celeration of the centre of inertia C. 
Hence 

R 1  = (mco2 //2) sin 0. 	(41 

The magnitude of the vector R is 
equal to 

R=17 (mg)2  

=(m(o2112) V 1+7 g2I(4012), 

and its direction, specified by the angle 
0' between the vector R and the ver- 
tical, is determined from the formula cos 0' = mg/R. It is 
interesting to note that 0' 0, i.e. the vector R does not coincide 
with the rod in direction. One can easily make sure of this by expres-
sing cos 0' via cos 0: 

cos 0' = 4 cos 0/179 + 7 cos2  0. 

It is seen from this that cos 0' > cos 0, i.e. 0' < 0, as it is in fact 
shown in Fig. 104. 

Note that the equivalent of the forces of inertia Fcf  passes not 
through the point C but below it. Indeed, Fc). = R1  and is determined 
by Eq. (4), whereas the resultant moment Mc,. is determined by Eq. (2). 
It follows from these formulae that the arm of the vector Fcf  relative 
to the point 0 is equal to (21/3) cos 0 (Fig. 104). 

• 5.12. A spinning top of mass m whose axis forms an angle 0 
with the vertical precesses about the vertical axis passing through 
the point of support 0. The angular momentum of the top is equal 
to L, and its centre of inertia is located at the distance 1 from the 
point 0. Find the magnitude and direction of the vector F which is 
the horizontal component of the reaction force at the point 0. 
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Solution. In accordance with Eq. (5.38) the angular velocity of 
precession is 

= 

Since the centre of inertia of the top moves along the circle, the vec-
tor F is oriented as illustrated in Fig. 105 (this vector precesses to-
gether with the axis of the top). 

From the motion equation for the centre of inertia we obtain 
nu.o'2/ sin 0=F. 

F = (m3g213/L2) sin 0. 

It should be pointed out that if the point of support of the top were 
located on an ideally smooth plane, the top would precess with the 
same angular velocity but about the vertical axis passing through 
the centre of the top, the point C in Fig. 105. 

And finally, 



PART TWO 

RELATIVISTIC MECHANICS 

CHAPTER 6 

KINEMATICS IN THE SPECIAL THEORY 
OF RELATIVITY 

§ 6.1. Introduction 

The special theory of relativity proposed by Einstein 
in 1905 called for a review of all concepts of classical physics 
and primarily the concepts of time and space. Therefore, 
this theory, in accordance with its basic contents, can be 
referred to as a physical study of time and space. The study 
is called physical because the properties of space and time 
are analysed in this theory in close connection with the 
laws governing physical phenomena. The term "special" 
implies that this theory considers phenomena only in iner-
tial reference frames. 

We shall begin this section with a brief review of pre-
relativistic physics, dwelling in particular on the problems 
that led to the appearance of the theory of relativity. 

Basic notions of prerelativistic physics. First, we shall 
recall those notions of space and time that are associated 
with Newton's laws, i.e. that underlie classical mechanics. 

1. Space, which has three dimensions, obeys Euclidean 
geometry. 

2. Together with three-dimensional space and indepen-
dent of it, there exists time. Time is independent in the 
same sense that the three dimensions are independent of 
each other. But for all that, time relates to space through 
the laws of motion. Specifically, time is measured by a clock, 
which is basically an instrument utilizing one or another 
periodic process providing a time scale. Therefore, it is 

,impossible to determine time irrespective of some periodic 
process, i.e. irrespective of motion. 
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3. Dimensions of solid bodies (scales) and time intervals 
between given events are identical in different reference 
frames. This corresponds to the Newtonian concept of abso-
lute space and time, according to which their properties are 
assumed to be independent of the reference frame, that is, 
space and time are the same for all reference frames. 

4. The Galileo-Newton law of inertia is assumed to be 
valid, according to which a body experiencing no influence 

from other bodies moves rec- 

	

K AK 	v 	 tilinearly and 	uniformly. 
This law maintains the ex- 

-----y y' ---'A istence of inertial reference 
frames in which`Newton's laws 
hold true (as well as the Ga-
lilean principle of relativity). 

	

O F    	5. From the above notions 
0 	 the Galilean transformation 

Fig. 106 
follows, expressing the space- 
time relation of any event in 
different inertial reference 

frames. If the reference frame K' moves relative to the K 
frame with the velocity V (Fig. 106) and the zero time 
reading corresponds to the moment when the origins 0' and 
0 of the two frames coincide, then* 

x' = x — Vt; y' = y; t' = t. 	(6.1) 

From this it follows that the coordinates of any event are 
relative, i.e. have different values in different reference 
frames; the moment of time at which an event occurs is 
however the same in different frames. This testifies to the 
fact that time flows identically in different reference frames. 
That seemed to be so obvious that it was not even stated as 
a special postulate. 

From Eq. (6.1) the classical law of velocity transforma-
tion (composition) follows immediately: 

v' = v — V, 	 (6.2) 

where v' and v are the velocities of a point (particle) in 
the K' and K frames respectively. 

* Hereafter we shall limit ourselves to only two spatial coordi• 
nates x and y. The z coordinate behaves as y in all respects. 
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6. The Galilean principle of relativity holds: all inertial 
reference frames are equivalent in terms of mechanics, 
all laws of mechanics are identical in these reference 
frames, or, in other words, are invariant relative to the Gali-
lean transformation. 

7. The principle of long-range action is valid: interactions 
between bodies propagate instantaneously, i.e. with an 
infinitely high velocity. 

These notions of classical mechanics were in complete 
accord with the totality of experimental data available at 
that time (it should be noted, though, that those data relat-
ed to the study of bodies moving with velocities much lower 
than the velocity of light). The validity of these notions 
was confirmed by the very successful development of mechan-
ics itself. Therefore, the notions of classical mechanics 
about the properties of space and time were thought to be 
so fundamental as not to raise any doubts about their truth. 

The first to be put to the test was the Galilean principle 
of relativity, which is known to be applicable only in me-
chanics, the only division of physics advanced sufficiently 
by that time. As other branches of physics, in particular, 
optics and electrodynamics, were developing, the natural 
question arose: does the principle of relativity cover other 
phenomena as well? If not, then using these (non-mechani-
cal) phenomena one can in principle distinguish inertial 
reference frames and try to find a primary, or absolute, 
reference frame. 

One of such phenomena that was expected to occur differ-
ently in different reference frames is the propagation of 
light. In accordance with the predominant wave theory of 
that time waves of light must propagate with a certain veloc-
ity relative to a certain hypothetical medium ("luminifer-
ous ether") whose nature, however, was debated among 
scientists. Still, whatever the nature of that medium, it 
surely cannot rest in all inertial reference frames at once. 
Consequently, one can distinguish one inertial frame, the 
absolute frame, which is stationary with respect to the 
"luminiferous ether". It was supposed that in that (and 
only in that) reference frame light propagates with the equal 
velocity c in all directions. If a certain inertial reference 
frame moves with the velocity V relative to the ether, the 
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velocity of light c' in that reference frame must obey the 
conventional law of velocity composition (6.2), i.e. c' — 
= c — V. This assumption was tested experimentally by 
Michelson (together with Morley). 

Michelson's experiment. The purpose of this experiment 
was to detect the "true" motion of the Earth relative to 
the ether. Michelson in his experiment took advantage of 
the motion of the Earth along its orbit with the velocity 
30 km/s. The idea of the experiment was the following. 

The light from the source S (Fig. 107) was emitted in 
two mutually perpendicular directions, reflected from the 

mirrors A and B ilocated at 
the same distance 1 from the 
source S and finally returned 
to the point S. In this experi-
ment a comparison was made 
between the time taken by 
light to cover the path SAS 
and the time taken to cover 
the path SBS. 

Let us suppose that at the 
moment of the experiment the 
set-up moves together with 

Fig. 107 	 the Earth so that its velocity 
V relative to the ether is direct- 
ed along SA. If the velocity 

of light obeys the conventional law of velocity composition 
(6.2), light moves along the path SA with the velocity 
c — V relative to the set-up (the Earth) and in the reverse 
direction with the velocity c V. Then the time spent by 
light to traverse the path SAS is equal to 

1 	1 	21 	1  
tii = c —V 	c V 	c 1—(V/c)2  • 

Along the path SBS the velocity of light relative to the 
set-up is equal to c' = 1/c2  — V2  (Fig. 107) and the time 
taken to cover that path is equal to 

21 	21 	1  
t = 

c2  — V 2 	C 17 1 — (V 1 c)2 
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Comparing the expressions for tu  and tl , we see that light 
must take different time periods to cover these paths. By 
measuring the time difference tll  — ti  the velocity of the 
set-up (the Earth) relative to the ether can be determined. 

Despite the fact that the time difference was expected 
to be extremely small, the set-up was capable of observing 
that difference using a very sensitive interferometer tech-
nique. 

For all that, the result of the experiment proved to be 
negative: a time difference was not detected. Surely, by 
sheer accident, the Earth could happen to be motionless 
relative to the ether at the time when the experiment was 
conducted. But then iii half a year, for example, the Earth's 
velocity would have reached 60 km/s. The repetition of the 
experiment in half a year, however, did not bring the result 
expected. 

More accurate experiments of the same kind performed 
later corroborated the original result. 

The negative result of Michelson's experiment contra-
dicted what was expected from the Galilean transformation 
(velocity composition). It also showed that motion relative 
to the ether cannot be detected and the velocity of light 
is independent of the motion of a light source since its 
motion with respect to the ether is different at different 
seasons of the year. 

Some astronomical observations (e.g. of double stars) 
also point to the fact that the velocity of light does not 
depend on the velocity of a source. A number of special 
experiments carried out later gave the same evidence. 

By the beginning of the twentieth century theoretical 
and experimental physics faced a serious challenge. On 
the one hand, the theory predicted various effects permit-
ting the principal (absolute) reference frame to be distin-
guished from the great number of inertial frames. On 
the other hand, persistent attempts to detect these effects 
experimentally inevitably terminated in failure. The ex-
periment perfectly confirmed the validity of the principle of 
relativity for all phenomena, including those which were 
thought incompatible with that principle. 

A few attempts were ventured to explain the negative 
outcome of the Michelson experiment and some other simi- 

13-0539 
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lar experiments in terms of classical mechanics. However, 
all of them turned out to be unsatisfactory in the final 
analysis. The cardinal solution of this problem was pro-
vided only in Einstein's theory of relativity. 

§ 6.2. Einstein's Postulates 

A profound analysis of all experimental and theoretical 
data accumulated by the beginning of the twentieth century 
led Einstein to review the initial notions of classical physics 
and primarily the concepts of space and time. As a result, 
he created the special theory of relativity, which proved to 
be a logical completion of classical physics. 

This theory adopts unaltered such concepts of classical 
mechanics as Euclidean space and the Galileo-Newton law 
of inertia. As to the statement concerning the constancy of 
size of solid bodies' and of time intervals in different ref-
erence frames, Einstein noticed that these representations 
emerged from the observations of bodies moving with low 
velocities, and therefore their extrapolation to higher velo-
cities is unwarranted and, for this reason, incorrect. Only 
experiment can give evidence concerning the true proper-
ties of space and time. The same can be said about the Gali-
lean transformation and the principle of long-range action. 

Einstein proposed two postulates, or principles as the 
foundation of the special theory of relativity, which were 
backed up by experimental data (and primarily by the 
Michelson experiment): 

(1) the principle of relativity, 
(2) independence of the velocity of light of the velocity 

of a source. 
The first postulate is a generalization of the Galilean 

principle of relativity to cover all physical processes: all 
physical phenomena proceed identically in all inertial refer-
ence frames; all laws of nature and the equations describing 
them are invariant, i.e. keep their form on transition from one 
inertial reference frame to another. In other words, all iner-
tial reference frames are equivalent (indiscernible) in their 
physical properties; basically, no experiment whatever 
can distinguish one of the frames as preferable. 
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,'iiThe second postulate states that the velocity of light 
in vacuo is independent of the motion of a light source and 
is the same in all directions. This means that the velocity of 
light in vacuo is the same in all inertial reference frames. 
Thus, the velocity of light holds a most unique position. 
In contrast to all other velocities, which change on transi-
tion from one reference frame to another, the velocity of 
light in vacuo is an invariant quantity. As we shall see 
later, the existence of such a velocity essentially modi-
fies the notions of space and time. 

It also follows from Einstein's postulates that light prop-
agates in vacuo at the ultimate velocity: no other signal, 
no interaction between any two bodies can propagate with 
a velocity exceeding that of light in vacuo. It is precisely 
due to its limiting nature that the velocity of light is the 
same in all reference frames. Indeed, in accordance with 
the principle of relativity the laws of nature must be iden-
tical in all inertial reference frames. The fact that the veloc-
ity of any signal cannot exceed the ultimate value is also 
a law of nature. Consequently, the ultimate velocity value, 
the velocity of light in vacuo, must be the same in all iner-
tial reference frames. 

Specifically, the existence of an ultimate velocity pre-
supposes the limiting of velocities of moving particles by 
the value c. If otherwise, particles could transmit signals 
(or interactions between bodies) with a velocity exceeding 
the ultimate one. Thus, in accordance with Einstein's 
postulates all possible velocities of moving bodies and of 
interaction propagation are limited by the value c. Thus, 
the principle of long-range action of classical mechanics 
does not hold any more. 

The whole content of the special theory of relativity 
follows from these two postulates. By the present time, 
both Einstein's postulates, as well as all of their consequen-
ces, have been convincingly confirmed by the totality of 
experimental data accumulated so far. 

Clock synchronization. Prior to drawing any conclusions 
from these postulates Einstein carefully analysed the meth-
ods of measuring space and time. First of all, he noticed 
that neither a point of space nor a time moment at which 
a certain event occurs possesses a physical reality; it is 

13* 
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the event itself that does. To describe an event in a given 
reference frame, one must indicate the point and the mo-
ment of time at which it occurs. 

The location of the point at which the event occurs can 
be determined in terms of Euclidean geometry by means of 
rigid scales and expressed in Cartesian coordinates. in 
this case classical mechanics resorted to quite workable 
methods of comparing quantities being measured against 
reference standards. 

The corresponding moment of time can be determined by 
means of a clock placed at the point of the reference frame 
where the given event occurs. This method, however, is 
not satisfactory any more when we have to compare events 
occurring at different points, or, which is the same, to inter-
compare the moments of time of events happening at points 
removed from the clock. 

Indeed, to compare the moments of time (time readings) 
at different points of a reference frame one has to define 
first what is the universal time for all points of the reference 
frame. In other words, we have to ensure a synchronous 
rate of all clocks of the given reference frame. 

It is clear that the synchronization of clocks positioned 
at different points of the reference frame can be accomp-
lished only by means of some signals. The fastest signals sui-
table for the purpose are light and radio signals propagating 
with the known velocity c. The choice of these signals is also 
stipulated by the fact that their velocity is independent of 
the direction in space and is the same in all inertial refer-
ence frames. 

Next, we can do as follows. An observer located, for ex-
ample, at the origin 0 of a given reference frame broadcasts 
a time signal at the moment to  by his clock. At the moment 
when this signal reaches the clock located at the known 
distance r from the point 0 the clock is set so that it reg-
isters t = to  + rIc, i.e. the signal delay is taken into ac-
count. The repetition of signals after definite time intervals 
permits all observers to synchronize the rate of their clocks 
with that of the clock at the point 0. This operation having 
been performed, one can claim that all the clocks of the 
given reference frame register the same time at each 
moment. 
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It is essential to point out that time defined that way 
refers only to the reference frame relative to which the 
synchronized clocks are motionless. 

Relationships between events. Let us investigate the spa-
tial and temporal relationships between given events in 
different inertial reference frames. 

Even in classical mechanics the spatial relationships 
between different events depend on the reference frame to 
which they belong. For example, two consecutive flashes 
in a moving train occur at the same point of a reference 
frame fixed to the train but at different points of a reference 
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Fig. 108 

frame fixed to the railroad bed. The statement that alter-
native events occur at the same point or at a certain distance 
between them makes sense only if the reference frame to 
which that statement refers is indicated. 

By contrast, in classical mechanics temporal relation-
ships between events are assumed independent of the refer-
ence frame. This means that if two events occur simulta-
neously in one reference frame they are simultaneous in all 
other frames. Generally, the time interval between the 
given events is assumed to be the same in all frames. 

However, it is easy to see that this is not actually the 
case: simultaneity (and therefore the rate of time flow) is 
a relative notion that makes sense only when the reference 
frame to which that notion relates is indicated. By means 
of simple reasoning we shall illustrate how two events si-
multaneous in one reference frame prove to occur at 
different time moments in another reference frame. 

Imagine a r od AB moving with a constant velocity V 
relative to the reference frame K. A flashbulb is located 
at the middle point 0 of the rod, and photodetectors at the 
ends A and B (Fig. 108). Suppose that at a certain moment 
the bulb 0 flashes. Since the velocity with which light pro-
pagates in the reference frame fixed to the rod (as in any 
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inertial reference frame) is equal to c in both directions, 
the light pulses reach the equidistant photodetectors A 
and B at the same moment of time (in the reference frame 
"rod") and both photodetectors respond simultaneously. 

Things are different in the K frame. In that reference 
frame the velocity of light pulses propagating in both 
directions is also equal to c, whereas the paths traversed 
by them are different. In fact, as the light signals propagate 
toward the points A and B, the latter shift to the right, 
and therefore the photodetector A responds earlier than the 
photodetector B. 

Thus, events that are simultaneous in one reference frame 
are not simultaneous in another one, i.e. in contrast to 
classical mechanics simultaneity here is a relative notion. 
This, in turn, means that time flows differently in different 
reference frames. 

If we had at our disposal signals that propagate instan-
taneously, events simultaneous in one reference frame would 
also be simultaneous in any other reference frame. This 
directly follows from the example just considered. In this 
case the rate of time flow would be independent of the refer-
ence frame, and we could talk about the existence of the 
absolute time that appears in the Galilean transformation. 
Thus, the Galilean transformation is, in fact, based on the 
assumption that clock synchronization is accomplished by 
means of signals propagating instantaneously. However, 
such signals do not exist. 

§ 6.3. Dilation of Time and Contraction 
of Length 

In this section we shall examine three important conse-
quences of Einstein's postulates: the equality of transverse 
dimensions of bodies in different reference frames, the 
dilation of the rate of moving clocks, and the contraction 
of longitudinal dimensions of moving bodies. In § 6.4 we 
shall generalize the results obtained in the form of the perti-
nent formulae for transformation of coordinates and time. 

Prior to solving these problems we recall that a reference 
frame is understood as a reference body to which a coordi-
nate grid is fixed together with a number of identical synchro- 
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nized stationary clocks. Next, the coordinate grids and 
clocks are assumed to be calibrated in a like manner in all 
inertial reference frames. Clearly, this can be accomplished 
only by means of length and time standards also similarly 
realized in all reference frames. 

For this purpose we can utilize some natural periodic 
process providing a natural scale for both length and time 
measurements, e.g. monochromatic waves emitted by in-
dividual atoms resting in a given reference , frame. Then in 
that reference frame the wavelength can serve as a length 
standard and the corresponding period of oscillation as a 
time standard. Using these standards we can construct a 
standard representing one metre as a definite number of the 
given wavelengths and a standard representing one second 
as a definite number of periods of the given oscillations 
(it should be pointed out that this method has been 
realized). 

A similar technique can be utilized in every inertial 
reference frame, using the same monochromatic wave emit-
ted by the same atoms resting in each of these reference 
frames. The method is justified, for in accordance with the 
principle of relativity physical properties of stationary atoms 
are independent of the inertial reference frame in which 
these atoms rest. 

Having effected length and time standards in each re-
ference frame, we can move on to solving the fundamental 
problem of comparing these standards in different refer-
ence frames, or, in other words, the comparison of dimensions 
of bodies and rates of time flow in these frames. 

Equality of transverse dimensions of bodies. Let us begin 
with the comparison of transverse dimensions of bodies 
in different inertial reference frames. Imagine two inertial 
reference frames K and K' whose y and y' axes are parallel 
to each other and perpendicular to the direction of motion 
of one frame relative to the other (Fig. 109), with the ori-
gin 0' of the K' frame moving along the straight line pass-
ing through the origin 0 of the K frame. Let us position 
the rods OA and 0' A' , which are the metre standards in 
each of these frames, along the y and y' axes. Next, imag-
ine that at the moment when the y and y' axes coincide the 
upper end of the left rod makes a marking on the y axis of 
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the K frame. Does that marking coincide with the point 
A, the upper end of the right rod? 

The principle of relativity makes it possible to answer 
that question: yes, it does. Were it not so, one of the rods 
would be, for example, shorter than the other from the 
viewpoint of both reference frames, and therefore there 
would appear an experimental opportunity to distinguish 
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one inertial reference frame from another by shorter trans-
verse dimensions. This, however, contradicts the principle 
of relativity. 

From this it follows that the transverse dimensions of 
bodies are the same in all inertial reference frames. This 
also means that if the origins of the K and K' frames are 
chosen as indicated, the y' and y coordinates of any point 
or event coincide, i.e. 

y' = y. 	 (6.3) 

This relation represents one of the sought transformations 
of coordinates. 

Dilation of time. Our next task is to compare the 
rate of time flow in different inertial reference frames. 
As we already mentioned, time is measured by a clock, 
which may be any device in which one or another periodic 
process is used. Accordingly, the theory of relativity custom-
arily deals with the comparison of rates of identical clocks 
in different inertial reference frames. 

K 
	 8' 

0 
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The task is easiest when solved by means of the following 
thought (i.e. basically feasible) experiment. Let us make 
use of a so-called light clock, a rod with mirrors at the ends 
between which a short light pulse travels back and forth. 
The period of such a clock is equal to the time interval 
between two consecutive arrivals of a light pulse at a 
given end of the rod. 

Next, imagine two inertial reference frames K' and K 
moving relative to each other with the velocity V. Let the 
light clock AB be at rest in the K' frame and oriented 
perpendicular to the direction of its motion with respect 
to the K frame (Fig. HO). Let us see what the rate of the 
clock is in each respective reference frame K' and K. 

In the K' frame the clock is at rest, and its period is 

Ato  = 21/c, 

where l is the distance between the mirrors. 
In the K frame, relative to which the clock moves, the 

distance between the mirrors is also equal to 1, for the 
transverse dimensions of bodies are the same in different 
inertial reference frames. However, the path of the light 
pulse in that reference frame is different (the zigzag of 
Fig. HO): as the light pulse travels from the bottom mirror 
toward the upper one, the latter shifts somewhat to the 
right, etc. Consequently, to get back to the bottom mirror, 
the light pulse has to cover a longer distance in the K 
frame while travelling with the same velocity c. Therefore, 
the light pulse takes a longer time to cover that distance as 
compared to the case when the clock is motionless. Accord-
ingly, the period of the moving clock is longer, i.e. in 
terms of the K reference frame the clock's rate is slower. 

Let us designate the period of the moving clock in the 
K frame by At. It follows from the right triangle AB' A' 
(Fig. 110) that /2  (VAt/2)2  = (cAt/2)2, whence 

At = (2//c)/V 1— (V/c)2. 

But since 2//:-• — Ato, then 

At = 

 

Ato  

  

    

 

- 02  

 

(6.4) 
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where p = vie and V is the velocity of the clock in the 
K frame. 

This formula shows that At > At0, i.e. the same clock has 
different rates in different inertial frames: the rate is slower 
in a reference frame relative to which the clock moves, as 
compared to the reference frame in which the clock is at 
rest. In other words, a moving clock goes slower than a sta-
tionary one. This phenomenon is referred to as the dila-
tion of time. 

The time measured by the clock moving together with 
the body in which a certain process takes place is called the 
proper time of that body. It 
is denoted by Ato. As it fol- 	at 
lows from Eq. (6.4) the proper 	ato 
time interval is the shortest. 	40 
The time duration At of the 
same process in another ref- 	3.0 
erence frame depends on the 
velocity V of that frame with 	2.0 
respect to the body in which 
the process takes place. This 	1.0 
dependence is quite apprecia- 
ble at velocities V comparable 
to that of light (Fig. 111). 

Thus, as distinct from clas-
sical mechanics the rate of 
time flow actually depends on 
the state of motion. There is 
no such thing as universal time, and the notion of the "time 
interval between two given events" proves to be relative. 
The statement that a certain number of seconds has passed 
between two given events is meaningful only when the ref-
erence frame, relative to which it is valid, is indicated. 

The absolute time of classical mechanics is an approximate 
notion in the theory of relativity holding only for low (com-
pared to the velocity of light) relative velocities of reference 
frames. This follows directly from Eq. (6.4) and is seen 
from Fig. 111: At = At0  at V < c. 

So, we reach a fundamental conclusion: in a reference 
frame moving together with a clock, time flows slower 
(from the standpoint of the observer with respect to whom 

0 01 01 03 040506 0798 091.0 
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Fig. 11.1 
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the given clock moves). The same is true for all processes 
proceeding in reference frames moving with respect to an 
observer. 

Naturally, one may ask whether an observer in the K' 
frame, which moves relative to the K frame, realizes that 
his clock goes slower compared to the clock of the K frame. 
Obviously, he does not. This immediately follows from the 
principle of relativity. If the K' observer also noticed the 
dilation of time in his reference frame, that would 
mean that for both observers K' and K time flows more 
slowly in one of the inertial reference frames. From that 
fact the observers might have inferred that one of the iner-
tial reference frames differed from another, which is in 
contradiction with the principle of relativity. 

From this it follows that the dilation of time is re-
ciprocal and symmetric relative to both inertial reference 
frames K and K'. In other words, if in terms of the K frame 
the clock of the K' frame goes slower, then in terms of the 
K' frame it is the clock of the K frame that goes slower 
(and with the same deceleration factor). This circumstance 
is evidence that the dilation of time is a purely kinemat-
ic phenomenon. It is an obligatory consequence of the 
velocity of light being invariant and cannot be attributed 
to some variation of clock properties caused by motion. 

Eq. (6.4) has been experimentally confirmed by explain-
ing the seemingly mysterious behaviour of muons travers-
ing the Earth's atmosphere. Muons are unstable elementary 
particles whose average lifetime is 2.10-s s, this time being 
measured when the particles are at rest or moving with 
low velocities. Muons are generated in the upper layers of 
the atmosphere at a height of 20 to 30 km. Were the life-
time of muons independent of velocity, they would travel, 
even moving with the velocity of light, only about c At = 
= 3 .108 .2 -10-6  m = 600 m. Observations indicate, howe-
ver, that a substantial number of muons nevertheless reach 
the Earth's surface. 

The explanation is that the interval 2.10-s s is the prop-
er lifetime At, of muons, time measured by a clock moving 
together with them. Since the velocity of these particles 
approaches that of light a time interval measured by a clock 
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on Earth is much longer (see Eq. (6.4)) and turns out to 
be sufficient for muons to reach the Earth's surface. 

In conclusion a few words about the so-called "clock para-
dox", or "twin paradox". Suppose there are two identical 
clocks A and B, with clock A resting in some inertial refer-
ence frame and clock B first moving away from clock A 
and then returning to it. The clocks are assumed to show 
the same time at the original moment, when they are locat-
ed side by side. 

In terms of clock A clock B moves, and therefore its 
rate is slower and during its travel it will lag behind clock 
A. But in terms of clock B it is clock A that moves and 
therefore on its return it will turn out to be slow. This 
evident incongruity constitutes the substance of the "para-
dox". 

Actually, we made a fundamental mistake when we ar-
gued in terms of clock B since the reference frame fixed to 
that clock is non-inertial (it first moves away with accelera-
tion and then comes back), and we cannot in this case use 
results related only to inertial reference frames. A detailed 
calculation lying outside the special theory of relativity 
indicates that the clock moving with acceleration (in our 
case clock B) goes slower, and therefore it is this clock that 
is behind when it returns to its initial point. 

Lorentz contraction. Suppose rod AB moves relative to 
the K reference frame with the constant velocity V (Fig. 112) 
and the length of the rod in the reference frame K' fixed 
to the rod is equal to I,. Our task is to determine the length 
1 of that rod in the K frame. 

B 	V 

AM  
pp 	X 

Fig. 112 

For this purpose let us conduct the following imaginary 
experiment. Let us mark a point M on the x axis of the 
K frame and place a clock at that point. Using that clock 
we can measure the time of flight Ato  of the rod past the 

A 
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point M. Then we may state the sought length of the rod 
in the K frame to be equal to 

/ = VAt0. 

An observer fixed to the rod registers a different time 
of flight. In fact, from his point of view the clock which 
registered the time of flight Ato  moves with the velocity 

K 
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Fig. 113 

V and therefore registers "someone else's" time. In accordance 
with Eq. (6.4) the observer's "own" time of flight is longer: 

10 	VAt. 

From these two equations and Eq. (6.4) we get 

1110 = Ato/At—yi-132 
or I 	 (6.5) 

where 3  = vie. The length / 0  measured in the reference 
frame where the rod is at rest is referred to as the proper 
length. 

Thus, the longitudinal length of a moving rod turns out 
to be shorter than its proper length, i.e. I< lo. This phenom-
enon is called the Lorentz contraction. Note that this 
contraction occurs only in longitudinal dimensions of bod-
ies, that is, dimensions along the motion direction, where-
as the transverse dimensions do not vary, as it was shown 
above. As compared to the shape of a body in the reference 
frame where it is at rest, its shape in the moving reference 
frame may be characterized as oblate in the motion direc-
tion. 

The length contraction of a moving rod is illustrated 
in Fig. 113, in which it is seen that in the reference frame 
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fixed to the rod its length 1, = 5 m, whereas in the K 
frame relative to which the rod moves with the velocity V = 
= 4/5 c its length 1 = 3 m. 

It follows from Eq. (6.5) that the degree of contraction 
depends on the velocity V. This dependence becomes espe-
cially pronounced at velocities V comparable with the 
velocity of light (Fig. 114). 

So, in different inertial reference frames the length of 
the same rod turns out to be different. In other words, 
length is a relative notion which is meaningful only with 
respect to one or another reference frame. A statement about 

the length of a body being 
o 

1.0 	 equal to some number of me- 
0.9 	tres has no sense unless the 
0.8 	reference frame relative to 
0.7 	which the length is measured 
ag 	is indicated. 
0. 5 	As it follows from Eq. (6.5) 
0,4 	and is seen in Fig. 114 1 
0.3 	10  at low velocities (V 
0.2 	c), so that the length of a 
0.1 	body acquires an almost abso- 

lute meaning. 
01 02 03 04 05 06 07 08 02 1.0 

It should be pointed out 
that the Lorentz contraction, 

Fig. 114 	 just as the dilation of time, 
must be reciprocal. This 

means that if we compare two rods moving relative to each 
other and having equal proper lengths, in terms of each of 
the rods the length of the other one is shorter in the same 
proportion. Were it not so, there would have appeared an 
experimental possibility to distinguish between the inertial 
reference frames fixed to the rods, which, however, contra-
dicts the principle of relativity. 

This points to the fact that the Lorentz contraction is 
also a purely kinematic phenomenon: no stresses causing 
deformations appear in a body. 

It should be emphasized that the Lorentz contraction 
of bodies in the direction of their motion as well as the 
dilation of time are real and objective facts by no means 
associated with any illusions of an observer. All the values 

p= V/c 
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of dimensions of a given body and of time intervals ob-
tained in different reference frames are equivalent, that is, 
all of them are "true". These statements are difficult to 
comprehend only because of our habit, based on routine 
experience, to regard length and time intervals as absolute 
notions while actually this is not so. The notions of length 
and time interval are as relative as those of motion and rest. 

§ 6.4. Lorentz Transformation 

Now we have to solve the fundamental problem of trans-
formation of coordinates and time. Here we mean the for-
mulae relating the coordinates and time moments of the 
same event in different reference frames. 

Could the Galilean transformation possibly serve the 
purpose? Recall that this transformation is based on the 
assumption that the length of bodies is invariable and time 
flows at the same rate in different reference frames. In the 
previous section, however, we found out that in fact this 
is not so: the rate of time flow and the length of bodies 
depend on the reference frame. These are inevitable conse-
quences of Einstein's postulates. Therefore, we are com-
pelled to reject the Galilean transformation, or, more precise-
ly, to recognize it as a special case of some more general 
transformation. 

Thus, we have to obtain the transformation formulae 
which (i) take into account the dilation of time and 
the Lorentz contraction (i.e. are, in the final analysis, 
consequences of Einstein's postulates), and (ii) reduce to 
the Galilean transformation formulae in the limiting case 
of low velocities. Let us proceed to the solution of this 
problem. 

We shall consider two inertial reference frames K and 
K'. Suppose the K' frame moves with the velocity V rela-
tive to the K frame. Let us orient the coordinate axes of 
the two frames as shown in Fig. 115: the x and x' axes coin-
cide and are directed in parallel with the vector V, and 
the y and y' axes are parallel to each other. Let us position 
at various points of the two reference frames identical clocks 
and synchronize them, separately the clocks of the K frame 
and the clocks of the K' frame. And finally, let us adopt 
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the moment when the origins 0 and 0' coincide as the zero 
time reading in both frames (t = t' = 0). 

Suppose now that at the moment t at the point with the 
coordinates x, y in the K frame a certain event A takes 
place, e.g. a bulb flashes. Our task is to determine the coor-
dinates x', y' and the time moment t' of that event in the 
K' frame. 

The problem concerning the y' coordinate was solved at 
the beginning of this section, where it was shown (see Eq. 
(6.3)) that y' = y. Therefore, we immediately pass to 
searching the x' coordinate of the event. The x' coordinate 
describes the proper length of the segment 0' P resting in 
the K' frame (Fig. 115). The length of the same segment in 

the K frame where the measure- 
K'1 	 ment is taken at the moment 

t is equal to x — Vt. The rela- 	  A 
Tr 	 tionship between these lengths 

Y is specified by Eq. (6.5), from 
which it follows that x — 
— Vt = x' I/ 1 — 132  . Whence 

0 	0' 	P 	.z 1 	= (x— Vt)11/ 1— (P. 

(6.6) 

On the other hand, the x co- 
ordinate describes the proper 

length of the segment OP at rest in the K frame. The length 
of the same segment in the K' frame where the measurement 
is taken at the moment t' is equal to x' 	Vt'. Taking into 
account Eq. (6.5) once again, we obtain x' 	Vt' = 
= 	1 — 132, whence 

x= (x' +-U)l-V-1-132. 	 (6.6') 

The obtained formulae make it possible to determine the 
relationship between the time moments t and t' of the event 
A in both reference frames. For this purpose it is sufficient 
to eliminate x' or x from Eqs. (6.6) and (6.6'), whereupon 
we get: 

= (t— xV/c2)/V1 — (32; t = (t' x/V/c2)/1/ 1 —132. (6.7) 

Eqs. (6.3), (6.6), (6.6') and (6.7) are referred to as the 
Lorentz transformation. They play a key part in the theory 

Fig. 115 
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of relativity. Using these formulae, the coordinates and time 
of any event can be transformed on transition from one iner-
tial reference frame to another: 

Thus, the Lorentz transformation on transition from the K 
frame to the K' frame takes the form 

and for the reverse transition from the K' frame to the K 
frame 

where p = V/c and V is the velocity of the K' frame relative 
to the K frame. 

It should be immediately emphasized that the symmetry 
(a similar form) of Eqs. (6.8) and (6.9) is the consequence 
of the complete equivalence of both reference frames (the 
different sign of V in these formulae is only due to the oppo-
site motion direction of the K and K' frames relative to 
each other). 

The Lorentz transformation differs drastically from the 
Galilean transformation (6.1), but the latter can be obtained 
from Eqs. (6.8) and (6.9) if the formal substitution c = oo is 
made in them. What does this mean? 

At the end of the foregoing section it was mentioned 
that the Galilean transformation is based on the assump-
tion of clocks synchronized by means of signals propagating 
instantaneously. From this fact it follows that the quantity 
c plays in the Lorentz transformation the part of the veloc-
ity of the signals utilized for clock synchronization. When 
this velocity is infinitely great, we get the Galilean trans-
formation; when it is equal to the velocity of light, the 
Lorentz transformation. Thus, the Lorentz transformation 
is based on the assumption of clock synchronization by 
means of light signals possessing ultimate velocity. 

The remarkable feature of the Lorentz transformation 

(6.8) 

(6.9) 

14-0539 
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is the fact that at V < c it reduces* to the Galilean trans-
formation (6.1). Thus, in the limiting case V < c the trans-
formation laws of the theory of relativity and classical 
mechanics coincide. This means that the theory of relativ-
ity does not reject the Galilean transformation as incorrect 
but includes it into the true transformation laws as a spe-
cial case that is valid at V <<  c. In what follows we shall 
see that this reflects the general relationship between the 
theory of relativity and classical mechanics: the laws and 
relations of the theory of relativity turn into the laws of 
classical mechanics in the limiting case of low velocities. 

Next, from the Lorentz transformation it is seen that 
at V > c the radicands become negative and the formulae 
lose physical meaning. This corresponds to the fact that 
bodies cannot move with a velocity exceeding that of light 
in vacuo. It is even impossible to use a reference frame mov-
ing with the velocity V = c; in this case the radicands 
turn into zero and the formulae lose physical meaning. This 
means that no reference frame can in principle be fixed, 
for example, to a photon moving with the velocity c. Ex-
pressed otherwise, there is no reference frame in which a 
photon is at rest. 

And finally, it should be noted that the time transforma-
tion formulae contain a spatial coordinate. This significant 
circumstance reveals the inseparable relationship between 
space and time. In other words, we should not speak sepa-
rately of space and time but of unified space-time in which 
all physical phenomena take place. 

§ 6.5. Consequences of Lorentz 
Transformation 

Concept of simultaneity. Suppose two events Al  (x1, yi , 
t1) and A 2  (x2, y2, t 2) occur in the reference frame K. Let 
us find the time interval separating these events in the 
K' frame moving with the velocity V along the x axis as 

* Strictly speaking, it is also required that x/c 	t, i.e. the 
times of propagation of light signals over the distances typical for 
the problems considered (x/c) should be less than the time intervals 
we discuss here. When this condition is satisfied, the signals may be 
regarded as propagating instantaneously. 
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shown in Fig. 115. In accordance with the time transforma- 
tion formula (6.8) the sought time interval is equal to 

(t2 — 	 v/c2  t2  - t; = 	(6.10) 
p2 

From this it follows that events which are simultaneous in 
the K frame (t2  = t1) are not simultaneous in the K' frame 
(t2 — t; 0). The only exception is the case when the two 
events occur in the K frame simultaneously at points with 
the same values of the x coordinate (the y coordinate may 
have any value). 

Simultaneity is thus a relative concept; events which 
are simultaneous in one reference frame are not simulta-
neous in the general case in another reference frame. When 
discussing simultaneity of ,events, one has to specify the 
reference frame relative to which simultaneity occurs. 
Otherwise, the concept of simultaneity loses its meaning. 

It follows from relativity of simultaneity that clocks 
positioned along the x' axis in the K' frame and synchro-
nized togetherLin that reference frame show different tinie 
in the K frame. Indeed, for the sake of simplicity let us 
consider the moment when the origins 0 and 0' of the two 
reference frames coincide and the clocks at those points 
show the same time: t = t' = 0. Then in the K frame the 
clock at a point with the coordinate x shows at that moment 
the time t = 0, while the clock of the K' frame at the same 
point shows a different time, t'. Indeed, in accordance with 
the time transformation formula (6.8) 

t' = —xV/c2  1-132. 

It is seen from this that at the moment t = 0 (in the K 
frame) the clock of the K' frame shows a different time 
depending on the x coordinate (the so-called local time). 
This is shown in Fig. 116a. In terms of the K' frame the 
situation is reciprocal (Fig. 116b), as it in fact should be 
due to the equivalence of both inertial reference frames. 

Next, it is seen from Eq. (6.10) that for events simulta-
neous in the K frame the sign of the difference t2 — t; is 
defined by the sign of the expression —(x 2  — x1) V. Conse-
quently, in different reference frames (with different values 
of the velocity V) the difference t2 — t; is different not only 

14* 
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in magnitude but also in sign. This fact signifies that the 
sequence of the events Al  and A 2  may be either direct or 
reverse. 

This, however, does not apply to events obeying the 
causality principle. The sequence of such events (cause 

effect) is the same throughout all reference frames. This 
can be easily demonstrated through the following reason-
ing. Let us consider, for example, a firing, event Al  (xi, 
t1), and a hitting of a target with a bullet, event A 2  (x2 , 
assuming that both events occur on the x axis. In the K 
frame 1 2> t1, the velocity of the bullet is v, and assuming, 

for definiteness, x2  > x1, we may write x2  — x, = v (t2  
t1). Substituting this equality into Eq. (6.10), we get 

t2-1;= (t2 — t1) (1 - VV/C2)/V 	P2. 

The quantity in the second parentheses of the numerator is 
always positive as V < c (even at v = c when the cause-
and-effect relationship is determined by signals or inter-
actions propagating with the highest possible velocity). 
It follows that if t 2  > t1, then t; > t;, i.e. the sequence of 
the cause-and-effect events is the same in all inertial ref-
erence frames. 

Lorentz contraction. Let us orient a rod resting in the 
K' frame along the x' axis, i.e. along the motion direction 
of this reference frame relative to the K frame. Suppose 
the length of the rod in the K' frame is equal to 1, = 

x; (the proper length). 
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In the K frame, relative to which the rod moves, its 
length is defined as the distance l between the coordinates 
x 2  and x1  of its ends taken at the same moment of time (t 2  = 
= t1). Making use of the Lorentz transformation (6.8) 
for the x' and x coordinates, we get 

/0  = x; — x; = (x2  — x1)/1/1 — 132  = // V 1 — P2, 
whence 

l -= 	_ pa. 	 (6.11) 

Thus, the length / of the moving rod proves to be less than 
its proper length 10 , and in each reference frame it has its 
own value. This result is in a complete agreement with the 
result obtained in Eq. (6.5). 

It follows from the definition of the length that the rela-
tivity of the length of the given rod is a consequence of the 
relativity of simultaneity. The same pertains to the form 
of any body: its dimensions in the motion direction are 
also different in different inertial reference frames. 

Duration of processes. Suppose that at the point with 
the coordinate x' of the reference frame K' a certain process 
takes place whose duration in that frame is equal to At, --- 

— t; (the proper time of the process). Let us deter-
mine the duration of the given process At = t 2  — t1  in the 
K frame relative to which the K' frame moves. 

For this purpose we shall resort to the Lorentz transforma-
tion of time. As the process takes place at the point with 
the fixed coordinate x' of the K' frame, it is more conve-
nient to use Eq. (6.9): 

t2  — t, == (t,' — t;) / V 1 — 132  
or 

At = At0/V1-02. 	 (6.12) 

It is seen that the duration of the same process is different 
in different inertial reference frames. In the K frame its 
duration is longer (At > At0), and therefore in that ref-
erence frame it proceeds slower than in the K' frame. This 
fact is in a complete agreement with the result concerning 
the rate of the same clock in different inertial reference 
frames, that is, Eq. (6.4). 
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Interval. The relativity of spatial and time intervals 
by no means implies that the theory of relativity denies 
the existence of any absolute quantities. In fact, the oppo-
site is true. The theory of relativity tackles the problem 
of finding such quantities (and laws) which are indepen-
dent of the choice of the inertial reference frame. 

The first of these quantities is the universal velocity with 
which interactions propagate; it is equal to the velocity 
of light in vacua. The second invariant value, just as impor-
tant, is the so-called interval sn  between events I and 2, 
whose square is defined as 

4, = c2tf2  — lf, = in v, 1 	 (6.13) 

where t12  is the time interval between the events and l„ 
is the distance between the two points at which the given 
events occur (l% = x,22  + yi22  + .4.2). 

We can easily see that the interval is invariant, calculat-
ing it directly in the reference frames K and K'. Making 
use of the Lorentz transformation (6.8) and taking into 
account that y12  = y12  and 4.2  = z12, we can write: 

(t12 -Xi2V/C2)2 	(.2C12- Vti2)2 	9,2 	2 
C2C2  - = C2  12 	12 	 = C-1, 12 - X12' I -32 	 - 

Thus, it is clear that the interval is really invariant. In 
other words, the statement "two events are separated by a 
certain interval s" has an absolute meaning for it is valid 
in all inertial reference frames. The invariant interval 
plays a fundamental role in the theory of relativity and 
provides an efficient instrument of analysis and solution 
of many problems (see, e.g., Problem 6.4). 

Types of intervals. Depending on what component, spa-
tial or temporal, prevails, an interval is referred to as either 

space-like (in  > cti,), or 
time-like 	> 

In addition to these two types of intervals there is another 
type, light-like (cti, 

If the interval between two events is space-like, a refer-
ence frame K' can always be found in which these events 
occur simultaneously (t'i, = 0): 

OP —12  — l' 2  12 	12 	12' 
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If the interval is time-like, one can always find a reference 
frame K' in which both events occur at the same point 
(li, = 0): 

c2t% — l;.2 = C  t12 . 

In the case of space-like intervals 112  > ct12, i.e. the 
events cannot influence each other in any reference frame, 
even if communication between the events is carried out 
at the ultimate velocity c. This is not the case with time-
like and light-like intervals, for which 112  < ct12. Conse-
quently, events separated by such intervals may be in a 
cause-and-effect relationship with each other. 

Transformation of velocity. Suppose in the x, y plane 
of the K frame a particle moves with the velocity v, whose 
projections are equal to vx  and vy. Using the Lorentz trans-
formation (6.8), we find the velocity projections vx and 
vy of that particle in the K' frame moving with the velocity 
V as shown in Fig. 115: 

	

dx' 	dx' 	1 	vx — V 

	

vx —  dt' 	dt dt'/dt 	 ' 

dy' 	dy' 	1 	vy  V1-132  
dt' 	dt dt'/dt 	1—v,,Vc2  ' 	

(6.14) 

where [3 = V/c. Hence, the velocity of the particle in the 
K' frame is 
	2 	V(Vx - V)2 + VD (1-132) 

	

V'  = 1/V 2  Vy 	 (6.15) 1— v xvtc2 

These formulae yield the so-called relativistic law of trans-
formation of velocity. At low velocities (V c c and v << c) 
they reduce, as one can easily see, to the classical formulae 
of transformation of velocity: 

vx  vx — V; vy = Vy,  

Or in a vector form 
v' = v — V. 

Note that the last formula is valid only in the Newtonian 
approximation; in the relativistic case it has no meaning, 
for the simple law of velocity composition cannot be ap-
plied here. This can easily be demonstrated by the follow-
ing example. Suppose the velocity vector v of a particle 

vy 
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in the K frame is perpendicular to the x axis, i.e. has the 
projections vx  = 0 and v y  = v. Then in accordance with 
Eq. (6.14) the velocity projections of the same particle in 
the K' frame are 

v'x  —V; v=.-vy -1/ 1— p2. 	(6.16) 

This means that in the given case (v j_ x axis) the 	pro- 
jection diminishes on transition to the K' frame and clearly 
v' 	v — V (Fig. 117). 

Let us now examine the case when two particles move 
toward each other with the same velocity v in the K refer- 

ence frame. What is the 
y K y'1,K velocity v' of one particle 

with respect to the other? 
In the non-relativistic ap-
proximation the obvious an-
swer is 2v. In the case of 
high velocities we have to 
apply the first formula of 
(6.14), assuming the parti-
cles to move along the x 
axis. Let us fix the K' ref-

° erence frame to one of the 
particles, e.g. to the one 

Fig. 117 	 moving in the positive di- 
rection of the x axis. Then 

the problem reduces to finding the velocity of the other par-
ticle in that reference frame. Substituting vx  = — v and 
V = v into Eq. (6.14), we obtain 

vx = — 2v/[1 (v/c)2]. 

The minus sign means that in the given case the second 
particle moves in the negative direction of the x' axis of 
the K' reference frame. It should be pointed out that even 
when both particles move almost with the highest possible 
velocity v = c, the velocity v' cannot exceed c (which is 
immediately seen from the last formula). 

And finally, let us check directly whether the relativistic 
formulae of velocity transformation correspond to Einstein's 
second postulate concerning the constancy of the velocity 
of light c in all inertial reference frames. Suppose vector 

LI0_.______ 
X x' 
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c has the projections cx  and cy  in the K frame, i.e. c2  = 
= d ± 4. Now let us transform the radicand in Eq. 
(6.15) as follows: 

c x-V )2 

	

— 2cxV ±V 2 	— (1 — —V :\ =- (c- c 
After this it is not difficult to get v' = c. Of course, in the 
general case vector c' is oriented differently in the K' frame. 

§ 6.6. Geometric Description 
of Lorentz Transformation 

Let us now consider the relativistic concepts of space-
time using the geometric approach developed by Minkowski, 
which helps to describe the substance of the Lorentz trans- 
formation in a different 
light. 

	

r=ct 	iv'  

	

Minkowski diagrams. Sup- 	 / 	,/C 
pose there are two inertial ref- 

	

erence frames K and K', the 	/ 	/ 

	

latter moving relative to the 	/ 	/ 

	

former with the velocity V. 	/1 	/ 
*--, 

	

First, let us draw the so-called 	/ 	/ .---z 

	

space-time diagram for the 	6  / 
/ 	r 	-- 

	

/ 	.---- 
----1 

	

K frame, confining ourselves 	/ / 	---- 

	

to the more simple and 	/,//>1B 

	

graphic unidimensional case 	de-  
0 	 1 (Fig. 118). In this diagram the 

	

ordinate axis usually marks 	 Fig. 118 
not the time t itself but the 
quantity t = ct (where c is the 
velocity of light). We may thus calibrate both axes, Ox 
and Ox, in metres using the same scale. 

Each point of the diagram, referred to as a world point, 
describes a certain event A (x, t). Each particle (even a 
stationary one) has a corresponding world line in this dia-
gram. For example, the Ox axis is the world line of a parti-
cle resting at the point x = 0. The Ox axis depicts the to-
tality of events simultaneous with the event 0 irrespective 
of the x coordinate. 

The world line corresponding to light propagating from 
the point 0 in the positive direction of the x axis is the 
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bisector OC of the right angle (the dotted line in Fig. 11.8). 
Let us plot the r'  and x' axes of the K' frame in this dia-

gram. Assuming x' = 0 in the Lorentz transformation 
(6.8), we obtain the world line of the origin of the K' frame. 
Then x = Vt = PT, where p = -re. This is the equation 
of the straight line forming the angle 0 with the x axis, 
which can be determined from the formula tan 0 = 13. 
The straight line obtained is the world line depicting the 
totality of events occurring at the origin of the K' frame, 

i.e. it is the r' axis. 

/Di 	 The x' axis of the K' 
frame is a straight line de- 

/ pitting all the events which 
are simultaneous with the 
event 0 in the K' frame. 
Assuming t' = 0 in the 
Lorentz transformation 
(6.8), we get ct = xV/c, 
or t = PX. From this it fol-
lows that the x' axis forms 
the same angle 0 (tan 0 = 
= (3) with the x axis. 

x=1 Thus, the and x' axes 
of the K' frame are ar-
ranged symmetrically with 
respect to the world line 

OC of light, and the coordinate grid (x', x') of the K' frame 
proves to be oblique-angled. The higher the velocity V of 
the K' frame, the more "oblate" its coordinate grid is. As 
V c it degenerates into the world line of light. 

The last thing left to be done in the diagram is to scale 
the x, x, x' axes of both reference frames. The easiest way 
to do this is to utilize the invariance of the interval: 

s2 = T2 ____ x2 = 

Let us mark on the v axis of the K frame the point corre-
sponding to a time unit in the K frame (-E.  = 1, Fig. 119) 
and then draw through that point the hyperbola 

tie — x2  = 1, 

Fig. 119 
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whose points conform to the invariant interval s = 1 
(since when x = 0, i = 1 and s = 1). Its asymptote is the 
world line of light. The hyperbola crosses the T'  axis at the 
point corresponding to a time unit in the K' frame. Indeed, 

— x'2  = 1 and if x' = 0, then T' = 1. 
The x and x' axes are calibrated in much the same way: 

a hyperbola x2  — T2  = 1 is drawn through the point x = 
= 1, T = 0 of the K frame; then the point at which the 
hyperbola crosses the x' axis, and where t' = 0, marks a 
unit of length (x' = 1) in the 
K' frame (since x' 2  — -C2  = 1 
and if T'  = 0, then x' = 1). 

The Minkowski diagram thus 
plotted illustrates the transition 	,/ A 	,/ 	B 
from the K to K' frame and con- 
forms 

 
 to the Lorentz transforma- 

tion (6.8). In accordance with 
the principle of relativity the 
reverse transition from the K' 	„- ,--- 

/ 
to K frame is illustrated by a 

0 diagram of a quite symmetric 
form: the coordinate grid of the 	 Fig. 120 
K' frame is rectangular and the 
K frame is oblique-angled. We suggest that the readers 
themselves should demonstrate this. 

Now we shall show how the Minkowski diagram assists 
in interpreting simply and graphically such relativistic 
effects as, for example, the relativity of simultaneity, the 
dilation of time, and the Lorentz contraction. 

Relativity of simultaneity follows immediately from 
Fig. 120. In fact, events A and B simultaneous in the K 
frame turn out to occur at different moments in the K' 
frame. The event A occurs later than event B by the time 
AT'. 

Dilation of time. Let us consider two clocks K and K' 
which show the same time -c = = 0 at the moment when 
they are at the same point in space (x = x' = 0). The 
clock K is assumed to be at rest in the K frame and the 
clock K' in the K' frame. 

Suppose that according to the clock K a time unit elapses 
(T = 1); this corresponds to the event A in the diagram 
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(Fig. 121). Let us draw a hyperbola ¶2  — x2  = 1 through 
the point A and also a straight line AB' describing all the 
events which are simultaneous with the event A in the K 
frame. The intersection of the T'  axis, i.e. the world line 
of the clock K', with the hyperbola gives the point A' (t' = 
= 1) and with the straight line OB' the point B' (r' < 1). 
This means that in the K' frame a time unit has not yet 

Fig. 121 

.0 Iv' 
/ 
/ 

0 	B A (X=1) 

Fig. 122 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

elapsed according to the moving clock K' when the clock 
K registers the passing of a time unit. This fact signifies 
that the clock K' goes slower. 

Let us utilize the diagram to make sure that the effect of 
the dilation of time is reversible. Draw a straight line BA' 
parallel to the x' axis which describes all the events which 
are simultaneous with the event A' in the K' frame ('r' = 
= 1). The point B at which this straight line intersects the 
world line of the clock K, the axis, shows that x < 1, 
i.e. it is the clock K whose rate is now slower with respect 
to the K' frame. 

Lorentz contraction. Suppose a one-metre rod is at rest 
in the K frame (the segment OA in. Fig. 122). The straight 
lines OT and AD are the world lines of its ends. To measure 
the length of that rod in the K' frame, we have to determine 
the coordinates of its ends simultaneously in that frame. 
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But in the K' frame the event 0 (the determination of the 
left end of the rod) is simultaneous with the event B' repre-
sented by the point of intersection of the world line of the 
right end of the rod with the simultaneity line Ox'. It 
is seen from the diagram that in the K' frame OB' < OA', 
i.e. the rod moving relative to the K' frame is shorter than 
one metre. 

It can be demonstrated just as easily that the Lorentz 
contraction is reversible as well. If a one-metre rod is at 
rest in the K' frame (segment OA'), then, drawing the world 
lines of its ends in that frame (Ox' and A'B), we see that 
in the K frame OB <OA pro- 
vided the coordinates of the 	K 4K /  
rod's ends are determined si- "1 	V 
multaneously, i.e. the K' rod 	I—v.-- 
experiences the Lorentz con-
traction with respect to the 
K frame. 

L__ 
Problems to Chapter 6 

e 6.1. A stationary rod of 
length / = 1.00 m is oriented at the 
angle 0 = 45° to the x axis of the K frame (Fig. 123). Find its length 1' 
and the corresponding angle 0' in the K' frame moving relative to 
the K frame with the velocity V = c/2 along the x axis. 

Solution. The rod's length in the K' frame is 

= 1/-  (Ax')2  (Ay')2  = j/(Ax)2  (1— 

Taking into account that Ax = / cos 0 and Ay = / sin 0, we get 

	

/' = / 	C 0S2  0 = 0.94 m. 

The angle 0' in the K' frame is found from its tangent: 

Ay' 	Ay 	tan 0  
tan 0' =   • 	0' =49°. 

Ax' 	Ax 	[32 	Y1-132 

It should be pointed out that the results obtained are independent 
of the direction of the velocity of the K' frame. • 6.2. A rod moves along a ruler with a certain constant velocity. 
When the positions of both ends of the rod are determined simulta-
neously in the reference frame fixed to the ruler, the length of the 
rod ll  = 4.0 m. However, when the positions of the ends of the rod 
are determined simultaneously in the reference frame fixed to the rod, 

Fig. 123 

(AY)2. 
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the difference of readings made by the ruler is equal to l2  = 9.0 m. 
Find: 

(1) the proper length of the rod; 
(2) the velocity of the rod relative to the ruler. 
Solution. The proper length of the rod /0  is related to ll  and /2  

via the following formulae: 

11=10 	[32; 	10 =12  yi-p2, 

where f3 is the velocity of the rod expressed in units of the velocity 
of light. From these formulae we obtain: 

(1) 10  = y 1112  = 6 m; (2)13 = 	- 11112 = 5/3 	0.75 or v = 0.75 c. 

• 6.3. Rod-and- tube "paradox". A tube AB of length 1.0 m is 
at rest in the K frame. Let us take a rod A'B' of length 2.0 m and 
accelerate it to such a velocity that its length in the K frame becomes 
equal to 1.0 m. Then at a certain moment the rod, flying through the 

V 	A 	8 

Fig. 124 

tube, fits in it completely. However, "in terms of" the rod it is the 
tube that becomes reduced by half, and consequently the rod (2.0 m) 
does not fit in the tube (0.5 m). Is there a contradiction here? 

Solution. "In terms of" the tube the ends of the flying rod coincide 
with the ends of the tube simultaneously. "In terms of" the rod the 
ends do not coincide simultaneously: first, the ends B and B' coincide 
(Fig. 124), and after the time interval At, the ends A and A'. The 
time interval At may be calculated as follows: 

At=(L0 —/)/V=6.10-9  s, 

where L0  = 2.0 m is the proper length of the rod, 1 = 0.5 m is the 
length of the tube moving relative to the rod, and V is its velocity. 
The latter is found from Eq. (6.11): V = c 3/2. 

• 6.4. Find the distance which an unstable particle traverses 
in the K frame from the moment of its generation till decay, provided 
its lifetime in that reference frame is At = 3.0.10-6  s and its proper 
lifetime is At0  = 2.2.10-6  s. 

Solution. Using Eq. (6.12), we determine the velocity V of the 
particle and then the distance sought: 

1= At•V= At•c 1/ 1 —(Ato/At)2 =0.6 km. 

Another method of solution is based on the invariance of the 
interval: 

c2  (At0)2  = C2  (At)2 — /2, 
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where on the left-hand side we write the squared interval in the frame 
fixed to the particle and on the right-hand side the squared interval 
in the K frame. From this we ob- 
tain the same value of 1. 

K 	Alf' • 6.5. Doppler effect. A station- 
ary detector P of light signals is 
located in the K frame (Fig. 125). 	i 	V 
A source S of light signals approa- 
ches the detector with the velocity 
V. In the reference frame fixed to 

0 	0' 	 x -z1  the source the signals are emitted 
with the frequency vo. With what 
frequency v does the detector re- 	 Fig. 125 
ceive these signals? 

Solution. The time interval between two consecutive signals 
(pulses) in the K' frame fixed to the source is equal to To  = 1/vo. As this 
frame moves with the velocity V, the corresponding time interval 

in the K frame is, in accordance 
with Eq. (6.12), longer: 

T =Toll/ 1— 02, 13= vic. 
The distance between two consecu-
tive pulses in the K frame is equal 
to 

= cT —VT = (c —V) T= 
T 0 

13 
=--(c V) 

 IR 	
(1) 

2 
Therefore, the frequency re-

ceived by the detector is equal to 

c 	c 	—  [3 2 	/.  1+13  V — = 
A, 	To  (c— V)

=Vo 
 I 	1-13 

-1.0 -08-06-04-02 0 0.2 04 05 
Receding 	Approach 

V == Vo 
1 —13 

When the source approaches 
(as in our case), then v > vo, but 

when it moves away, v < vo  (in this case the sign of 0 changes to the 
opposite, Fig. 126). The formula obtained for the frequency v ex-
presses the so-called radial Doppler effect. 

Note that in classical physics T = To  since time is absolute. 
Therefore, the classical formula for the Doppler effect does not contain 
the factor Y1 — 132, which is replaced by unity: 

v = vo/(1 — 0) z vo  (1 + V/c). 

At the same time let us consider a more general case: in the K 
frame the velocity V of the source forms the angle a with the line of 
observation (Fig. 127). In this case it is sufficient to replace V in 

13=v/0  Or 
1/1-132  

Fig. 126 
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Eq. (1) by V cos a. Then 

V 1 —132  
V — Vo  

1 — 13 cos a • 

In particular, at a -- n/2 the so-called transverse Doppler effect is 
observed: 

v = vo  Y1 —112, 

in which the observed frequency always proves to be lower than the 
proper one vo. Incidentally, the last expression is just a consequence 2a eli 

Vcosa 

Fig. 127 

of the dilation of time in a moving reference frame; it may also 
be obtained directly from Eq. (6.12): 

v — 	 	 vo  v — 
To/ vi — 

• 6.6. Relationships between events. Fig. 128 illustrates a space-
time diagram. Each point of that diagram (a world point) describes 

r=ct,m 
6 

5 
8 

K 

0 

C 

A 

0 1 2 3 4 5 6 7 X M 

Fig. 128 

112  
2 	7Z-I  

Fig. 129 

4 

3 

2 

a certain event, that is, a coordinate and a time moment at which 
that event happens. Let us examine three events corresponding to the 
world points A, B, and C. Prove that the following relationships exist 
between these events: 
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Pair of 
events  Type of interval 

Proper time 
c•Ato, m 

Proper 
distance 
Axo,  Iff 

Possible cause- 
and-effect rela- 

tion 

AB 
AC 
BC 

Time-like 
Space like) 
Light-like; 

4 
— 
0 

— 

4 
0 

A --)- B 
None 
C –o- B 

Hint: use invariance of the interval. 
ws• 6.7. Two particles move in the K frame at right angles to each 

other: the first one with the velocity v, and the second one with v2. 
Find the velocity of one particle with respect to the other. 

Solution. Let us choose the coordinate axes of the K frame as 
illustrated in Fig. 129. When the K' frame is fixed to particle 1, 
the velocity of particle 2 in that reference frame is the value sought. 
Introducing V = v1  and vx  = 0 
in Eq. (6.15), we get 

v;= "Ilya 	= 

VA.+ v2 —(v1v2/c)2. 

Note that in accordance with the 
classical law of vector composition 

v2= V vii 	 0' 	 x 

c 6.8. Velocity direction trans-
formation. A particle moves in the K 
frame with the velocity v at the angle 0 to the x axis. Find the corre-
sponding angle 0' in the K' frame, which moves with the velocity V 
as illustrated in Fig. 130. 

Solution. Suppose the projections of the vector v in the K frame 
are equal to vx  and vy. Then the following relation is true: 

tan 0' = vy/vx. 

Taking into account Eqs. (6.14) we obtain in the K' frame 

tan 0' = vy' /v;, = vy 	—132/(vx  — V). 
After the substitution vx  = v cos 0 and vy  = v sin 0 we find 

tan 0' =  sin 0. V
-1-132  

cos 0 — V/v 

As the last equation shows, the angle transformation law for velocity 
differs from that for segments (see Problem 6.1). 

6.9. A rod oriented parallel to the x axis of the K reference frame 
moves in that frame with the velocity v in the positive direction of 
the y axis. Find the angle 0' between the rod and the I axis of the 
K' frame travelling with the velocity V relative to the K frame in 

K 

8 
L 

Fig. 130 

15-0539 
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the positive direction of its x axis. The x and x' axes coincide, the y 
and y' axes are parallel to each other. 

Solution. Suppose that at a certain moment the ends of the rod 
coincide with the x axis in the K frame. These two events, which 
are simultaneous in the K frame, are not so in the K' frame; in accor-
dance with Eq. (6.10) they are separated by the time interval 

At' --- AxV/c9i 1 —132, 

Where Ax is the proper length of the rod. In that time the right end 
of the rod shifts "higher" than the left one by Ay' = vy' At', where 

— I)Y " 	1/1 — p2 (see Eq. (6.16)). Thus, in the K' frame the rod is -- 
turned counterclockwise through the angle 0', which may be deter-
mined using the formula 

tan 0'=Ay'/Ax'=Dvic -1/-1-132, 

where Ax' = Ax -1/1 — 132  is the projection of the rod on the x' axis 
of the K' frame, and 13 = 

• 6.10. Relativistic transformation of acceleration. A particle 
moves with the velocity v and the acceleration w in the K frame. 
Find the acceleration of that particle in the K' frame, which shifts 
with the velocity V in the positive direction of the x axis of the K 
frame. Examine the cases when the particle moves along the following 
axes of the K frame: (1) x, (2) p. 

Solution. 1. Let us write each projection of the acceleration of 
the particle in the K' frame as follows: 

dvx 	dvx 	1  
wx 	dt' 	dt 	dt'/dt 

Making use of the first of formulae (6.14) and the last one of (6.8), 
we get after differentiation: 

w, 	(1 — (32)3/2  
--x 	(1 —13vx/c)3 wx; 	'4  = 	 =0.  

2. Similar calculations yield the following results: 

4=0; 4= (1 —132) wy. 

In these formulae 13 = V/c. 



CHAPTER 7 

RELATIVISTIC DYNAMICS 

§ 7.1. Relativistic Momentum 

Let us first recall two basic assumptions of Newtonian 
mechanics concerning momentum: 

(1) the momentum of a particle is defined as p = my, 
and the mass m of the particle is supposed to be indepen-
dent of its velocity; 

(2) the momentum of a closed system of particles does 
not vary with time in any inertial reference frame. 

Now we shall turn to relativistic dynamics. It is found 
here that the conservation , law for Newtonian momentum 
is not valid in the case of a closed system of relativistic 
particles. (We shall illustrate this later by a simple exam-
ple.) Thus we face the following choice: either to reject the 
Newtonian definition of momentum, or to discard the law 
of conservation of that quantity. 

Considering the immense significance of the conservation 
laws, in the theory of relativity the momentum conserva-
tion law is regarded as fundamental and the momentum 
itself is expressed accordingly*. 

First of all we shall demonstrate that the requirement 
for the momentum conservation law to hold in any inertial 
reference frame together with the relativistic transforma-
tion of velocities on transition from one inertial reference 
frame to another leads to the conclusion that the particle's 
mass must depend on the velocity of the particle (in contrast 

* The following question arises: how can the momentum conser-
vation law be of any value if momentum is defined so as to keep it 
constant? To answer the question, let us imagine a particle colliding 
with other particles in the process of its motion. Having considered 
the first collision, we define momentum so that it obeys the conserva-
tion law in that collision. In the following collisions, however, the 
situation is different: we know the momenta of the particles involved 
in those collisions, and the momentum conservation law (if it really 
exists) is valid not according to definition but due to underlying 
laws of nature. 

Experience shows that momentum thus defined really obeys the 
conservation law. At least, not a single phenomenon has been ob-
served up to now in which that law fails. 

15* 
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to Newtonian mechanics). For this purpose let us examine 
a completely inelastic collision of two particles, where the 
system is assumed closed. 

Suppose two identical particles 1 and 2 move toward 
each other in an inertial reference frame K with the same 
velocity vo  at an angle a to the x axis (Fig. 131a). In that 
reference frame the total momentum of both particles ap-
parently remains constant: it equals zero both before and after 
the collision (and the formed particle turns out to be mo-
tionless, as follows from symmetry considerations). 

Now let us see what happens in another inertial reference 
frame. First, we choose two reference frames: the K1  frame 

Fig. 131 

moving to the right with the velocity v1„ and the K 2  frame 
moving to the left with the velocity vex  (Fig. 131a). Clearly, 
particle 1 in the K1  frame and particle 2 in the K 2  frame 
move only along the y axis with velocities whose equal 
moduli we denote by u. 

Let us consider the collision in the K1  frame (Fig. 131b) 
in which particle 1 has the velocity u. We find the y compo-
nent of the velocity of particle 2 in that reference frame, 
denoting it by u'. As we mentioned, that particle moves 
with the velocity u along the y axis in the K 2  frame and at 
the same time translates together with the K 2  frame to the 
left with the velocity V relative to the K1  frame. Therefore, 
in accordance with Eq. (6.16), the y component of the ve-
locity of particle 2 in the K1  frame is equal to 

u' = u 171 — (V/c)2. 	 (7.1) 
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Now the y components of momenta of both particles may 
be written in the K1  frame as miu and m2u'. In accordance 
with Eq. (7.1) u' < u, and therefore it is easy to see that 
the momentum conservation law does not hold true in its 
conventional (Newtonian) statement. Indeed, in our case 
m1  = m2  (the particles being identical) and therefore the 
y component of the total momentum of the particles before 
the collision differs from zero while after the collision it is 
equal to zero, since the par-
ticle formed moves only 
along the x axis. 

The momentum conserva-
tion law becomes valid in 
the K1  frame if we assume 
miu = m2u'. Then from 
Eq. (7.1) we get 

m2  = mi/V 1— (V/c)2. 

When a —›- 0 (Fig. 131), 
u 0 and m1  is the mass 
of the motionless particle; 
it is denoted by mo  and is 
referred to as the rest 
mass. In that case the velocity V proves to be equal 
to v, the velocity of particle 2 with respect to particle 
1. Consequently, the last formula can be rewritten as 

m = mo/V1 — (v/c)2, 	 (7.2) 

where m is the mass of the moving particle (recall that the 
two particles are identical). The mass m is referred to as 
relativistic. As it is seen from Eq. (7.2), the latter is greater 
than the rest mass and depends on the particle's velocity 
(Fig. 132). 

Thus, we have reached an important conclusion: the 
relativistic mass of a particle depends on its velocity. In other 
words, the mass of the same particle is different in different 
inertial reference frames. 

In contrast to the relativistic mass the particle's rest mass 
mo  is an invariant quantity, i.e. is the same in all reference 
frames. For this reason we can claim that rest mass is a char-
acteristic property of a particle. But later on we shall 
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frequently use the relativistic mass m to simplify some 
conclusions, reasonings, and calculations. 

Now we shall take the last step. Using Eq. (7.2) we write 
the momentum of a relativistic particle in the following 
form: 

p = my — 

 

mo v 

  

    

Y1—(v/c)2  • 
(7.3) 

This is the so-called relativistic momentum of a particle. 
Experience confirms that the momentum thus defined does 

obey the conservation law 

	

mac 	 regardless of the inertial 
reference frame chosen. 

Note that if v < c Eq. 
(7.3) yields the Newtonian 

2 definition of momentum: 
p = mov, where mo  is in-
dependent of the velocity 
v. The velocity dependences 0 of the relativistic and 

C U the Newtonian momentum 
of a particle are compared 

Fig. 133 	 in Fig. 133. The difference 
between the momenta is 

seen to grow substantially as the velocity of a particle 
approaches that of light. 

Let us consider two examples illustrating how Eqs. (7.2) 
and (7.3) are applied. 

Example 1. In modern giant accelerators protons can be accele-
rated up to a velocity'differing from that of light by 0.01 per cent. 
How many times does the relativistic mass of such protons exceed 
their rest mass? 

In accordance with Eq. (7.2) m/mo  = 1/1/1 — p2, where 13 = v/c. 
Since p slightly differs from unity, the radicand should be trans-
formed as follows: 

1 — p2 = 	p)(1- p) p-.; 2 (1 — p). 

mlmo  ,ce, 1/ 1Y2 (1 — p) 	70. 

Example 2. At what velocity does a particle's Newtonian momen-
tum differ from its relativistic one by one per cent? by ten per cent? 

mit 

Then 
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From the condition 1 = (p — pci)lp = 1 — 1/- 1 — (v/c)2  we get 

Whence 
	 v/c = 1/11 (2 — 

v 	0.14 at 1=0.01, 
c 	A 0.45 at 1=0.10. 

Thus, the classical formula for momentum provides an accuracy better 
than one per cent at v/c < 0.14 and better than ten per cent at v/c r 
< 0.45. 

§ 7.2. Fundamental Equation of Relativistic 
Dynamics 

According to Einstein's principle of relativity all laws 
of nature must be invariant with respect to inertial refer-
ence frames. In other words, the mathematical formulations 
of laws must be identical in all these reference frames. 
In particular, this is true for the laws of dynamics. 

However, detailed analysis shows that the fundamental 
equation of dynamics of Newton mw = F does not satisfy 
Einstein's principle of relativity. The Lorentz transforma-
tion totally changes the form of the equation on transition 
to another inertial frame. 

To satisfy the requirements of the principle of relativity, 
the fundamental equation of dynamics must have another 
form and only in the case of v << c turn into the Newtonian 
equation. It is shown in the theory of relativity that these 
requirements are met by the equation 

	

dpl dt = F, 	 (7.4) 

where F is the force acting on the particle. This equation 
completely coincides in form with the fundamental equation 
of Newtonian dynamics (4.1). But the physical meaning is 
different here: the left-hand side of the equation contains 
the time derivative of a relativistic momentum defined by 
formula (7.3). Substituting Eq. (7.3) into Eq. (7.4), we 
obtain 

d 	ov 	=F  
dt v 1_0)/02 	F. m  (7.5) 

This is the fundamental equation of relativistic dynamics. 
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It can be easily seen that the equation written in this 
form ensures the invariance of momentum for a free particle 
and turns into the fundamental equation of Newtonian 
dynamics (mw = F) at low velocities (v < c). 

Moreover, the fundamental equation of dynamics, when 
written in this form, proves to be invariant relative to the 
Lorentz transformation and, consequently, satisfies Ein-
stein's principle of relativity. We shall not prove this here, 

but shall only note that on tran-
sition from one inertial reference 
frame to another the force F is 
transformed in accordance with 
definite rules. In other words, the 
force F is not an invariant in the 

m theory of relativity and its rmag- 
dt nitude and direction vary*. 

A surprising conclusion follows 
Fig. 134 	 from the fundamental equation of 

relativistic dynamics: the accelera-
tion vector w of a particle does not coincide in the gen-
eral case with the direction of the force vector F. To demon-
strate this, we write Eq. (7.5) in the following form: 

d (mv)Idt = F, 

where m is the relativistic mass of the particle. Differen-
tiating with respect to time, we obtain 

(dml dt) v 	m (dvl dt) = F. 	(7.6) 

This expression is graphically illustrated in Fig. 134. Thus, 
the acceleration vector w is indeed not collinear with the 
force vector F in the general case. 

The acceleration w coincides in direction with the vector 
F only in two cases: 

(1) F_Lv (transverse force); in this case the magnitude of 
the vector v does not vary, i.e. v = const, and Eq. (7.5) 

* As distinct from Newtonian mechanics where forces are absolute, 
in the theory of relativity the force projections perpendicular to'the 
direction of the relative velocity vector of the reference frames are 
different in these frames. The rprojections have maximum values 
in the reference frame where the-particle'is at rest at a given moment: 

Fx, 	F 	1 — (vIc)2, 
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takes the form 

— (vic)2 =F, 

whence the acceleration 

w = (F/mo) 1/ 1— (v/c)2; 

(2) F II v (longitudinal force). In this case Eq. (7.5) may 
be written in scalar form; performing differentiation with 
respect to time on the left-hand side of the equation, we 
obtain 

n10 	

mov2ic2 	\ du 

—(vIc)2 	4-  [1_0,10213121 dt 

whence the acceleration written in vector form is 

w = (F/m0)1[1—(v/c)2]3/2. 

It is not difficult to see that if the force F and the velocity 
v have the same values in both cases, the transverse force 
imparts to the particle a greater acceleration than the longi-
tudinal force. 

The fundamental equation of relativistic dynamics makes 
it possible to find the law relating to the force F acting 
on a particle provided the time dependence of the rela-
tivistic momentum p (1) is known, and on the other hand, to 
find the equation of motion of the particle r (t) if the acting 
force and the initial conditions, the velocity vo  and the 
position 1.0  at the initial moment of time, are known. 

The application of Eq. (7.5) is illustrated by problems 
7.1-7.3. 

§ 7.3. Mass-Energy Relation 

Kinetic energy of a relativistic particle. We shall de-
fine this quantity in the same fashion as we did in classical 
mechanics, i.e. as a quantity whose increment is equal to 
the work performed by the force acting on a particle. First 
we find the increment of the particle's kinetic energy dT 
due to the force F acting over the elementary path dr = 
= vdt: 

dT = Fvdt, 
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In accordance with the fundamental equation of relativistic 
dynamics (7.4) Fdt = d (mv) = dm •v mdv, where m is 
the relativistic mass. Therefore, 

dT = v (dm .1r mdv) = v2dm mvdv, 

where the relation vdv = vdv is taken into account (see 
p. 90). This expression can be simplified by allowing for 
the dependence of mass on velocity (Eq. (7.2)). Squaring 
the equation, we get 

mzcz = m2v2 mo2c2.  

Let us find the differential of this expression, bearing in 
mind that mo  and c are constants: 

2mc2dm = 2mv2dm 2m2vdv. 

The right-hand side of this equality, when divided by 2m, 
coincides with the expression for dT. Hence, it follows that 

dT = c2dm. 	 (7.7) 

Thus, the increment of the kinetic energy of a particle 
is proportional to the increment of its relativistic mass. 
The kinetic energy of a motionless particle is equal to zero 
and its mass is equal to the rest mass mo. Consequently, 
integrating Eq. (7.7), we obtain 

T =(m—mo) c2, 	 (7.8) 
or 

  

 

T =m0c2 	 1 
)' 

(7.9) 

where r3 = v/c. This is the expression for the relativistic 
kinetic energy of a particle. It can be seen how conspicuously 
it differs from the classical move/2. Let us make sure, how-
ever, that at low velocities <1) expression (7.9) turns 
into the classical one. For this purpose we employ the bino-
mial theorem, according to which 

= (I —132)-1/2  = 1 + + (32  ± 134  + • • • • 
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At R < 1 we can confine ourselves to the first two terms of 
the series, and then 

T = moc93212 = mov2/2. 

Thus, at high velocities the kinetic energy of a particle 
is given by the relativistic formula (7.9), which is different 
from mov2/2. It should be poin- 

T,moc 2  ted 
(7.9) cannot be represented 
as mv2/2, where m is the rela-
tivistic mass. 

The relativistic Trei  and 

calculated by means of the classical formula. Find T. 
For the sake of simplicity we introduce the designation T 

Then the given condition T = n • mov2 /2 may be written as 

___ 42/2,  

where 13 = iv,. From Eq. (7.9) 13 can be expressed as 

132  = 1 — 1/(1 + T)2. 

Eliminating 132  from these two equations, we get 

202  + (4 — n) — 2 (n — 1) = 0. 

The root of this equation is 

T = [n — 4 -1- 1 n (n 	8)1/4. 

The minus sign in front of the radicand has no physical meaning 
(t cannot be negative) and thus can be omitted. 

Here are the four values of T calculated from the last formula for 
the following n: 

T/Tei: 1.01 1.1 1.5 2.0 

T = Thn0c2: 0.0067 0.065 0.32 0.62 

classical To  kinetic energies 	1.0 
plotted as functions of 13 are 
compared in Fig. 135. Their 
difference becomes very pro- 
nounced at velocities compara-
ble to that of light. 

Example 1. A particle of mass mo  
moves with the velocity at which 
its relativistic kinetic energy T ex-
ceeds by n times the kinetic energy 

that out here expression 	2.0 

Tim oc2. 
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It is seen that, for example, at T/m0c2  < 0.0067 the application of the 
classical formula permits the kinetic energy to be determined with 
an accuracy better than one per cent. 

Example 2. What amount of work must be performed to increase 
the velocity of a particle of rest mass mo  from 0.6 c to 0.8 c? Compare 
the result obtained with that calculated from the classical formula. 

In accordance with Eq. (7.9) the work sought is equal to 

A=T T moc2 	1- 	1 =0.42moc2. 

The classical formula yields the following value: 

A = mo (4 — vi)/2=0.14m0c2. 

The difference between the two results is seen to be substantial. 

Relation between mass and energy. It follows from Eq.(7.7) 
that the increment of kinetic energy of a particle is accompa-
nied by a proportional increment of its relativistic mass. 
It is known, however, that various processes taking place 
in nature are connected with the transformation of one kind 
of energy into another. For example, the kinetic energy of 
colliding particles can be transformed into the internal 
energy of a new particle formed after the collision. Therefore, 
it is natural to expect that the mass of a body grows not 
only due to additional kinetic energy but also due to any 
increase in the total energy stored in the body, irrespective 
of what specific kind of energy is responsible for that in-
crease. 

Owing to this Einstein reached the following fundamen-
tal conclusion: the total energy of a body (or a system of 
bodies), whatever kinds of energy it comprises (kinetic, 
electric, chemical, etc.), is related to the mass of that body 
by the equation 

I E =mc2. f 	(7.10) 

This formula expresses one of the most fundamental laws 
of nature, the relationship (proportionality) of the mass m 
and the total energy E of a body. To avoid misunderstand-
ing, we should point out that the total energy E does not 
include the potential energy of a body in an external field, 
provided such a field acts on the body. 
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Relation (7.10) may be written in another form if Eq. 
(7.8) is taken into account. Then the total energy of a body 
is 

E moc2+ T, 

where mo  is the rest mass of a body and T is its kinetic ener-
gy. From this it follows directly that a motionless body 
(T = 0) also possesses the energy 

Eo  = moc2. 	 (7.11) 

This energy is referred to as the rest energy or the proper 
energy. 

We see that the mass of a body which in non-relativistic 
mechanics manifested itself as a measure of inertness (in 
Newton's second law), or as a measure of gravitational 
action (in the law of universal gravitation), emerges now 
as a measure of the energy content of a body. In accordance 
with the theory of relativity even a body at rest has a cer- 
tain amount of stored-up energy, the rest energy. 

A change in the total energy of a body (a system) is ac-
companied by an equivalent change in its mass Am 

AE/c2  and vice versa. In conventional macroscopic pro- 
cesses the change of mass of bodies turns out to be extreme- 
ly small, so that its experimental detection is impossible. 
This can be demonstrated by the following examples. 

Examples. A. A satellite of mass m = 100 kg is launched into 
the Earth's orbit by accelerating it to the velocity v = 8 km/s. This 
means that its energy increases by AE = mv2/2 (allowing for v « c). 
The corresponding increase in the satellite's mass is equal to 

Am =- AE/c2  = mv2/2c2  = 3.5.10-8  kg. 

B. Heating one litre of water from 0 to 100 °C requires the energy 
AE = mcp  At, where cp 	J/(g•K) is the specific heat of water 
and At is the temperature difference. The corresponding increase 
in the mass of the water is 

Am = AE/c2  = 0.47.10-10 kg. 

C. A spring of stiffness factor x = 103  N/cm is compressed by 
Al = 1 cm. In the process the spring acquires the energy AE = 
= x (Al)2/2. The equivalent increment in its mass is equal to 

Am = AE/c2  = 0.5.10-16  kg. 

It is easy to see that in all three cases the mass changes 
lie far outside the capabilities of experimental technique. 
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In astronomical phenomena, however, associated, for 
example, with exploration of stars mass can change by an 
appreciable amount. One may ascertain this by the example 
of solar radiation. 

of energy carried by solar radiation each second to an area of 1 m2  
of the Earth's surface oriented at right angles to the solar rays comes 
to about 1.4.102  J/(s .m2). This makes it possible to calculate the 

Example. According to astronomical observations the amount 

total energy radiated by the Sun per second: 

4nR2 ---4.1026  u/s, AE=1.4.103 • 

where R is the distance between the Earth and the Sun. Consequently 
every second the Sun loses the mass 

Am = 4E/c2  = 4.4.109  kg/s! 

This value is stupendous on the Earth's scale, but when compared 
to the mass of the Sun this loss is negligible: Aram = 2.10-21  s-1. 

Things are quite different in nuclear physics. Here it 
became possible for the first time to experimentally check 
and confirm the law relating mass and energy. This is be-
cause nuclear processes and transformations of elementary 
particles are associated with very large changes of energy 
comparable with the rest energy of the particles themselves. 
We shall return to this problem in § 7.5. 

§ 7.4. Relation Between Energy and Momentum 
of a Particle 

It is clear that both the energy E and the momentum p 
of a particle have different Values in different reference 
frames. There is, however, a quantity, a certain combination 
of E and p, that is invariant, i.e. has the same value in 
different reference frames. Such a quantity is E2 

 p 2c2.  

Let us make sure that this is so. 
Making use of the formulae E = mc2  and p = my, we 

may write 
m(2,

v/
c4 

02 E2 —p2c2 = m2c4 — m2v2c2  =  1 —( 	[1— (v/c)2] 

or after cancelling 

E2  — p2c2  = n4c4. (7.12) 
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The cancellation of the velocity v on the right-hand side 
means that the value of E2  — p2c2  is independent of the 
velocity of the particle, and consequently, of the reference 
frame. In other words, the quantity E2  — p2c2  is indeed 
an in variant with the value mac' in all inertial reference 
frames: 

E2 	p2c2 = mnv. 	 (7.13) 

This conclusion is of great importance since it allows, 
as it will be shown later, the analysis and solution of vari-
ous problems to be drastically simplified in many cases. 

Here are two more relations which are very often useful. 
The first one is 

p = my = Ev/c2  (7.14) 

and the second one relates the momentum and the kinetic 
energy T of a particle; it can be easily obtained by substi-
tuting E = moc2  T into Eq. (7.12): 

  

pc =1,/ T (T 2ntoc2). (7.15) 

At T << moc2  the last relation turns into the classical one, 
p = 2m0 T, and when T >> moc2, it takes the form p = 
= Tic. 

Example. Assuming the rest energy of an electron to be equal 
to 0.51 MeV, calculate: 

(1) the momentum* of an electron possessing a kinetic energy 
equal to its rest energy; 

(2) the kinetic energy of an electron possessing the momentum 
0.51 MeV/c, where c is the velocity of light. 

1. If T = moc2, we obtain from Eq. (7.15) p = 	mac = 
= 0.9 MeV/c. 

2. This problem may also be solved by resorting to Eq. (7.15). 
A simpler way, though, is to utilize Eq. (7.12): 

T=E — moc2= p2c2 ± 

* Note that now momenta of relativistic particles are expressed 
in the units "energy/c", where c is the velocity of light. E.g., if energy 
is expressed in MeV units (1 MeV = 1.6.10-6  erg), then momentum 
is in MeV/c. The introduction of such a unit for momentum simplifies 
many kinds of calculations quite noticeably. 

0.21 MeV. 
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In passing, let us examine the interesting possibility of 
the existence of particles with zero rest mass (m, = 0). 
From the equations 

E = m0c2  /17 1— (v1 c)2  and p = mou / V 1— (v1 c)2  

it follows that a particle whose rest mass 	= 0 may pos- 
sess energy and momentum only when it moves with the 
velocity of light c. Then the last two formulae turn into the 
indeterminate ratio 0/0. This fact does not signify, how-
ever, the indeterminacy of energy and momentum of such 
a particle. The point is that both these quantities prove to 
be independent of velocity. Moreover, the relationship 
between the momentum p and the energy E is specified 
by Eq. (7.14), where v = c, i.e. 

	

p = Elc. 	 (7.16) 

Thus, in accordance with the theory of relativity the 
existence of particles with zero rest mass is possible, provid-
ed they move with the velocity c. This motion is not a 
result of preceding acceleration but this is the only state 
in which such particles can ever exist. The stoppage of such 
a particle is equivalent to its absorption (disappearance). 
At the present time there are two such particles known: 
the photon and the neutrino. 

The Lorentzitransformationlof momentum and:energy. Let a par-
ticle move with the;velocity v = di/dt,inIthe K reference frame. From 
Eq. (6.13) it follows that the elementary interval is 

	

ds= c2  (dt)2  — (dl)2  = c dt 	1 — (v 1c)2. 

Bearing that expression in mind, we present the projections of the 
momentum and the energy of the particle in the following form: 

m0 	dx 	dx 	 dy 
Px=-v-1___(,102 dt — me  ds ' PY  = me  F ; 

M c2 	dt 	dt 	c2  dt 
E = 	o  , — m c3  — me 

	

if 1_ (v  kr at 	° ds 	ds 

From the invariance of the interval ds it immediately follows that 
on transition to another inertial reference frame ps  and py  are trans-
formed as dx and dy, i.e. as x and y, whereas the energy E is trans-
formed as c2  dt, i.e. as the time t. Thus, the following correlations 
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may be pointed out: 

p, 	 y, Elca — 1. 

Replacing the indicated quantities in the Lorentz transformation (6.8), 
we immediately obtain the transformation of momentum and energy 
sought: 

px —EVIc2  
P = 

	

	 
j/-  1— (V Ic)2  

E — p,V 
E' —   , 	(7.17) 

-V 1—(V 1 c)2  

where V is the velocity of the K' frame relative toatheK frame. 
These formulae express the transformation law for the momentum 

and energy projections of a particle on transition from the K to K' 
frame. 

More compact notation. At present all formulae of rela-
tivistic mechanics are customarily written in a more com- 
pact form using the following abbreviations: 

(1) the quantities mc2  and pc are denoted simply by m and 
p and expressed accordingly in energy units (e.g., in MeV 
units); 

(2) all velocities are expressed in units of the velocity 
of light and denoted by 13: 

= v/c; 	 (7.18) 

(3) the frequently occurring factor 1/V 1 — 02  is denoted 
by 7, the so-called Lorentz factor: 

--- / V 1  — (32 	 (7.19) 

These designations dramatically simplify not only the appear-
ance of the formulae but all transformations and calcu-
lations as well. The basic formulae of relativistic dynamics 
in the new notation are given below: 

relativistic momentum (7.3) 

mof  

f 	 = TmoP, v 1— 02  

kinetic (7.9) and total (7.10) energies 

T =me  

	

	1)=--m0.(17-1), 	(7.21) 
1-132  

E m mo  T = Tmo; 	(7.22) 

(7.20) 

16-0539 
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relations between energy and momentum (7.12)-(7.15): 

E2  — p2  = 	=-- inv, 
p = 

(7.23) 

(7.24) 

p =VT (T +2m0); (7.25) 

the Lorentz transformation of momentum and energy 
(7.17): 

Px — PE  
Px=    =1' (19  x — PE) 7 1  

1/1— R2  

= Pyl (7.26) 

E — PPx 
(E 1/  = 

§ 7.5. System of Relativistic Particles 

About the energy and momentum of a system. Up to now 
we restricted ourselves to consideration of the behaviour 
of a single particle. In contrast to the dynamics of a single 
particle, the development of the dynamics of a system of 
particles proves to be a much more complicated task in 
the theory of relativity. Nevertheless, a number of impor-
tant general laws can be established in this case as well. 

If we wish to examine the motion of a system as a whole, 
then, neglecting the internal processes in the system and 
ignoring its spatial dimensions, that system can be regard-
ed as a mass point (a particle). Accordingly, a system of 
relativistic particles can be described by the total energy 
E, momentum p, and rest mass Mo, and the relations de-
rived earlier can be considered valid for the system of parti-
cles as a whole. 

We have to establish now how to interpret the total 
energy E, the momentum p, and the rest mass Mo  of a sys-
tem as a whole. In the general case, if the system consists 
of interacting relativistic particles, its total energy is 

E 	 W, 	 (7.27) 

where mice is the total energy of the ith particle (recall 
that this quantity does not include the energy of interaction 
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with other particles), and W is the total energy of interac-
tion of all particles of the system. 

In classical mechanics W is the potential energy of inter-
action of a system's particles, a quantity depending only 
on the configuration of the system (for a given character 
of interaction). It turns out that in relativistic dynamics 
there is no such concept as the potential energy of interac-
tion of particles. This is due to the fact that the very con-
cept of potential energy is closely connected with the con-
cept of long-range action (instantaneous interaction trans-
mission). Being a function of the system's configuration, 
potential energy is defined at every moment of time by the 
relative disposition of the system's particles. A change in 
the configuration of a system must immediately induce a 
change in potential energy. Since there is no such thing in 
reality (interactions are transmitted with a finite velocity), 
the concept of potential energy of interaction cannot be 
introduced for a system of relativistic particles. 

An expression for the interaction energy W, and therefore 
the total energy E, of a system of interacting relativistic 
particles cannot be written in the general case. The same 
can be said about the system's momentum since in relati-
vistic dynamics momentum is not a quantity independent 
of the energy E. Things are as complicated in the case of 
the rest mass M, of the system. In the general case it is 
known to be the mass in a reference frame where the given 
mechanical system is stationary as a whole (i.e. in the 
C frame). 

Owing to the complications mentioned above the devel-
opment of the dynamics of a system of relativistic particles 
is restricted to a few simple cases, two of which will be 
examined here: a system of non-interacting relativistic 
particles and the case of two colliding particles, which is 
important from a practical point of view. 

System of non-interacting particles. In this case the total 
energy E and momentum p possess additive properties 
which can be given as 

E =1 7nic2, P = S Pi, 	 (7.28) 

where mi  and pi  are the relativistic mass and the momentum 

16* 
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of the ith particle of the system. Since there is no interac-
tion in this case, the velocities of all particles are constant 
and consequently the total energy and the momentum 
of the whole system do not change with time. 

Let us introduce the rest energy E, for a system of par-
ticles as its total energy in the C frame, where the total 
momentum is -I) = pt = 0 and the system as a whole is 
at rest. Thus, 

(7.29) 

where Et  is the total energy of the ith particle in the C 
frame. This means that the rest energy includes not only the 
rest energies of all particles but also their kinetic energies 
Ti  in the C frame: f i  = moic2 	Ti. 

Obviously, the same is true for the rest mass of the sys-
tem: 

Mo = Eo/c2. 	 (7.30) 

In particular, it follows from this that the rest mass of 
the system is not equal to the sum of the rest masses of 
its constituent particles: 

Mol> E mot. 

The introduction of the rest energy and the rest mass of 
a system, E0  and Mo, makes it possible to regard a system 
of non-interacting relativistic particles as one particle with 
the total energy E = mic2, the momentum p = pi , 
the rest mass Mo  = Eo/c2, and to claim Eqs. (7.12) and 
(7.14) to be valid for the system of particles as well: 

E2 p2c2 = Mt2)c4 = inv, 

p = EV/c2, 
(7.31) 

(7.32) 

where V is the velocity of the system as a whole, i.e. the 
velocity of the C frame. In accordance with Eq. (7.32) this 
velocity may be represented in the following form: 

V = (11  pi)/(E mi), 	 (7.33) 

where nit  is the relativistic mass of the ith particle of the 
system. Note that Eq. (7.33) coincides in form with the 
corresponding non-relativistic expression (4.9) for the 
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velocity of the system's centre of inertia. 
Collision of two particles. We shall consider the colli-

sion process as proceeding in two stages: first, the formation 
of a compound particle A* and then its decay into two par-
ticles that, in the general case, may differ from the initial 
ones: 

Ai  + A, A* -÷ A3 4- A4 . . . . 

In the process of the convergence of particles A l  and A 2  
the interaction between them may not remain weak, and 
Eq. (7.28) becomes inapplicable. However, after the result-
ing particles have separated far from each other, Eq. (7.28) 
becomes applicable again. 

In the given case the sum of the total energies of the two 
initial particles (when they are so far from each other that 
their interaction is negligible) can be shown to equal the 
total energy of the compound particle. The same is true 
for the second stage of the process, that is, the decay. In 
other words, it may be shown 
that the total energy conser- 
vation law proves to hold 	1 

true for this process in the 
following form: 

 

If 

El + E, = E* = E3 E4 . . . . 	 V 

(7.34) 

We shall demonstrate that 11 
this is really so by the fol- 
lowing 

 

 simple example. 	 2 	 2 

Let us imagine a collision 
of two identical particles 1 
and 2 that results in the formation of a certain compound 
particle. Suppose the particles move toward each other in 
the K frame before the collision with the same velocity 
v as shown in Fig. 136. Let us consider this process in the 
K' frame moving to the left with the velocity V relative 
to the K frame. Since in the K frame the velocity of each 
particle is perpendicular to the vector V, the two particles 
in the K' frame, in accordance with Eq. (6.14), have x 
component equal to V. The compound particle formed, 
whose relativistic mass is denoted by M, has the same 

K 

Fig. 136 
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velocity in the K' frame. Applying the momentum conser-
vation law before and after the collision (to the x component 
of the momentum), we obtain 2m (v') V = M•V, where 
v' is the velocity of each initial particle in the K' frame. 
Hence, 

2m (v') = M, 

i.e. the sum of the relativistic masses of the initial particles 
is equal to the relativistic mass of the formed particle.The 
situation is similar in the K frame. Indeed, if the value of 
V is small, the velocity v' is practically equal to v, and the 
mass M to the rest mass M, of the formed particle, so that 
in the K frame 

2m (v) = Mo. 

It is seen that the rest mass of the formed particle is greater 
than the sum of the rest masses of the initial particles. 
The kinetic energy of the initial particles experiences a 
transformation which causes the rest mass of the formed 
particle to exceed the sum of the rest masses of the initial 
particles. 

Thus, we have shown that due to the system's momentum 
conservation the sum of the relativistic masses of the initial 
particles equals the relativistic mass of the formed particle. 
The same is obviously true for the total energy. Therefore, 
we can assert that the conservation of the total energy in 
the form described by Eq. (7.34) indeed occurs in the con-
sidered stages of that process. 

As we already mentioned at the end of § 7.3, the energy 
conservation law, when applied to nuclear processes, made 
it possible to experimentally verify the validity of one of 
the fundamental laws of the theory of relativity, the mass-
energy relationship. Let us consider some examples. 

Example 1. Energy yield of nuclear reactions. Let us consider 
a nuclear reaction of the type 

A1  + A 2 -* A3 ± A 4, 

where the initial nuclei are on the left-hand side and the reaction 
product nuclei on the right-hand side. We apply the law of conserva-
tion of total energy to this reaction: 

E 2  = E3  E4. 
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Recalling that the total energy of each particle may be given as E =- 

= moc2  T, where in, is the rest mass of a nucleus and T is its ki-
netic energy, we rewrite the preceding equality as 

( m1+ m2) C2 + T12=  (m3+ m4) c2  + T34, 

where T12  and T34  are the total kinetic energies of nuclei before and 
after the reaction. Hence, 

T34 + T12 =  (m1+ m2) C2+  (m3+ m4) c2. 

The left-hand side of this equality is the increment of the overall 
kinetic energy of the nuclei of the given system. It is referred to as 
the energy yield of a nuclear reaction and is denoted by the letter Q. 
Thus, 

Q=Rmi+In2)—(rn3+1714)ic2. 

This quantity may have either sign depending on the nature of the 
nuclear reaction. Thus, the energy yield of a nuclear reaction is deter-
mined by the difference of the cumulative rest masses of nuclei before 
and after the reaction. All the quantities involved in this relation 
can be experimentally measured with a sufficiently high accuracy, 
verifying thereby the equality itself. 

Let us consider the specific nuclear reaction 

7Li + 1H -- 24He. 

The rest masses of these nuclei measured in atomic mass units (amu) 
are equal to 7.0160, 1.0078, and 4.0024 amu respectively. From this 
it is not difficult to calculate that the sum of rest masses of the nuclei 
decreases by 0.019 amu as a result of the reaction. Since one amu cor-
responds to an energy of 931.4 MeV, we find Q = 0.019 .931.4 MeV 

17.7 MeV. This value agrees very accurately with experimental 
data. 

Example 2. Decay of a particle. Suppose a stationary particle Al 
spontaneously decays producing two particles A 2  and A 3: Al  A2  + 
+ A 3. In accordance with the law of conservation of total energy, 

El  = E2 + E3. 

As the total energy of each particle is E = moc2 	T, the preceding 
equality takes the form 

mic2 = (m2+ m3) C2 + T23,  

where T23 is the overall kinetic energy of the resulting particles. 
This energy is referred to as the decay energy Q. Thus, 

Q= 	— (m2+ m3)] C2 . 

Since Q is essentially a positive quantity, the spontaneous decay 
of a particle is possible only if 

m1 > m2 + m3, 

that is, if the rest mass of the initial particle exceeds the sum of the 
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rest masses of the formed particles. Otherwise, spontaneous decay 
is impossible. Experimental evidence fully confirms this conclusion. 

Let us consider, for example, the—decay of a pi-meson. It is an 
experimental fact that charged pi-mesons disintegrate into a mu-meson 
and a neutrino v: Tr -÷µ + v." The tabulated data give the rest 
masses of these particles (in electron rest mass units) as 273.2, 206.8 
and 0 respectively. It follows that the rest mass decreases by 66.4 emu 
as a result of the decay. Since one emu corresponds to an energy of 
0.51 MeV, the energy of this decay Q = 66.4.0.51 MeV = 34 MeV, 
which accurately agrees with experimental data. 

Since the collision of particles and the subsequent decay 
of the compound particle do not involve any change in 
the total energy of the system (and consequently, its momen- 
tum), another important conclusion can be inferred: for 
a system, the quantity E2 	p2c2 is invariant not only 
with respect to different inertial reference frames but also 
with respect to the above-mentioned stages of a collision 
process. 

Imagine, for example, two relativistic particles to expe-
rience a collision which leads to the generation of a new 
particle with rest mass Mo. If in the K frame of reference 
the total energies of the particles are equal to Et  and E2 
before the collision (and their momenta to pi  and p2  respec- 
tively), we may write immediately that on transition from 
the K frame (prior to the collision) to the C frame (after 
the collision) the following equality holds: 

(El E2)2  — (P1 + P2)2 C2  = MgC40 

K frame 	 C frame 

(7.35) 

in which it is taken into account that the formed particle 
is at rest in the C frame. 

The invariance of the quantity E2 	p2c2 provides us 
with a means to investigate the various processes of decay 
and collision of relativistic particles. Its application sim- 
plifies drastically both the analysis of the processes them- 
selves and the appropriate calculations. 

Example. In the K reference frame a particle possessing a rest 
mass me  and a kinetic energy T strikes a stationary particle with the 
same rest mass. Let us find the rest mass Me  and the velocity V of the 
compound particle formed as a result of the collision. 
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Making use of the invariance of the quantity E2  — p2c2, we write 

E2 —p2c2= Mac', 

where the left-hand side of the equality relates to the K frame (prior 
to the collision) and the right-hand side to the C frame (after the 
collision). In this case, E = T 	2m0c2; besides, in accordance with 
Eq. (7.15), p2C2  = 7' (T 	2m0c2), and therefore, 

(T -1-2m0c2)2 — T (T +2m0c2)=--- M8c4. 
Whence, 

M0 =1/ 2m0 (T-1-2moc2)1c. 

The velocity of the formed particle is the velocity of the C frame. 
In accordance with Eq. (7.32), 

V = pc2IE = c V T (T ±2m0c2)1(T ±2m0c2)= cl 1±2m0c2IT 

Problems to Chapter 7 

Attention! In problems 7.4 through 7.11 we employ the abbreviated 
notation described at the end of § 7.4. (e.g., p and mo  are the abbrevi-
ated forms of the quantities pc and moc2). 

• 7.1. Motion due to a longitudinal force. A particle of rest mass mo  
begins moving under the action of a constant force F. Find the time 
dependence of the particle's velocity. 

Solution. Multiply both sides of Eq. (7.5) by dt. Then 

d (moyl V 1 — (y1c)2)= F dt. 

Integrating this expression and taking into account that v = 0 at the 
initial moment, we obtain mov/i/ 1 — (v/c)2  = Ft. Whence 

v (t)=(Ft1m0)/ 1( 1+ (Ft1 moc)2  

Let us compare the expression thus obtained with the classical one. 
According to Newton's second law, w = Finto  and the velocity vci  
= Ft/mo, and that is why the preceding expression for the velocity 
v (t) may be presented as 

v (t) = ve/ R71+ (vo/c)2• 

From this it is seen that v < vei, i.e. the actual velocity v of the 
particle grows more slowly with time as compared to va, and the 
velocity a c as t —›- oo (Fig. 137). 

It is interesting to note that the momentum of the particle grows 
linearly with time: from the equation dp/dt = F it follows that 
p == Ft. This is a characteristic property of relativistic motion: while 
the velocity of a particle approaches a certain limit (i.e. becomes 
practically constant), the momentum of that particle keeps growing. 

• 7.2. Motion due to a transverse force. A relativistic particle 
of rest mass mo  and charge q moves in a stationary uniform magnetic 
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field whose induction is equal to B. The particle circumscribes a cir-
cle of radius p in a plane perpendicular to the vector B. Find the 
momentum and the angular rotation frequency of the particle. 

Solution. In this case the particle moves due to the Lorentz force 
F = q [vB], where v is the velocity of the particle. Since F y v, 
the magnitude of the velocity of the particle v = const and Eq. (7.5) 
takes the form 

mw = q [vB], 

where m is the relativistic mass of the particle. Recalling that w 
is a normal acceleration whose magnitude is equal to v2/p, we rewrite 
the preceding equation as mv2/p = qvB. Hence, the momentum of 
the particle is 

p = my = qpB. 	 (1) 

Thus, the product pB may serve as a measure of the relativistic 
momentum of the given particle. 

With allowance made for Eq. (1) the angular frequency of the 
particle is 

= v/p = pimp = qB1m. 

It follows that the angular frequency w depends on the velocity of 
the particle: the greater the velocity of the particle, and therefore, 

Fig. 137 

the relativistic mass m, the lower the angular frequency co. However, 
at low velocities (v « c) m -- ma, and 

= qB1m0  = const, 

i.e. in this velocity range the frequency co is practically independent 
of the velocity. 
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e 7.3. At the moment t = 0 a relativistic proton with momentum pa  
flies into a region where there is a transverse uniform electric field 
of strength E, with pa  1 E. Find the time dependence of the angle 0 
at which the proton is deflected from the initial direction of its motion. 

Solution. Taking the x coordinate along the vector pa  and the y 
coordinate along E, we write Eq. (7.4) in projections on these axes: 

dpxIdt = 0, dpyldt = eE, 

where e is the proton charge. From these equations it follows that 

px  = pa, Py = eEt, 
Or 

	

ma y,ci 1— (vIc)2 	mavyl V 1— (vIc)2  = eEt. 	(1) 

From the ratio of the last two equalities we get 

tan 0 = vy/vx  = eEtIpo. 

It is interesting to point out that in contrast to the non-relativistic 
case vx  decreases with an increase in time here. To make sure of 
this, let us square both equalities (1) and then add separately their 
left-hand and right-hand sides: 

„,,2 (v2 + v2
Y 	

) 

	

X 	= Pa + (eEt)2. 
1 — (v I c) 2  

Recalling that v!„ 	vy = v2, we obtain 

\ 2 1  , 	 m8,2 	1-1 

c ) 	[ 	pa+ (eEt)2  

Substituting this expression into the first equality of (1), we get 

vx --= crV1+(moc/p0)2 + (eEtIp0) 2, 

i.e. vx  really decreases in the course of time t. 
• 7.4. Symmetric elastic scattering. A relativistic proton possessing 

kinetic energy T collides elastically with a stationary proton with 
the result that both protons move apart symmetrically relative to the 
initial motion direction. Find the angle between the motion direc-
tions of the protons after the collision. 

Solution. In symmetric scattering of the protons their momenta 
and energies must be equal in magnitude. This is immediately seen 
from the triangle of momenta (Fig. 138), which expresses the momen-
tum conservation law. From that triangle we can write, in accordance 
with the cosine theorem, 

p2=2p' 2+2p' 2  cos 0, 
whence 

cos 0= p2I2p' 2 — 1. 

Using Eq. (7.25) and taking into account that T = 2T', where T' 
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is the kinetic energy of each proton after the collision, we find 
p2 T (T ±2m0)  4  T--2m, 
p' 2  = T' (T' +277%) 	T-{-4m0  ' 

where m, is the rest mass of a proton. Substituting this expression 
into the formula for cos 0, we obtain 

cos 0 = Ti( T 4m0). 

Note that as distinct from the non-relativistic case when 0 = a12, 
here 0 < 

• 7.5. A photon of energy a is scattered by a stationary free elect-
ron. Find the energy g' of the scattered photon if the angle between 
the motion directions of the incoming photon and the scattered one 
is equal to 0. 

Solution. Let us apply the momentum and energy conservation 
laws to the given process: 

Te == 8  -- 8', 	Pe == P 	P', 

where 7', and p, are the kinetic energy and the momentum of the 
recoiled electron, and'ip and p' are the momenta of the incoming 

Fig. 138 
	

Fig. 139 

and scattered photons. According to the cosine theorem it follows 
from the triangle of momenta (Fig. 139) that 

p2  p'2  —2pp' cos 0. 

Substituting here p = a, p' = a' and pa  = 	Te  (T, 	2m,) = 
= (a — a') (a — + 2me) , where me  is the rest mass of the 
electron, we obtain after simple transformations 

= 1+ (28/Me) sine (0/2) • 

• 7.6. Two protons move toward each other with equal kinetic 
energies T (in the K reference frame). Find the kinetic energy T' 
of one proton with respect to the other. 

Solution. Let us take advantage of the invariance of the quantity 
E2  — p2, writing it in the K frame (which is also the C frame here) 



V 
tzr 

+m2  

1113+Mii 
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and in the reference frame fixed to one of the protons 

[2 (T+  mp)12=(T'+2m1))2 — T' (T' +21n1,), 

where mp  is the rest mass of a proton. From this it follows that 

T' =2T (T +2m p)Imp. 

For example, in the case of protons (mp  ^ 1 GeV), if T = 50 GeV), 
then T' = 5.103  GeV. The possibility of such a large energy "gain" 
underlies the method of head-on collision beams. 

• 7.7. Energy diagram of a nuclear reaction. A particle Al  with 
kinetic energy T1  strikes a stationary nucleus A 2 (in the K frame). 
As a result of the reaction the nuclei A 3  and A, are formed: 

A1 	A 3 + A,. 

The rest masses of the particles are equal to m1, m2, m3, and m4  respec-
tively. Illustrate the energy level diagram of the nuclear reaction 
for two cases: (a) m, m2  > m3  m4, and (b) H- m2  < m3  m4. 
For the second case find the threshold kinetic energy Tithr  of the 
incoming particle in the K frame. 

Solution. From the law of conservation of the total energy it 
follows that in the C frame 

T12+ ml 4" m2 = 4.7.34 4- m3 ± 17147 

where 7-"12  and T34  are the overall kinetic energies of the particles 

(a) 

1773+114 

E (b)  

Fig. 140 

before and after the reaction. Denoting the increment of the kinetic 
energy T34 — T12  by Q, we may write the preceding expression as 

Q = (mi 	- (m3 + m4), 

where Q is the energy yield of the nuclear reaction. The energy diagram 
of the reaction is illustrated in Fig. 140 for both cases. In case (a) the 
effect is positive, Q > 0: the overall kinetic energy increases at the 
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expense of a decrease in the sum of the rest masses of the system's 
particles; in case (b) the opposite is true. 

In the latter case, as it is seen from Fig. 140b, the nuclear reaction 
is possible only if T12 	I Q I. Here the equality sign corresponds 
to the threshold value of the energy T12. In accordance with Eq. (4.16), 
at low velocities, 

111'72-ei 	m2 	M V2  1 1
— 	+ m2  Ti.thT = I Q I , T noir = 2 	m1+  m2 2 	ml 

7112  

whence 
T ithr = I Q I (mt. + m2)1m2. 

• 7.8. Threshold energy (the minimum energy required to activate 
a given process). 

1. A relativistic particle of rest mass mo  strikes a stationary par-
ticle of rest mass Mo. As a result of the impact, particles of rest 
masses m1, m2, . . . are generated according to the scheme 

+ Mo —›- 	+ M2 + • • • • 

Find the threshold kinetic energy Tthr  of the incoming particle. 
2. Find the threshold energy of a photon for electron-positron pair 

production in the field of a stationary proton. 
Solution. 1. First of all, it is clear that threshold energy is meaning-

ful only when the sum of the rest masses of the initial particles is less 
than that of the particles produced. To find Tt hr, let us make use of 
the invariance of the quantity E2  — p2. Let us write this quantity 
prior to the collision for T = T thr  in the reference frame where the 
particle Mo  is at rest, and after the collision in the C frame: 

E 2 —p2 — 

Or 
(Tthr  + Mo+Mo)2— Tthr (T thr 2171o) = (mid—  n22 	

)2. 

Here we have taken into account that in the C frame the kinetic 
energy of the formed particles is equal to zero at the threshold of the 
reaction, and therefore their total energy equals the sum of the rest 
masses of the individual particles. From the latter equation we get 

Rmi+ m2+ • • •)2  (MO + Mo)21/2Mo. 

2. Let us write E2  — p2  before the interaction in the reference 
frame where the proton is at rest and after the interaction in the C 
frame. At the threshold value of the energy s of the incoming photon 

(ethr+ MO)2 87hr = PI 0 +27702, 

where Mo  is the rest mass of a proton, and mo  is the rest mass of an 
electron (positron). Hence, 

ethr = 2mo (1  + 'no/ Mu). 
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It is seen that pair production requires the photon energy to exceed 
2mo. 

• 7.9. Decay of a moving particle. A relativistic rc0  meson of 
rest mass mo  disintegrates during its motion into two gamma photons 
with energies ai  and 82  (in the K reference frame). Find the angle 0 
of divergence of the gamma photons. 

Solution. Using the invariance of the expression E2  — p2, we 
write it in the C frame before the decay and in the K frame after the 
decay: 

MS=  (81 + 82)2  — (Pi+ P2)2, 

where PI  and p2  are the momenta of the gamma photons. We trans-
form the right-hand side of this equation taking into account that 
Pi = 81  and p2  = 82; then 

m8= 28182 -21)02, or 4=28,62 (1—cos 0). 
Hence 

sin (0/2) = m0 /217802. 

• 7.10. The total momentum and energy of a system of two non-
interacting particles are p = pi  + p2  and E = E1 	E2. Demonstrate 
explicitly that the Lorentz transformation for the total momentum p 
and energy E is consistent with the invariance of the quantity E2  — p2  
for the given system. 

Solution. Using the Lorentz transformation for momentum and 
energy (7.26), we find the projections of the total momentum and 
energy in another (primed) reference frame possessing the velocity 13 
and the corresponding Lorentz factor y: 

P;c= Pix+14x=7 (Pix+ P20-1,13  ( 
1) = Piy+ P2y= Ply+ P2y = Py; 
E' Ei+ E;= (El+ E2)— y13 (Pix P2x) 	(E — PPx). 

Hence 
Et2 —19/2 E/2_(

Pc2+ pi2)_ E2—p2.  

• 7.11. In the laboratory reference frame a photon with energy 
strikes a stationary particle A of rest mass mo. Find: 

(1) the velocity of the C frame for these two particles; 
(2) the energies of the photon and the particle in the C frame. 
Solution. 1. In accordance with Eq. (7.32) the velocity of the C 

frame is 
R = p/E 	e/(e 	mo). 

2. From the Lorentz transformation for energy (7.26) it follows 
that the photon energy in the C frame is 

1-13 
8  = (a — RP) = (a —PO= 6 

1—p  

V1_f32 	1+[1 • 

Substituting the expression for p from the previous part, we obtain 

8  = 8  i/ MO/(28  + MO). 

Ei+ E2) = y (px  —13E); 
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The energy of the particle A in the C frame is 

EA= mo/3/ 1—(32=(6+m) mul(28+ mo). 

The correctness of the formulae obtained may be checked by making 
use of the invariance of the expression E2  — p2  on transition from 
the laboratory reference frame to the C frame: 

(8  + mo)2 _ 82 = (e+ TjA)2. 
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1. Motion of a Point in Polar Coordinates 

In polar coordinates p, cp the position of a point A on a plane 
is defined if we know its distance p from the origin 0 (Fig. 141a) 
and the angle cp between the radius vector p of the point and 
a chosen direction 00', the zero reading of the angular coordi-
nate q. 

Let us introduce unit vectors ep  and e, associated with the mov-
ing point A and oriented in the direction of the increasing 
coordinates p and p  as shown in Fig. 141a. Unlike the unit vectors 

Fig. 141 

of the Cartesian system of coordinates, ep  and eq, are movable, that 
is, they change their direction as the point A moves. Let us find 
their time derivatives, which will be required later. During the 
motion of the point A both unit vectors turn in the same direction 
through the same angle dcp in the time interval dt (Fig. 141b) and 
acquire the increments: 

dep=1•dcp•eq ; deq)=1•4•( — e0). 

Dividing both expressions by dt, we obtain 

. 	 . 

ep = cpeq); 	eq,= —cpep, 	 (1) 

where a dot over a letter signifies differentiation with respect to 
time. 

Let us now determine the velocity and acceleration of the point A, 
writing its radius vector p in the form 

p = pep. 	 (2) 

17-0539 
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The velocity v of a point. Let us differentiate Eq. (2) with respect 
to time, allowing for Eq. (1): 

	

v = p

▪  

ep+ pcp

▪  

e„, 	 (3) 

i.e. the projections of the vector v on the movable unit vectors ep  
and e„ are equal to 

p; 	= PcP, 	 (4) 

and the magnitude of the velocity vector is v = yp.2 	p2y.  2.  

The acceleration w of a point. Differentiating Eq. (3) with respect 
to time once again, we get 

dv 	•• 	• 	d 	• 	• • 
w=ClI =PeP+PeP +  dt (I)(P) e`P + Keg'.  

After simple transformations we find, taking into account Eq. (1): 

w (P — PcP2) ep (2120(P+ PT) ev 	 (5) 

i.e. the projections of the vector w on the unit vectors ep  and e, are 
equal to 

	

•• 	• 

	

wp = P — P(1)2, 	 (6) 

• • 	• • 	1 	d 	• 
wcp= 213T+ P = -Eu  (P20. 

The fundamental equation of dynamics in polar coordinates. The 
fundamental equation of dynamics mw = F in projections on the 
movable unit vectors ep  and e, is easy to obtain at once, making use 
of Eqs. (6): 

m (1 	2)= Fp, 
1 d 	• 

m P  dt (P2(P) = F" 

where F p  and Fq, are the projections of the vector F on the unit vec-
tors ep  and e (Fig. 142). In that figure F p  < 0 and Fq, > 0. 

2. On Keplerian Motion 

The motion of a particle in a central field of forces that are inverse-
ly proportional to the square of the distance from the field centre 
is called Keplerian. The Newtonian attraction forces between mass 
points (or bodies possessing spherical symmetry) and Coulomb forces 
between point charges are forces of this kind. 

In such a field the potential energy of a particle is U = —a/p, 
where a is a constant and p is the distance from the field centre. Let 
us examine the case when a > 0, i.e. the force acting on a particle 
of mass m is directed toward the field centre (attraction). What shape 

(7) 



Appendices 
	 259 

does the trajectory of the particle have in polar coordinates p (y) 
if p (0) --= pa  at cp = 0 and its velocity is perpendicular to the radius 
vector and is equal to vo  (Fig. 143)? 

To solve this problem, the laws of conservation of energy and 
angular momentum are usually utilized. In polar coordinates these 
laws yield 

—2—  
al 	• 	• 	CC 

 (P2  + P2Y2) 	E; mp2cp =- L, 

where E and L are the total mechanical energy and the angular mo-
mentum of the particle relative to the point 0, the field centre. Both 
of these quantities are easy to find from the initial conditions. 

These equations are solved as follows. Initially, in the first equa-
tion differentiation with respect to time is replaced by differentiation 

Fig. 142 Fig. 143 

with respect to cp; this can be done by using the second equation: 
dt = (mp2IL) dy. Then the variables p, cp are separated, i.e. the ob-
tained expression is reduced to the form dy = f (p) dp. And finally, 
that equation is integrated, with account taken of the initial condi-
tions. The result of integration yields the sought solution p (p). 

We shall not describe the rather cumbersome procedure for solving 
these equations here. If necessary, it may be found in almost any 
textbook on theoretical physics or mechanics. We shall restrict our-
selves to an analysis of the solution obtained, which has the form 

P ((P) = Po/[a + (1 — a) cos y], 	 (1) 

where a = almpovg• 
It is known from mathematics that Eq. (1) describes a curve of 

the second order. Depending on the value of the parameter a this 
may be an ellipse (circle), a parabola, or a hyperbola. 

1. It is immediately seen that at a = 1 p does not depend on cp, 
i.e. the trajectory is a circle. A particle has such a trajectory at a veloc-
ity va  equal to 

vI = V 0:imp°. 	 (2) 

17* 
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2. For all values of the parameter a at which p is finite up to (ID = 
= a, the trajectory has the form of an ellipse. At cp a, as it follows 
from Eq. (1), 

p (a) = po/(2a — 1). 

It is seen from this that p (a) is finite only when 2a > 1, i.e. when 
the velocity vo  < vII, where 

vui =-1/ 2a/mPo- 	 (3) 

3. If 2a = 1, i.e. vo  = vll, the ellipse degenerates into a parabola, 
which means that the particle does not come back again. 

4. At vo  > vii the trajectory has the shape of a hyperbola. 
All of these cases are illustrated in Fig. 144. It should be pointed 

out that in elliptical orbits the field centre coincides with one of the 

Fig. 144 

ellipse's focal points: namely, with the back focus if vo  < v1, and 
with the front focus if vo  > v1. 

Note that Eq. (1) describes, for example, the trajectories of the 
planets of the solar system, with a = TmM, where M is the mass of 
the Sun. As applied to the motion of space vehicles, v1 and v11 are 
the orbital and escape velocities respectively. Obviously, their magni-
tudes depend on the mass of the body that is the source of the field. 

3. Demonstration of Steiner's Theorem 

Theorem: the moment of inertia I of a solid body relative to an 
arbitrary axis z equals the moment of inertia /c  of that body relative 
to the axis zc  parallel to the given one and passing through the body's 
centre of inertia, plus the product of the mass in of the body and the 
square of the distance a between the axes: 

/ = / c  ma2. 
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Proof. Let us draw through the ith element of the body a plane 
perpendicular to the z axis, and in this plane, three vectors pi, pi 
and a (Fig. 145). The first two vectors describe the position of the ith 
element of the body relative to the z and zc  axes while the vector a 
specifies the position of the zc  axis relative to the z axis. Taking 

Fig. 145 

advantage of the relationship between these vectors (pi  =- Pi + a), 
we transform the expression for the moment of inertia of the body 
relative to the z axis: 

I = mipf = mi (pi + a)2  = mipi2  + 2a j  mipi 	mia2. 

The first term on the right-hand side of that equality is the moment 
of inertia /c  of the body relative to the zc  axis, and the last term is 
equal to mat. What is left is to show that the middle term equals zero. 

Suppose ri is the radius vector of the ith element of the body 
relative to the centre of inertia; then the vector Nilj  miri = 0 relative 
to that centre. But pi is the vector projection of the vector ri on the 
plane perpendicular to the z axis. Hence it is clear that if the composite 
vector is equal to zero, the sum of its vector projections on any plane 
is also equal to zero, i.e. 	mini = 0. The theorem is thus proved. 



tan a • cot a= 1 

sin a — 
	1 

•i 1+ cote 

1 
cos a= 

  

  

-V 1 + tan2  a 
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4. Greek Alphabet 

A, a—Alpha I, i — Iota P, p— Rho 
B, 6—Beta K, x — Kappa E, a—Sigma 
F, y — Gamma A, k— Lambda T, ti — Tau 
A, 6—Delta M, ti— Mu r, D —Upsilon 
E, 8—Epsilon N, v —Nu t, cp — Phi 
Z, C— Zeta E, 	—Xi X, X — Chi 

H, I) — Eta 0, o— Omicron 'II, up —Psi 
0, 0,0—Theta H, a— Pi Q, co— Omega 

5. Some Formulae of Algebra and Trigonometry 

The roots of the quadratic equation axe+bx+c=O  

—b± b2  —4ac 
S3,2 — 	 • 2a 

Some approximate formulae. If a «1, then 
(1d-a)n = 1-Fna 

ea=1-Fa 
ln(l+a)=a 

The basic formulae of trigonometry 

sin a = a 

cos a= 1 — a2 /2 
tan a= a 

sine a+ cost a= 1 

sect a— tang a=1 
csc2  a — cot2  a =1 

sin a • sec a= 1 

cos OL•CSC a=1 

sin (a±f3) = 
= sin a cos 6±cos a sin p 

cos (a+(3) 
= cos a cos 13-4-sin a sin p 

tan a:I:tan p 
tan (a:L-6)— 	  

1-T-tan a • tan p 
cot a • cot 13T-1 

cot (a±p) _ cot (3T-cot a 

sin a+ sin 13= 
13  =2 sin ,oc+   cos 

2 

sin a —sin 13= 

=2 cos 
 a+13 

 sin 
2 	2 

a— 13 
2 

a —6 



sin 2a =2 sin a • cos a 
cos 2a= cost a —sin2  a cos a + cos 3=  

13 	— 
-= 	a+ 2 cos 	cos 	

2

13 
 

cos a—cos 13= 

=-- 2 sin a2 	 sin  a —
2

13  
2 

tan a±tan 	
sin  (a±(3)  

cos a • cos 13 

cot a±cot (3 + 
sin (a±13)  
sin a • sin p 

2 sin a • sin 13= cos (a— (3) — 
— cos (a+ (3) 

2 cos a • cos 13= cos (a — (3) + 
+ cos (a+ (3) 

2 sin a • cos 13= sin (a — (3) + 
+ sin (a + 13) 

tan 2a= 	 
1— tang a 

cot 2a = 
cote a  —1 

2cot a 

2tan a 

a  V  —cos  a 
sin--= 

2 	 2 

a 	1+ cos a 
cos 

2 
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6. Table of Derivatives and Integrals 

Function Derivative Function Derivative 

xn 

1 
x 

1 
xTh 

if x 

ex 

enx 

ax 

nxn-1  

1 
—  x2 

n 

sin x 

cos x 

tan x 

Cot x 

aresin x 

arccos x 

cos x 

—sin x 

1 
cost x 

1. xTh+1 

1 sin2  x 

1 2 1/-  x 
ex 

nenx 

ax ln a 

1/ 1 —x2  

1 

17 1—x2 



264 
	

Appendices 

Concluded 

Function Derivative -] Function Derivative 

In x 

-1/-  u 

In u 

u 
z— , 

- 
1 

x 

u 

arctan x 

arccot x 

sinh x 

cosh x 

h tan 	x 

coth x 

1 
1 + x2  

1 

2 V7  

u' 
u 

vu' — v'u 

1+x2 

cosh x 

—sinh x 

1 
v2 cosh2  x 

1 
 

sinh2  x 

x 0  dx = .c 
r 
i 

.. sin x 

. cos 

.c tan x 

c cot x 

n+1  

c 	dx 
tan x  

n 	1 ' n 	
—1 

+ 
dx 	, 

= in x 

dx = — cos x 

x Ix = sin x 

dx= — In cos x 

dx r-- In sin x 

j 	cos2  x = 

c 	dx 
sin2 x

= —cot x 

f ex dx=e,,  

(' 	dx 
tan =arc 	x 

j 1+ x2  

dx 
— arcsin x .0  lit

dx 

1— x2  —x2  

= ln (x+ 17 x2  — 1) .c 	-1/- x2-1 

7. Some Facts About Vectors 

Scalar product: 
ab =ba =ab cos a; 

	

a (b+ 	ab ac. 
Cross product: 

[ab] = — [m]; J [ab] J =-- ab sin a; 

	

[a, b±c] 	[ac]. 
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Mixed, or vector-scalar, product of three vectors is a scalar 
equal numerically to the volume of the parallelepiped construct-
ed from these vectors: 

a [bc] = b [ca] = c [ab]; 

a [bc] = —b [ac] = —a [cb]. 

Double vector product: 
[a [bc]]=b (ac)—c (ab). 

Products of vectors in coordinate form. If 

alei -1- a2e2 + a3e3, 

b =Nei+ b2e2 + b3e3, 

where el, e2, e3  are coordinate unit vectors which are mutually 
perpendicular and form a right triad, then 

ab -=aibi -l-a2b2 +a3b3; 

el  e2 e3 

	

[ab] = ai a2  a3  = (a,b3 -a3b2) 	(a3bi  (4133) e2 4-(aib2  - bi)e3. 
bl  b2  b3  

The rules for differentiating vectors depending on a certain 
scalar variable t: 

d I 	1  ,..‘ 	1  db . 
dt \a  ' "1  = d

a  
t M  dt ' 

T 
d 	da 	d 

- (aa)--- 	a+  a  it
a  
 ; 

-c+lt 
d 	da 	db 

- (a13)= w  b+a-d-t-; 

7-/t [ab] = 
[ ddat bi + [a ddbt 

Gradient of the scalar function y: 

ay 	cp 

	

Vcp=7±7,  1+ 
a  

—tv  j+ 	k, 

where i, j, k are the coordinate unit vectors of the x, y, z axes. 



T tera (1012) 
G giga (109) 
M mega (106 ) 
k kilo (103) 
h hecto (102) 
da deca (101) 
d deci (10-1) 

c centi (10-2) 
m milli (10-3) 
t micro (10-6) 
n nano (10-9) 
p pico (10-12) 
f femto (10-15) 
a atto (10-16) 
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8. Units of Mechanical Quantities in the SI and CGS Systems 

Quantity 

Unit Conversion 
factor, I SI 
unit/1 CGS 

unit SI CGS 

Length m cm 402  
Time s s 1 
Angle rad rad 1 
Area m2 cm2 104 
Volume m3  cm3  106  
Velocity m/s cm/s 102  
Acceleration m/s2  cm/s2  102  
Frequency Hz Hz 1 
Angular frequency rad/s rad/s 1 
Angular velocity rad/s rad/s 1 
Angular acceleration rad/s2  rad/s2  1 
Mass kg g 103  
Density kg/m3  g/cm3  10-3  
Force N dyn 10,  
Pressure Pa dyniem2  10 
Work, energy J erg 107  
Power W erg's 107  
Momentum kg-m/s g•cm/s 10' 
Power impulse N•s dyn•s 10' 
Force moment (torque) N•m dyn•cm 107  
Angular momentum kg•m2/s g•cm2 /s 107  
Moment of inertia kg•m2  g•cm2  107  
Torque momentum N•m•s dyn•cm•s 10' 
Energy flux W erg/s 107  
Energy flux density W/m2  erg/(s•cm2) 103  

9. Decimal Prefixes for the Names of Units 

Examples: nm nanometer (10-9  m) 
kN kilonewton (103  N) 

MeV megaelectronvolt (106  eV) 
111V microwatt (10-6  W) 
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10. Some Extrasystem Units 

Length 	1 A (angstrom)=10-10  m 
1 AU (astronomical unit)=1.496.1011  m 
1 light-year = 0.946.1016  m 
1 parsec = 3.086.1016  m 
1 in (inch)=0.0254 so; 
1 ft (foot) = 0.3048 m; 1 yd (yard) = 0.9144 m 
1 mile=1609 m 

Time . 	1 clay = 86400 s 
1 year =3.11.107  s 

Mass 	1 amu=1.66.10-27  kg; 1 oz (avdp)= 0.028 kg 
1 ton=103  kg; 	1 lb (avdp)=0.454 kg 

Force . • • 1 kgf (kilogram-force) = 9.81 N 
1 tf (ton-force)=9.81.103  N 

Pressure • • 1 bar =105  Pa (precisely) 
1 atm (atmosphere) =1.01.105  Pa 
1 mm Hg (Torr)=133 Pa 
1 in Hg— 3386 Pa 
1 psi (pounds per square inch) = 6895 Pa 

Energy 	1 eV =1.60.10-19  
1 Wh (Watt-hour)-=3.6.103  J 

Power . 	• 1 hp (horsepower)=736 W 

11. Astronomic Quantities 

Mass, kg 
Mean radius, 

m 
Mean orbit 
radius, m 

Sun 	 1.97.103° 6.95.108  
Earth 	. 	. 	. 	. 5.96.1024  6.37.10° 1.50.1011  
Moon 	 7.34.1022  1.74.106  3.84.108  

12. Fundamental Constants 

Velocity of light in vacuo 

Gravitational constant 

Standard free 
fall acceleration 

f 2.998-106  m/s 
c=  1 2.998.1010  cm/s 

f 6.67.10-11 m3/(kg.s2) 
1 6.67.10-6  cm3/(g•s2) 

9.807 m/s2  f  
980.7 cm/s2 
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NA= { 66  00  22 55 11 00 22 36 kmmo 1°1 1- 1  Avogadro constant 	 

1.602.10 0  C Elementary charge  	e 	4.80.1
-1  

0-10  esu 

0.911.10-30  kg 
Electron rest mass  	m = 	0.911.10-27  g 

	

e 	0.511 Mev 

ratio . el 	
51:27671001 17  Ces/ukgg  El ectron charge to mass 

--- 
{ 1.672.10-27  kg Proton rest mass 	  rn P 	1.672.10-24  g 

1.660.10-21  kg 
Atomic mass unit 	 1 amu= 1.660.10-24  g 

931.4 MeV 
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Arc coordinate 19, 55 
Axes, free 173 
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Couple 160 
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